
Parallel Databases

When/why do we need them?

1

Two Kinds to Parallel Data
Processing

• Parallel databases, developed starting
with the 80s (this lecture)
– OLTP (Online Transaction Processing)
– OLAP (Online Analytic Processing, or

Decision Support)
• General purpose distributed processing:

MapReduce, Spark
– Mostly for Decision Support Queries

2

Performance Metrics
for Parallel DBMSs

P = the number of nodes (processors, computers)
• Speedup:

– More nodes, same data  higher speed
• Scaleup:

– More nodes, more data  same speed

• OLTP: “Speed” = transactions per second (TPS)
• Decision Support: “Speed” = query time

3

Shared Nothing

Interconnection Network

P P P

M M M

D D D
4

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

• Inter-query parallelism
– Transaction per node
– OLTP

• Inter-operator parallelism
– Operator per node
– Both OLTP and Decision Support

• Intra-operator parallelism
– Operator on multiple nodes
– Decision Support

We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

5

Single Node Query Processing
(Review)

Given relations R(A,B) and S(B, C), no indexes:

• Selection: σA=123(R)
– Scan file R, select records with A=123

• Group-by: γA,sum(B)(R)
– Scan file R, insert into a hash table using attr. A as key
– When a new key is equal to an existing one, add B to the value

• Join: R ⋈ S
– Scan file S, insert into a hash table using attr. B as key
– Scan file R, probe the hash table using attr. B

6

Distributed Query Processing

• Data is horizontally partitioned on many
servers

• Operators may require data reshuffling

7

Horizontal Data Partitioning

8

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

9

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning
• Block Partition:

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

10

Parallel GroupBy
Data: R(K,A,B,C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A

• R is block-partitioned

• R is hash-partitioned on K

11

Parallel GroupBy

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

12

R1 R2 RP . . .

R1’ R2’ RP’
. . .

Reshuffle R
on attribute A

Parallel Join

• Data: R(K1,A, B), S(K2, B, C)
• Query: R(K1,A,B) ⋈ S(K2,B,C)

13

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

Initially, both R and S are horizontally partitioned on K1 and K2

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

14

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle

⋈ ⋈

Partition

Local
Join

Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is
the new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is
the new running time?
– Same (each server holds the same # of chunks)

15

Uniform Data v.s. Skewed Data
• Let R(K,A,B,C); which of the following

partition methods may result in skewed
partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

16

17

Example Parallel Query Execution

SELECT *
FROM Order o, Line i

WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)

18

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

19

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)

20

Example Parallel Query Execution

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

	Parallel Databases��When/why do we need them?
	Two Kinds to Parallel Data Processing
	Performance Metrics �for Parallel DBMSs
	Shared Nothing
	Approaches to�Parallel Query Evaluation
	Single Node Query Processing (Review)
	Distributed Query Processing
	Horizontal Data Partitioning
	Horizontal Data Partitioning
	Horizontal Data Partitioning
	Parallel GroupBy
	Parallel GroupBy
	Parallel Join
	Slide Number 14
	Speedup and Scaleup
	Uniform Data v.s. Skewed Data
	Example Parallel Query Execution
	Example Parallel Query Execution
	Example Parallel Query Execution
	Example Parallel Query Execution

