Parallel Databases

When/why do we need them?

Two Kinds to Parallel Data Processing

- Parallel databases, developed starting with the 80s (this lecture)
 - OLTP (Online Transaction Processing)
 - OLAP (Online Analytic Processing, or Decision Support)
- General purpose distributed processing: MapReduce, Spark

– Mostly for Decision Support Queries

Performance Metrics for Parallel DBMSs

- P = the number of nodes (processors, computers)
- Speedup:
 - More nodes, same data \rightarrow higher speed
- Scaleup:
 - More nodes, more data \rightarrow same speed
- OLTP: "Speed" = transactions per second (TPS)
- Decision Support: "Speed" = query time

Shared Nothing

Approaches to Parallel Query Evaluation

- Inter-query parallelism
 - Transaction per node
 - OLTP
- Inter-operator parallelism
 - Operator per node
 - Both OLTP and Decision Support
- Intra-operator parallelism
 - Operator on multiple nodes
 - Decision Support

We study only intra-operator parallelism: most scalable

Single Node Query Processing (Review)

Given relations R(A,B) and S(B, C), no indexes:

- Selection: $\sigma_{A=123}(R)$
 - Scan file R, select records with A=123
- Group-by: $\gamma_{A,sum(B)}(R)$
 - Scan file R, insert into a hash table using attr. A as key
 - When a new key is equal to an existing one, add B to the value
- Join: R ⊠ S
 - Scan file S, insert into a hash table using attr. B as key
 - Scan file R, probe the hash table using attr. B

Distributed Query Processing

 Data is horizontally partitioned on many servers

• Operators may require data reshuffling

Horizontal Data Partitioning

Horizontal Data Partitioning

Horizontal Data Partitioning

• Block Partition:

- Partition tuples arbitrarily s.t. size(R_1)≈ ... ≈ size(R_P)
- Hash partitioned on attribute A:
 Tuple t goes to chunk i, where i = h(t.A) mod P + 1
- Range partitioned on attribute A:
 - Partition the range of A into $-\infty = v_0 < v_1 < ... < v_P = \infty$
 - Tuple t goes to chunk i, if $v_{i-1} < t.A < v_i$

Parallel GroupBy

Data: $R(\underline{K}, A, B, C)$ Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
- R is block-partitioned
- R is hash-partitioned on K

Parallel GroupBy

- Data: $R(\underline{K},A,B,C)$ Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K

Parallel Join

Data: R(<u>K1</u>,A, B), S(<u>K2</u>, B, C)
Query: R(<u>K1</u>,A,B) ⋈ S(<u>K2</u>,B,C)

Initially, both R and S are horizontally partitioned on K1 and K2

Data: $R(\underline{K1}, A, B), S(\underline{K2}, B, C)$ Query: $R(\underline{K1}, A, B) \bowtie S(\underline{K2}, B, C)$

Speedup and Scaleup

- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
 - Half (each server holds ½ as many chunks)
- If we double both P and the size of R, what is the new running time?
 - Same (each server holds the same # of chunks)

Uniform Data v.s. Skewed Data

 Let R(K,A,B,C); which of the following partition methods may result in skewed partitions?

Example Parallel Query Execution

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, ...) Example Parallel Query Execution

Order(<u>oid</u>, item, date), Line(item, ...) **Example Parallel** join o.item = i.item **Query Execution** scan Item i

date = today()

Order o

Example Parallel Query Execution

