

Algorithms and Applications in Social Networks

2019/2020, Semester B Slava Novgorodov

Lesson #7

- Influence maximization:
 - Background, motivation and examples
- Linear Threshold Model
- Independent Cascade Model
- Theoretical properties

Influence Maximization

Motivation

 Advertisement – find most influential users and ask them to post an ad of your product

 Opinion making – find most influential users to spread the opinion

Vaccination research – find people to vaccinate first

bibars66 • Follow La Zenia

bibars66 Laces are overrated. can't wait to play in these. #ACE16 #BeTheDifference □□⊙

prognozistavki1 ++)

guymoyal_ ביברס יאחחח

e_dmitrichenko И ты в носках играть будешь?!

gal_senderey6 בוא לבאר שבע חחחחח

babkin_offical Взаимная подписка и

babkin_offical Я

tal_ben_naim מה הסיכוי שאתה חוזר @bibras ...@bibras ...@bibras

yungninjafresh В галошах будет)))

ri.cw +

mikaelrahkola @juhovoittola kato miten se on kirjottanu itte nimensä ≪problem solved

ΩQ

2,574 likes

bibars66 • Follow

bibars66 ממליץ בחום לכל ילד שחולם להיות שחקן. #איתן עזריה סייים

View all 35 comments

mpsmirnov Это что? Книга? Я что то не в курсе. gal_ginzburg פירלו הישראלי spilberg_ppp Нихуя не понимаю m_a_goncharov @cska1909 ⇔ ara sagialon8 ביברס יתותח kondrratova ♥♥ jiblik Перевод : Советую каждому ребёнку, который хочет стать футболистом, прочесть эту книгу. omerfridman127 פירלו של ישראל Iguschina_ @jiblik как называется книга??

2,384 likes

JULY 23, 2015

bibars66 • Follow La Quinta, Marbella

bibars66 לא מוותר על זה בשום מקום נס_קפה_של_עלית #נס_קפה_של_עלית

View all 33 comments

yoaveliaz ביברס אוהבים אותך כלפ

indiedi @rask0lnik0v אה סליחה שטעיתי ...

maor23235 EZ7DESIGNZ %FOLLOW@ez7designz %FOLLOW@ez7designz %FOLLOW@ez7designz %

maor23235 EZ7DESIGNZ ≪FOLLOW@ez7designz ≪FOLLOW@ez7designz ≪FOLLOW@ez7designz %FOLLOW@ez7designz %

maor23235 EZ7DESIGNZ %FOLLOW@ez7designz %FOLLOW@ez7designz %FOLLOW@ez7designz %

1.m.i.designz 1.M.I.DESIGNZ

Q Q 1,524 likes FEBRUARY 17, 2015

Kate Middleton effect

- The Kate Middleton effect is the trend effect that she is reported to have had on others, for example in sales of particular products.
- According to NewsWeek:

"The Kate Effect may be worth £1 billion to the UK fashion industry"

https://en.wikipedia.org/wiki/Kate_Middleton_effect

Diffusion of innovation

Book by Everett Rogers, 1962

Marketing example: Hotmail

Jul 1996:	Hotmail.com started
Aug 1996:	20K subscribers
Dec 1996 [.]	100K

- Jan 1997: 1 million
- Jul 1998: 12 million

Bought by Microsoft for \$400 million

Marketing: At the end of each email sent there was a message to subscribe to Hotmail.com: **"Get your free email at Hotmail"**

Influence Maximization

Given a graph, find k people to maximize the number influenced of people

Influence Maximization

Given a graph, find k people to maximize the number influenced of people

Whom to take?

		O Inst	tagram Log II	n Sign Up		
			b.netanyahu 🧟 Follow			
		Benjamin Netany t.me/bnetanyahu	ahu ישראל ויו"ר הליכוד	ראש ממשלת		
		1,264 posts	173k followers	3 following		
O Ins	tagram Log	In Sign Up		Ø	Instagram	Log In Sign Up
	oren.hazan 🧇 Follo	w			tamarza	andberg Follow
ח"כ אורן חזן www.facebook.co	om/orenhazanlikud			Tamar Zan bit.ly/Zand tamarzand	ו היום למרצ dberg lberg dberg.co.il	<< הצטרפו אליי, התפקד
303 posts	6,620 followers	63 following		1,335 posts	2,8 follo	44 344 wers following 1

