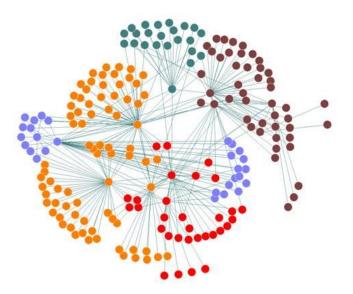


Algorithms and Applications in Social Networks



2019/2020, Semester B Slava Novgorodov

Lesson #6

- Social Networks application examples:
 - Fraud
 - Crime
 - Terrorism
- Advices for in-practice social network analysis

Fraud detection and prevention

Motivation

- Fraud is everywhere:
 - Credit cards fraud
 - Taxes fraud
 - Fake companies fraud
- It costs our industry billions of dollars yearly

Current <u>(non SNA)</u> methods:

- Machine learning algorithms that gives a score to each transaction (i.e. the probability to be fraud)
 - Improvement directions:
 - Better ML algorithms
 - More labeled data
- Rules based systems, which usually works as addition to ML techniques (usually written by experts)
 - Improvement directions:
 - Automatic rules generation
 - Better sharing of rules between experts

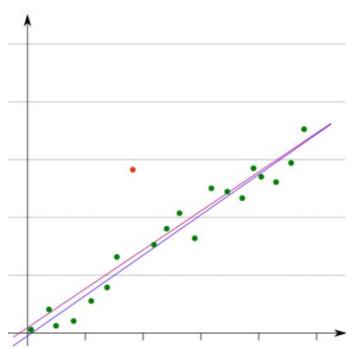
Example of fraud detection

Time	Amount	Transaction Type	Location		ML Score:
18:02	107	Online, no CCV	Online Store	FRAUD	0.75
18:03	106	Online, no CCV	Online Store	FRAUD	0.91
18:04	112	Online, with CCV	Online Store		0.22
19:08	114	Online, no CCV	Online Store	FRAUD	0.15
19:10	117	Online, with CCV	Online Store		0.71
20:53	46	Offline, without PIN	GAS Station B	FRAUD	
20:54	48	Offline, without PIN	GAS Station B	FRAUD	
20:55	44	Offline, without PIN	GAS Station B	FRAUD	
20:58	47	Offline, with PIN	Supermarket		
21:01	49	Offline, with PIN	GAS Station A		
:	:	:	:	:	

Rules:

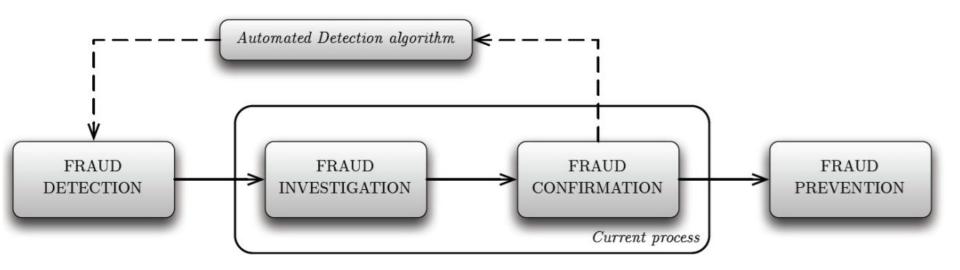
1) Time \in [18:00, 18:05] \land Amt \ge 110 2) Time \in [18:55, 19:00] \land Amt \ge 110

- Basic method: Anomalous behavior detection
 - Outlier detection: abnormal behavior and/or characteristics in a data set might often indicate that that person perpetrates suspicious activities.



- Basic method: Anomalous behavior detection
 - Pros: Very simple method
 - Cons: A lot of false positives and false negatives

Current workflow:



- Main (not all) challenges with fraud detection:
- Unbalanced:
 - Extremely skewed class distribution
 - Big data, but only few fraudulent observations (often < 1%)
- Well-considered & Carefully organized:
 - Complex fraud structures are carefully planned
 - Outlier detection no longer sufficient: combination of patterns, preferably well-hidden
 - Relationships between fraudsters
- Imperceptibly concealed
 - Subtlety of fraud: imitating normal behavior, even in identify theft
 - Fraudsters are often first "sleeping", pretending to be a good customer

