The course will provide an overview of data science methodologies and technology, including data understanding, modeling and analysis in big scale.
A joined set of teachers, from Intel and TAU, will cover each of the topics from both theoretical and practical perspectives.
Each class will be a 3 hours lecture (given by one of Intel lectors or by Prof. Tova Milo) or a 3 hours recitation (tirgul) given by Dr. Slava Novgorodov.
Homework - 3 HW assigments during the semester (submission in pairs) - 30% of the final grade
Final exam - 70% of the final grade
Exam - Moed A: 01.08.2019
Exam - Moed B: 20.09.2019
# | Date | Given by | Title | Material | Note |
1 | 27.02.2019 | Dr. Armon, Dr. Lieder | Introduction to Data Science, Data Understanding | [ppt1] [ppt2] | |
2 | 06.03.2019 | Dr. Lieder | Feature Selection | [ppt] | |
3 | 13.03.2018 | Dr. Novgorodov | Recitation #1 | [ppt]Code: [original][lesson] | HW #1 [pdf][ipynb], until 03.04.2019 |
4 | 20.03.2019 | Dr. Faivishevsky | Data Modeling #1 | [ppt] | |
5 | 27.03.2019 | Dr. Faivishevsky | Data Modeling #2 | [ppt] | |
6 | 03.04.2019 | Dr. Novgorodov | Recitation #2 | [ppt]Code: [original][lesson] | HW #2 [pdf][ipynb], until 15.05.2019 |
7 | 10.04.2019 | Hagar Loeub | Introduction to Deep Learning | [pdf] | |
8 | 01.05.2019 | Dr. Novgorodov | Recitation #3 | [ppt][code] | |
9 | 15.05.2019 | Tomer Levi | Big Data - Overview | [pdf] | |
10 | 22.05.2019 | Prof. Milo | Big Data - MapReduce | [pdf1] [pdf2] | |
11 | 29.05.2019 | Prof. Milo | Big Data - Spark | [pdf1] [pdf2] | |
12 | 05.06.2018 | Dr. Novgorodov | Recitation #4 | [ppt][code] | HW #3 [pdf], until 27.06.2019 |
13 | 12.06.2018 | Dr. Novgorodov | Summary | [ppt] | Exam 16/17 Moed A, Exam 16/17 Moed B Exam 17/18 Moed A, Exam 17/18 Moed B |