Models of influence

- Two basic models:
 - Linear Threshold Model
 - Independent Cascade Model
- Setup:
 - A social network is represented as a directed weighted graph, with each person as a node
 - Nodes start either active or inactive
 - An active node may trigger activation of neighboring nodes
 - Monotonicity assumption: active nodes never deactivate

Linear Threshold Model

Linear Threshold Model

- A node v has random threshold $\theta_v \sim U[0,1]$
- A node v is influenced by each neighbor w according to a weight b_{vw} such that

$$\sum_{w \text{ neighbor of } v} b_{v,w} \leq 1$$

- A node v becomes active when at least (weighted) θ_{v} fraction of its neighbors are active

$$\sum_{w \text{ active neighbor of } v} b_{v,w} \ge \theta_v$$

令 / 目 ゆ

Independent Cascade Model

Independent Cascade Model

• When node v becomes active, it has a single chance of activating each currently inactive neighbor w.

• The activation attempt succeeds with probability p_{vw} .

Theoretical properties

Influence Maximization Problem

 Influence of node set S, denoted as I(S) (or f(S)): The expected number of active nodes at the end, if set S is the initial active set.

- Problem:
 - Given a parameter k, find a k-node set S to maximize I(S)

Properties of I(S)

- Non-negative
- Monotone $I(S \cup \{v\}) \ge I(S)$
- Submodular
 - Function I is submodular iff:

 $\forall S \subset T \subset N, \forall v \in N \setminus T,$ $I(S \cup \{v\}) - I(S) \ge I(T \cup \{v\}) - I(T)$

NP-Hardness of IM

- The problem is NP-Hard! (by reduction from the Set Cover Problem)
- Reminder Set Cover Problem:

Given universe of elements $U = \{u_1, ..., u_n\}$ and sets $X_1, ..., X_m \subseteq U$

Q: Are there k sets among $X_1, ..., X_m$ such that their union is U?

11

The reduction (sketch)

- Given an instance of Set Cover Problem with sets X1...Xm:
- 1. Build a bi-partite graph X to U by creating edge (Xi,u)

2. Solution of k-IM problem will solve the k-Cover Set

Approximation algorithm

Greedy Hill Climbing algorithm:

Start with $S_0 = \{ \}$ For i = 1 ... k

• Activate node u that max $f(S_{i-1} \cup \{u\})$

• Let $S_i = S_{i-1} \cup \{u\}$

Example:

Eval. $f(\{a\}), ..., f(\{e\})$, pick argmax of them Eval. $f(\{d, a\}), ..., f(\{d, e\})$, pick argmax Eval. $f(d, b, a\}), ..., f(\{d, b, e\})$, pick argmax

Approximation quality

- Hill climbing produces a solution S where: $f(S) \ge (1-1/e) * f(OPT)$ [1-1/e ~ 0.63]
- Claim holds with 2 must properties of f:

f is monotone: (activating more nodes doesn't hurt) if $S \subseteq T$ then $f(S) \leq f(T)$ and $f({})=0$

f is submodular: (activating each additional node helps less) adding an element to a set gives less improvement than adding it to one of its subsets: $\forall S \subset T$

 $f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$

Gain of adding a node to a small set Gain of adding a node to a large set

Results by [Nemhauser, Fisher, Wolsey '78, Kempe, Kleinberg, Tardos '03]

How to compute the I(S)

- Independent Cascade Model:
 - Take the original graph and generate an instance where the weights of edges are the probabilities
 - Repeat the process many times and compute the average (expected) number of edges reachable

Experimental Results

- Collaboration graph obtained from co-authorships in papers from arXiv's high-energy physics theory section
 - Claim: co-authorship networks capture many "key features"
 - Simple settings of the influence parameters
 - For each paper with 2 or more authors, edge was placed between them
- Competitors:
 - Degree centrality: Pick nodes with highest degree
 - Closeness centrality: Pick nodes in the "center" of the network
 - Random nodes: Pick a random set of nodes

Experimental Results

Discussion

- Greedy approach is very slow!
 - The complexity is O (k * n * m * R)

R – rounds, n – nodes, m – edges

- Optimization ideas:
 - Faster reachability computation
 - Heuristics like degree discount
- Open problems:
 - More realistic models
 - Negative influence

Thank you! Questions?