Social Networks Analysis for Fraud Detection

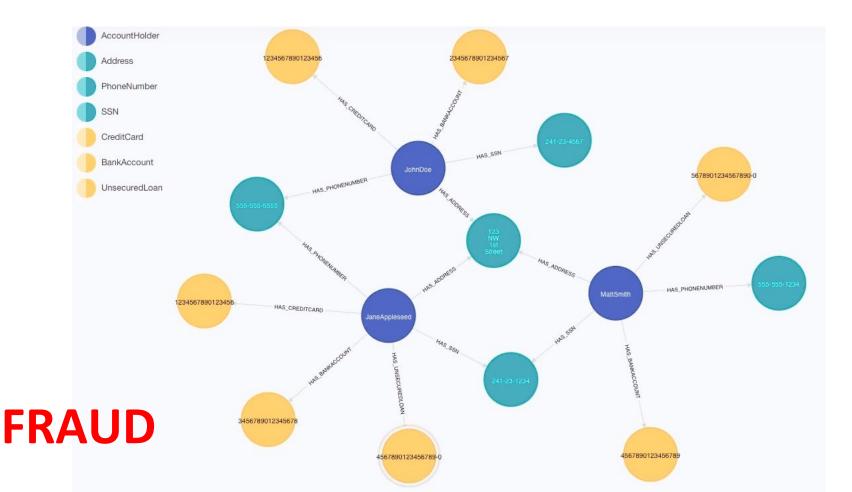
Model interactions as a network:

- Nodes:
 - People (Fraudsters/Victims)
 - Banks
 - Companies
 - Resources
 -
- Links:
 - Credit Card transactions
 - Loans
 - "belongs to" relation, "works at" relation ...

- ...

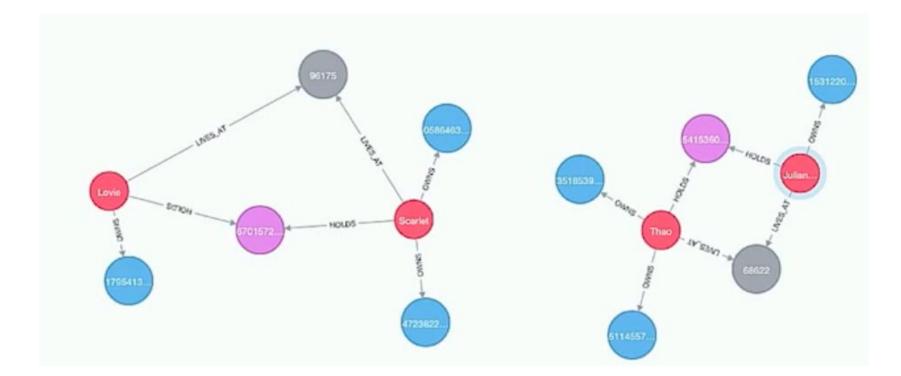
Visualization can help!

Modeling as a network can help even if you just visualize it...



Visualization can help!

Modeling as a network can help even if you just visualize it...

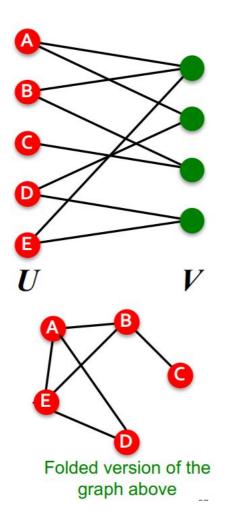


LEGITIMAT

Bipartite graphs folding

Folding:

Connect every red node to other red node if they are connected to same green node

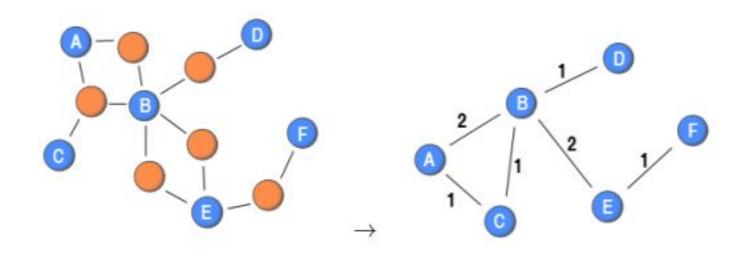


Bipartite graphs weighted folding

Folding:

Connect every blue node to other blue node if they are connected to same orange node.

If the node already exists, add 1 to its weight

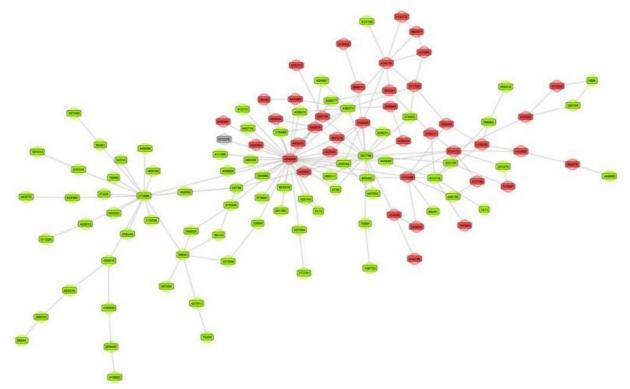


Fraud analysis "basic scheme"

- 1. Take the data and represent it as a network
- 2. Decide of the "sides" of the bipartite network
- 3. Fold it
- 4. Detect cliques, detect communities, measure centrality...

