
Parallel Databases

When/why do we need them?
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Two Kinds to Parallel Data 
Processing

• Parallel databases, developed starting 
with the 80s (this lecture)
– OLTP (Online Transaction Processing) 
– OLAP (Online Analytic Processing, or 

Decision Support)
• General purpose distributed processing: 

MapReduce, Spark
– Mostly for Decision Support Queries
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Performance Metrics 
for Parallel DBMSs

P = the number of nodes (processors, computers)
• Speedup: 

– More nodes, same data  higher speed
• Scaleup:

– More nodes, more data  same speed

• OLTP: “Speed” = transactions per second (TPS)
• Decision Support: “Speed” = query time
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Shared Nothing
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Approaches to
Parallel Query Evaluation

• Inter-query parallelism
– Transaction per node
– OLTP

• Inter-operator parallelism
– Operator per node
– Both OLTP and Decision Support

• Intra-operator parallelism
– Operator on multiple nodes
– Decision Support

We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

5



Single Node Query Processing 
(Review)

Given relations R(A,B) and S(B, C), no indexes:

• Selection:  σA=123(R)
– Scan file R, select records with A=123

• Group-by:  γA,sum(B)(R)
– Scan file R, insert into a hash table using attr. A as key
– When a new key is equal to an existing one, add B to the value

• Join:  R ⋈ S
– Scan file S, insert into a hash table using attr. B as key
– Scan file R, probe the hash table using attr. B
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Distributed Query Processing

• Data is horizontally partitioned on many 
servers

• Operators may require data reshuffling
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Horizontal Data Partitioning
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Horizontal Data Partitioning
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Horizontal Data Partitioning
• Block Partition: 

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

10



Parallel GroupBy
Data: R(K,A,B,C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

• R is hash-partitioned on A

• R is block-partitioned

• R is hash-partitioned on K
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Parallel GroupBy

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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Parallel Join

• Data: R(K1,A, B), S(K2, B, C)
• Query: R(K1,A,B) ⋈ S(K2,B,C)
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Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)
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Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is 
the new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is 
the new running time?
– Same (each server holds the same # of chunks)
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Uniform Data v.s. Skewed Data
• Let R(K,A,B,C); which of the following 

partition methods may result in skewed
partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition
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Example Parallel Query Execution

SELECT * 
FROM Order o, Line i

WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)
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Example Parallel 
Query Execution

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)
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Example Parallel 
Query Execution

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)
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Example Parallel Query Execution

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all 
lines where hash(item) = 1

contains all orders and all 
lines where hash(item) = 2

contains all orders and all 
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)
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