MapReduce



Distributed File System (DFS)

For very large files: TBs, PBs

Each file is partitioned into chunks, typically
64MB

Each chunk is replicated several times (23),
on different racks, for fault tolerance

Implementations:
— Google’'s DFS: GFS, proprietary
— Hadoop’s DFS: HDFS, open source




MapReduce

* Google: paper published 2004
* Free variant: Hadoop

 MapReduce = high-level programming model
and implementation for large-scale parallel
data processing



Typical Problems Solved by MR

Read a lot of data

Map: extract something you care about from each
record

Shuffle and Sort
Reduce: aggregate, summarize, filter, transform

Write the results Paradigm stays the same,

change map and reduce
functions for different problems

4
slide source: Jeff Dean



Data Model

Files!
A file = a bag of (key, value) pairs
A MapReduce program:

* Input: a bag of (inputkey, value) pairs
« Output: a bag of (outputkey, value) pairs



Step 1: the MAP Phase

User provides the MAP-function:
e |Input: (input key, value)

e Ouput:
bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file



Step 2: the REDUCE Phase

User provides the REDUCE function:

e |nput:
(intermediate key, bag of values)

« Output: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE
function



Example

« Counting the number of occurrences of each
word in a large collection of documents

e Each Document

— The key = document id (did)
— The value = set of words (word)

reduce(String key, lterator values):
// key: a word
// values: a list of counts
Int result = 0;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

map(String key, String value):
// key: document name
// value: document contents
for each word w In value:
Emitintermediate(w, “1");
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Jobs v.s. Tasks

A MapReduce Job

— One single “query”, e.g. count the words in all docs
— More complex queries may consists of multiple jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker
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Workers

« A worker IS a process that executes one task
at a time

» Typically there is one worker per processor,
hence 4 or 8 per node
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Fault Tolerance

 If one server falls once every year...
... then a job with 10,000 servers will fail in
less than one hour

 MapReduce handles fault tolerance by writing
Intermediate files to disk:
— Mappers write file to local disk

— Reducers read the files (=reshuffling); if the server
fails, the reduce task is restarted on another

Server
12



MAP Tasks REDUCE Tasks

/
/ —> | w1,2) Shuffle /

(did1,v1) |—[wen
> | w3,2) (wi, (1,1,1,...,1)) —> | (w1, 25)
w2, (1,1,...)) —> | w2, 77)
(did2,v2) 7| (wLl) W3,(1...)) —> | W3, 12)
\ —_— > (W2,1)// i
N \\
(did3,v3) |—
//
| =




MapReduce Execution Detalils

i i Output to disk,
\ / replicated in cluster

Reduce Task

Intermediate data

goes to local disk:
(Sh utfl e) M x R files (why?)



Implementation

There Is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M map
tasks, keeps track of their progress

Workers write their output to local disk, partition
Into R regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks
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Interesting Implementation Detalls
Worker failure:
« Master pings workers periodically,

 If down then reassigns the task to another
worker
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Interesting Implementation Detalls

Backup tasks:
e Straggler = a machine that takes unusually long
time to complete one of the last tasks. Eqg:

— Bad disk forces frequent correctable errors (30MB/s -
1MB/s)

— The cluster scheduler has scheduled other tasks on
that machine

o Stragglers are a main reason for slowdown

» Solution: pre-emptive backup execution of the
last few remaining in-progress tasks
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iPhone 6 iPhone 6 Plus

Parallel Data Processing @ 2010

Al



Issues with MapReduce
 Difficult to write more complex queries

 Need multiple MapReduce jobs: dramatically
slows down because it writes all results to
disk

* Next lecture: Spark
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Relational Operators In
MapReduce

Given relations R(A,B) and S(B, C) compute:

o Selection: 0,_1,3(R)

+ Grou p'by: VA,sum(B)(R)

. Join: RIK S
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Selection 0,-153(R)

map(String value):
if value.A=123:
Emitintermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:
Emit(v);
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Selection 0,-153(R)

map(String value):
if value.A=123:
Emitintermediate(value.key, value);

reduce(String Ry
for each v in
Emi

erator values):

No need for reduce.
But need system hacking
to remove reduce from MapReduce 23



Group By VA,sum(B)(R)

map(String value):
Emitintermediate(value.A, value.B);

reduce(String k, Iterator values):
s=0
for each v in values:
S=S+V
Emit(k, v);
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Join
Two simple parallel join algorithms:
« Partitioned hash-join (we saw it, will recap)

e Broadcast join
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R(A,B) x5 S(C,D)

Partitioned Hash-Join

Initially, both R and S are horizontally partitioned

Reshuffle R on R.B
and Son S.B

Ry, S,

R, S,

Rp Sp

Each server computes
the join locally
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R(A,B) x5 S(C,D)

Partitioned Hash-Join

map(String value):

case value.relationName of
‘R’: Emitintermediate(value.B, (‘R’, value));
‘S’ Emitintermediate(value.C, (‘S’, value));

reduce(String k, Iterator values):
R = empty; S =empty;
for each v in values:
case Vv.type of:
‘R’. R.insert(v)
‘S’:  S.insert(v);
forviinR,forv2in$S
Emit(vl,v2);




R(A,B) x5 S(C,D)

Broadcast Join

Broadcast S
Reshuffle R on R.B
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R(A,B) x5 S(C,D)

Broadcast Join

map should read
several records of R:
value = some group
of records

map(String value):
open(S); /* over the network */

hashTbl = new()
foreachwin S:

hashTbl.insert(w.B, w)
close(S);

Read entire table S,
build a Hash Table

for each v in value:
for each w in hashTbl.find(v.B)
Emit(v,w);

reduce(...):
[* empty: map-side only */



Conclusions

 MapReduce offers a simple abstraction, and
handles distribution + fault tolerance

« Speedup/scaleup achieved by allocating
dynamically map tasks and reduce tasks to
available server. However, skew is possible
(e.g. one huge reduce task)

« Writing intermediate results to disk is
necessary for fault tolerance, but very slow.
Spark replaces this with “Resilient Distributed
Datasets” = main memory + lineage
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