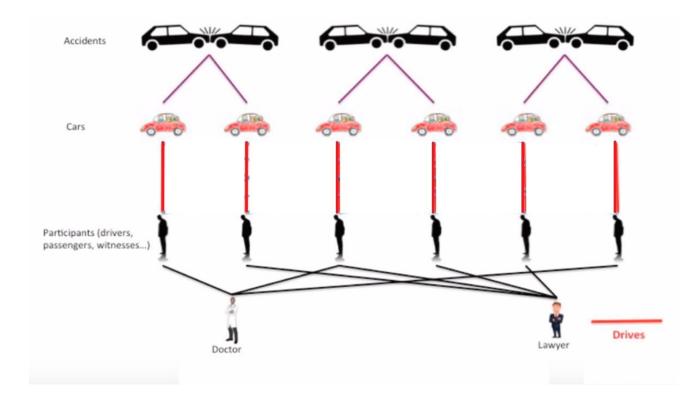
Homophily

 People tend to associate with other whom they perceive as being similar to themselves in some way.
e.g.: same city, hobbies, interests...



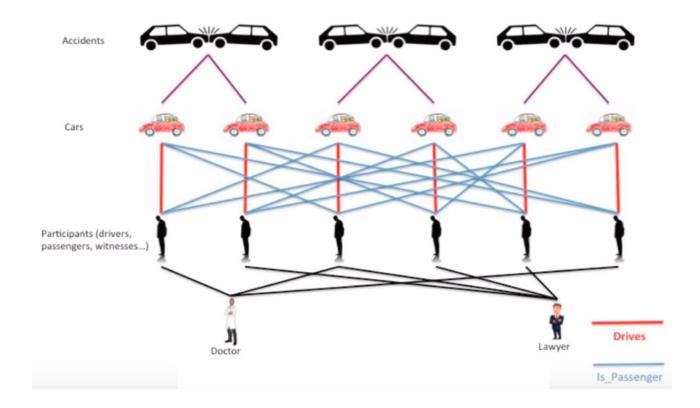
Insurance fraud

• Combining different types of links in one network can give much more information

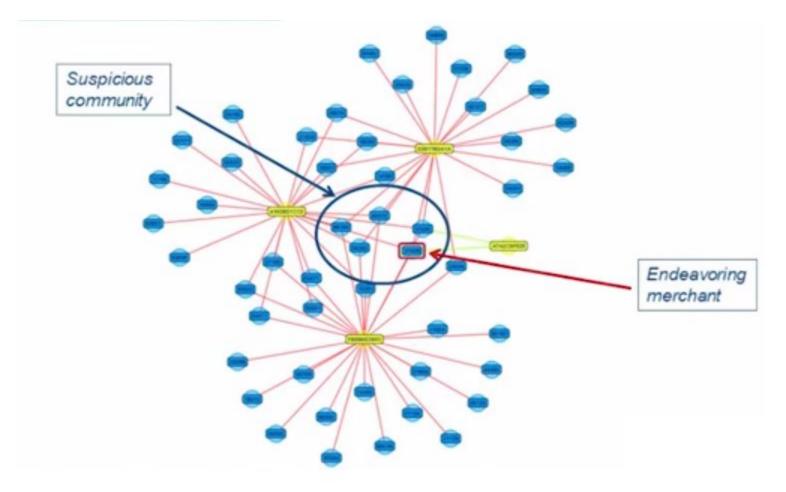


Insurance fraud

• Combining different types of links in one network can give much more information

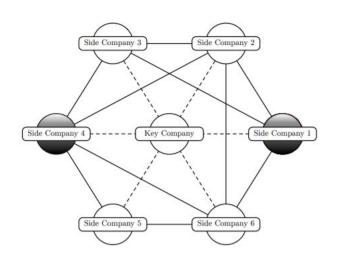


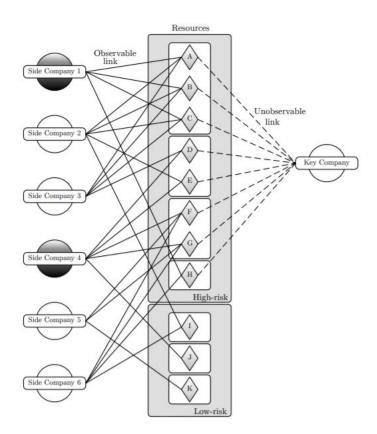
Credit Card Fraud



Very sensitive data

Taxes Fraud



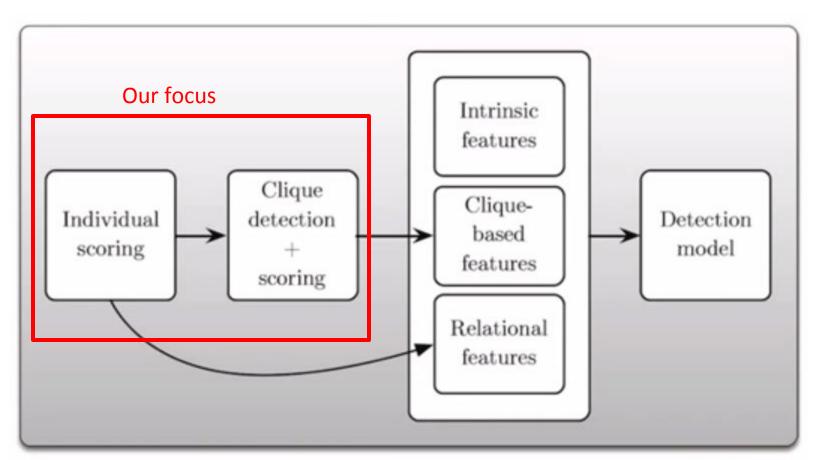


"Spider construction" fraud scheme – open a company, allocate resources, Bankrupt the company, move the resources...

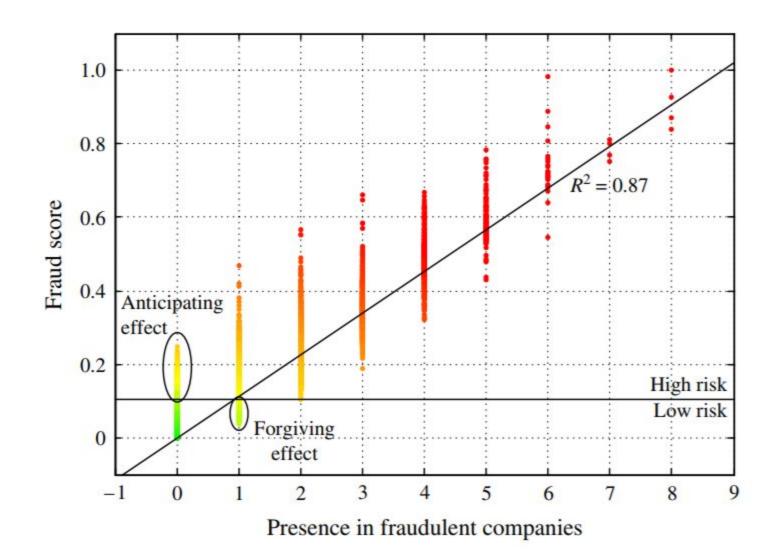
The solution

• System called Gotcha! (Gotch'all):

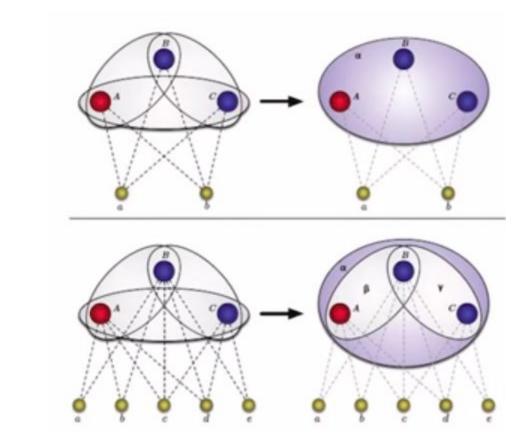
(by Van Vlasselaer et al.)



Individual Scoring



Clique detection

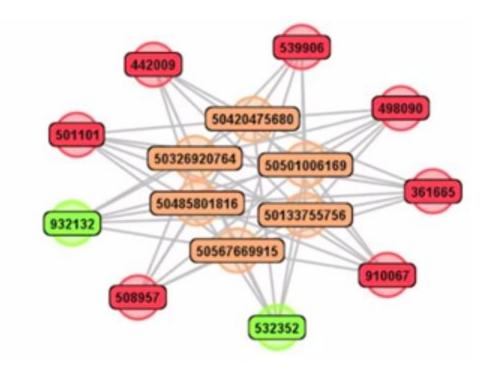


"Complete" clique

"Partial" clique

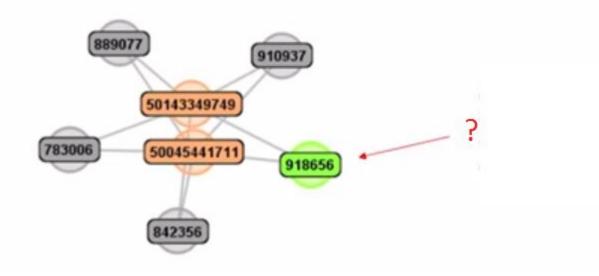
Clique scoring

Suspiciousness of the clique: How many bankrupts? How many frauds?



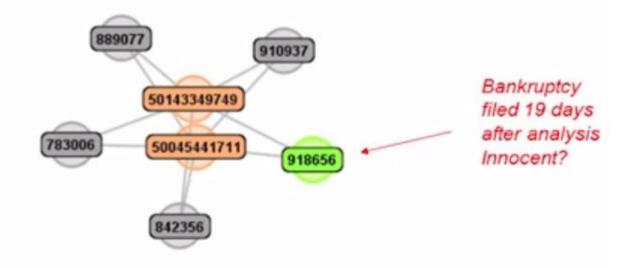
Empirical evaluation

- 5 companies, 2 resources
- 4 out of 5 companies are bankrupt
- What about the last company?



Empirical evaluation

- 5 companies, 2 resources
- 4 out of 5 companies are bankrupt
- What about the last company?



Crime detection

Motivation

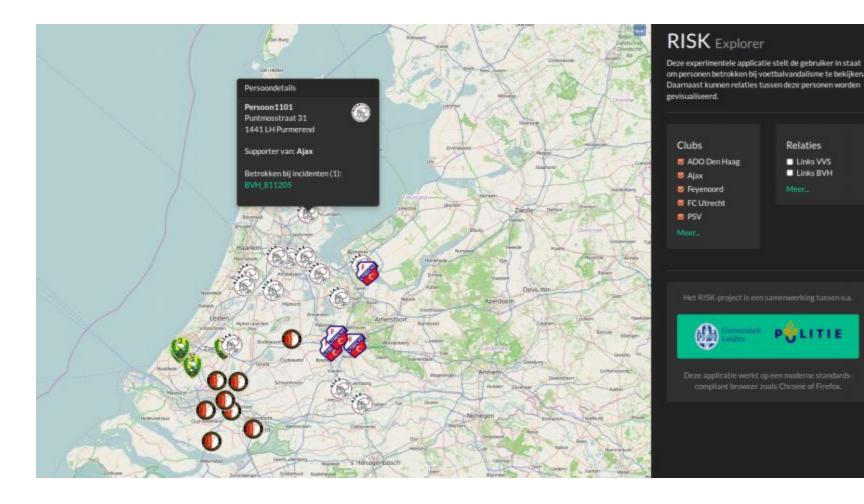
 Crime is often well organized, with individuals formed into groups/gangs, with structure and hierarchy.

 Crimes have a lot of "meta-data", that can be better modeled as a network

Dutch Police example

- Gain insight in social networks of soccer fans, group formation and organization
- Dataset: all entries in police systems of law violations of a particular group of people involved in soccer violence

Dutch Police example

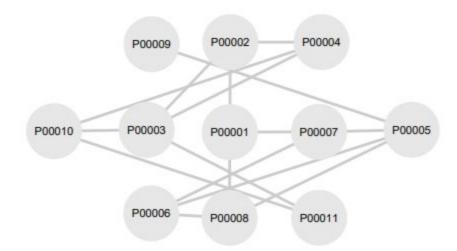


Dutch Police example - Dataset

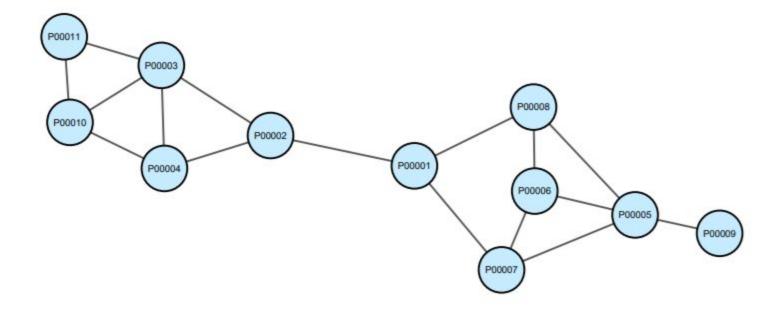
Person ID	Incident ID	Incident Type		
P000001	X00011	Straatroof/diefstal		
P000001	X00014	Eenv. Mishandeling		
P000002	X00011	Straatroof/diefstal		
P000002	X00012	Eenv. Mishandeling		
P000003	X00012	Eenv. Mishandeling		
P000003	X00016	Bedreiging		
P000004	X00012	Eenv. Mishandeling		
P000004	X00017	Eenv. Mishandeling		
P000005	X00013	Bedreiging		
P000005	X00014	Eenv. Mishandeling		
P000005	X00015	Straatroof/diefstal		
P000006	X00013	Bedreiging		
P000007	X00013	Bedreiging		
P000008	X00013	Bedreiging		
P000009	X00015	Straatroof/diefstal		
P000010	X00016	Bedreiging		
P000010	X00017	Eenv. Mishandeling		
P000011	X00016	Bedreiging		

Dutch Police example - Dataset

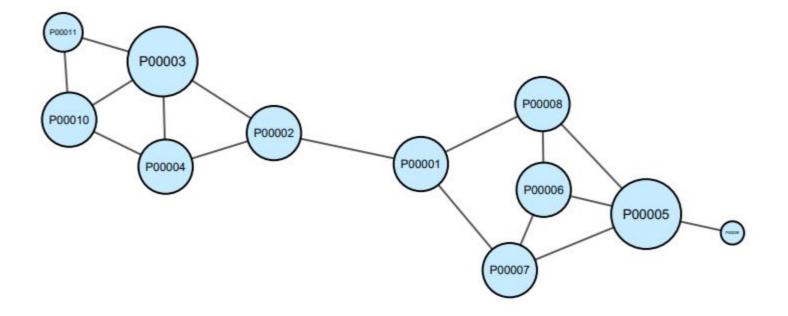
Folded bipartite graph (people and incidents):



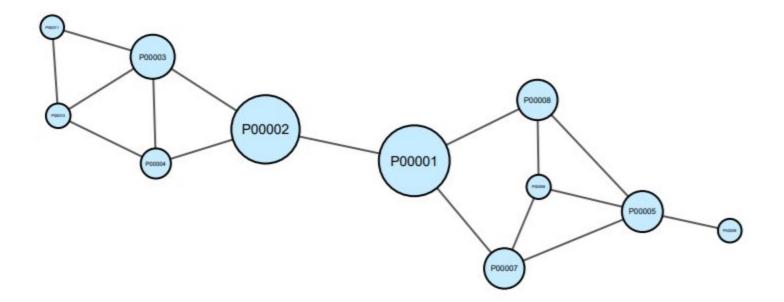
Dutch Police example - Visualization



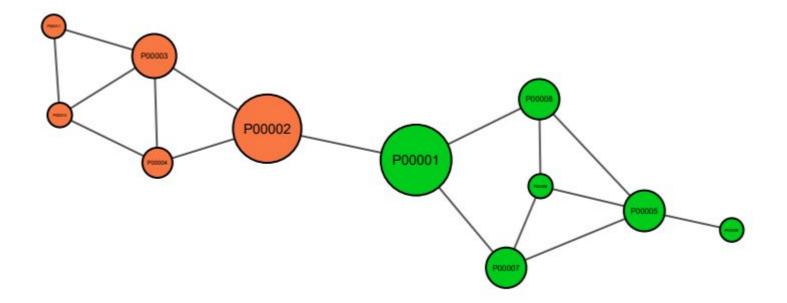
Dutch Police example - Centrality



Dutch Police example - Centrality

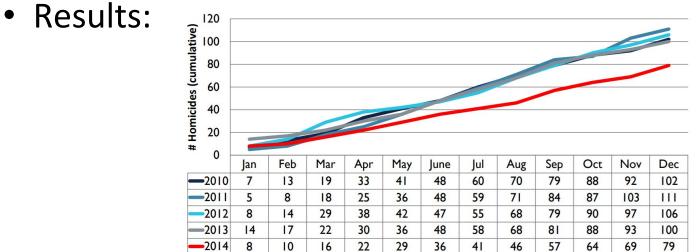


Dutch Police example - Communities



More examples from PD

- Kansas City crime "Operation Clean Sweep" (2013):
 - Historically, one of the top 10 most violent cities in the US
 - Averages 106 homicides per year
 - Averages 3,484 aggravated assaults per year



Details:

https://www.nationalpublicsafetypartnership.org/Documents/VRN%20Social%20Network%20 Analysis%20Presentation%20July%2021%202015.pdf 38

Finding Terrorists Cells

 Analyzing such networks is much easier in past, not in future. But still important for the prosecution and potentially detecting other members

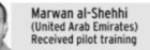
 Based on Valdis E. Krebs analysis http://insna.org/PDF/Connections/v24/2001_I-3-7.pdf

THE HIJACKERS

Hani Hanjour (Saudi)

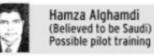
UnitedAirlines 175

Crashed into WTC (south)



Fayez Ahmed (Believed to be Saudi)

Ahmed Alghamdi (Possibly Saudi)



No

picture

Mohald Alshehri (Nationality unknown) Possible pilot training

United Airlines 93

Crashed in Pennsylvania

Ziad Jarrah (Lebanese) Received pilot training

Ahmed Alhaznawi (Saudi)

Ahmed Alnami (Nationality unknown)

Saeed Alghamdi* (Seems to be Saudi)

> Disputed identity

AND HOW THEY WERE CONNECTED

Attended same technical college

Hamburg, Germany Mohamed Atta Marwan al-Shehhi Ziad Jarrah

Took flight classes together

Pilot schools in Florida

Mohamed Atta Marwan al-Shehhi

Pilot schools In San Diago

Khalid al-Midhar Nawaf Alhamzi

Bought flight tickets using same address

 Mohamed Atta* Marwan al-Shehhi Abdulaziz Alomari*

* Also used same credit card

- Waleed M. Alshehri Wail Alshahri
- Favez Ahmed Mohald Alshehri
- Ahmed Alghamdi Hamza Alghamdi

Known to be together in week before attacks

Stayed together in a Florida motel

Mohamed Atta Marwan al-Shehhi

Attended a gym in Maryland (Sept 2-6), also seen dining together

Khalid al-Midhar Majed Moged Salem Alhamzi Nawaf Alhamzi Hani Hanjour

Bought flight tickets together

Mohamed Atta Ziad Jarrah Ahmed Alhaznawi

Picked up tickets bought earlier in Baltimore

Khalid al-Midhar Majed Moged

Bought from the same travel agent in Florida

Ahmed Alnami Saeed Alghamdi

Last known address

Hollywood, Florida Marwan al-Shehhi Waleed M. Alshehri Wail Alshahri Ziad Jarrah Hani Hanjour

Other cities in Florida

Mohamed Atta Favez Ahmed Ahmed Alghamdi Mohald Alshehri Khalid al-Midhar Ahmed Alhaznawi Ahmed Alnami Saeed Alghamdi

Outside Florida

Satam al-Sugami Hamza Alghamdi Abdulaziz Alomari Majed Moged Salem Alhamzi Nawaf Alhamzi

• The beginning (January 2000):

Nawaf Alhazmi	Khalid Almihdhar
Nawaf Alhazmi	Khalid Almihdhar

Figure 1 - Two known suspects in January 2000

USS Cole attack (October 2000)

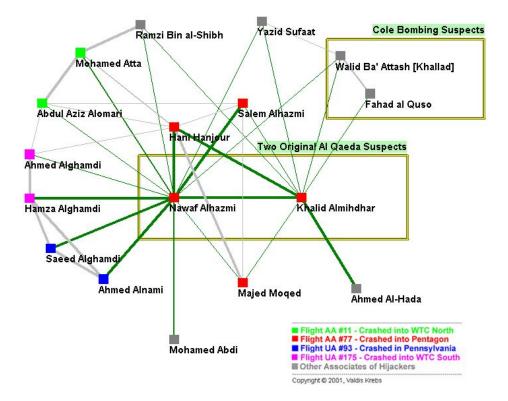
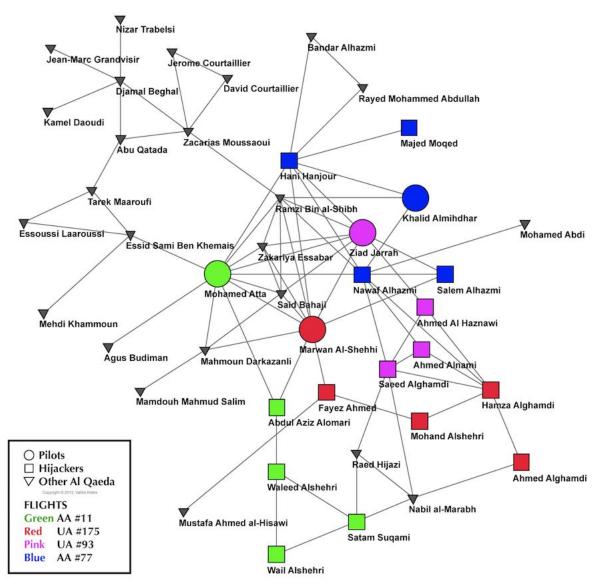
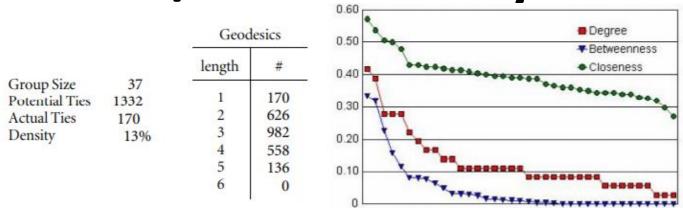


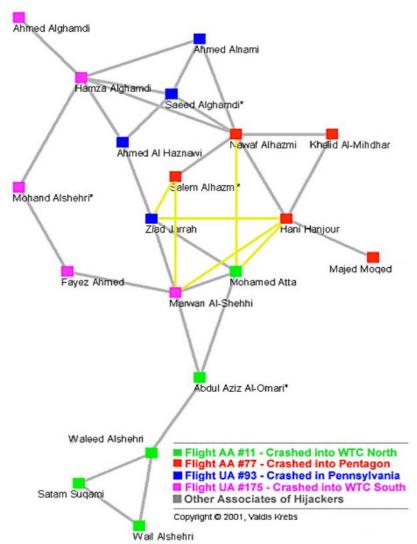
Figure 2 - All nodes within 1 step [direct link] of original suspects

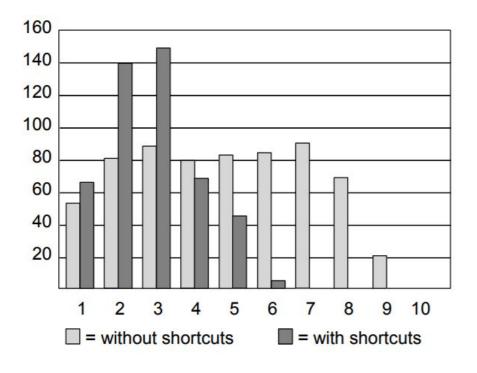




Degrees			Betweenness		Closeness	
0.417	Mohamed Atta	0.334	Nawaf Alhazmi	0.571	Mohamed Atta	
0.389	Marwan Al-Shehhi	0.318	Mohamed Atta	0.537	Nawaf Alhazmi	
0.278	Hani Hanjour	0.227	Hani Hanjour	0.507	Hani Hanjour	
0.278	Nawaf Alhazmi	0.158	Marwan Al-Shehhi	0.500	Marwan Al-Shehhi	
0.278	Ziad Jarrah	0.116	Saeed Alghamdi*	0.480	Ziad Jarrah	
0.222	Ramzi Bin al-Shibh	0.081	Hamza Alghamdi	0.429	Mustafa al-Hisawi	
0.194	Said Bahaji	0.080	Waleed Alshehri	0.429	Salem Alhazmi*	
0.167	Hamza Alghamdi	0.076	Ziad Jarrah	0.424	Lotfi Raissi	
0.167	Saeed Alghamdi*	0.064	Mustafa al-Hisawi	0.424	Saeed Alghamdi*	
0.139	Lotfi Raissi	0.049	Abdul Aziz Al-Omari*	0.419	Abdul Aziz Al-Omari*	
0.139	Zakariya Essabar	0.033	Satam Suqami	0.414	Hamza Alghamdi	
0.111	Agus Budiman	0.031	Fayez Ahmed	0.414	Ramzi Bin al-Shibh	
0.111	Khalid Al-Mihdhar	0.030	Ahmed Al Haznawi	0.409	Said Bahaji	
0.111	Mounir El Motassadeq	0.026	Nabil al-Marabh	0.404	Ahmed Al Haznawi	
0.111	Mustafa al-Hisawi	0.016	Raed Hijazi	0.400	Zakariya Essabar	
0.111	Nabil al-Marabh	0.015	Lotfi Raissi	0.396	Agus Budiman	
0.111	Rayed Abdullah	0.012	Mohand Alshehri*	0.396	Khalid Al-Mihdhar	
0.111	Satam Suqami	0.011	Khalid Al-Mihdhar	0.391	Ahmed Alnami	
0.111	Waleed Alshehri	0.010	Ramzi Bin al-Shibh	0.391	Mounir El Motassadeq	

Final meetings (shortcuts) in gold





Data to build the network

Relationship / Network	Data Sources		
1. Trust	Prior contacts in family, neighborhood, school, military, club or organization. Public and court records. Data may only be available in suspect's native country.		
2. Task	Logs and records of phone calls, electronic mail, chat rooms, instant messages, web site visits. Travel records. Human intelligence – observation of meetings and attendance at common events.		
3. Money & Resources	Bank account and money transfer records. Pattern and loca- tion of credit card use. Prior court records. Human intelligence – observation of visits to alternate bank- ing resources such as Hawala.		
4. Strategy & Goals	Web sites. Videos and encrypted disks delivered by courier. Travel records. Human intelligence – observation of meetings and attendance at common events		

Technologies in practice

- Small networks or Initial/Partial analysis:
 Python / NetworkX
- Huge networks
 - Graph databases, such as Neo4j
 - Distributed systems like Spark/Hadoop

Visualization, visualization, visualization...

 Very useful in Social Network analysis, helps faster identify patters and important details

Thank you! Questions?