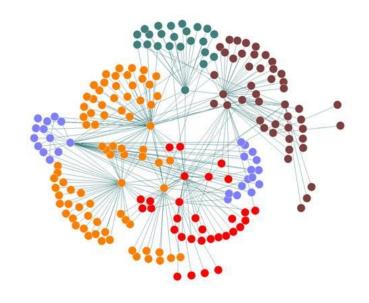


Algorithms and Applications in Social Networks



2019/2020, Semester B Slava Novgorodov

Lesson #12

- Network definitions and properties
- Random Graphs, Centrality, Balance
- Communities
- Influence Maximization, Social Learning, Link Prediction
- Large Scale networks, Applications, Riddles

Summary of the course

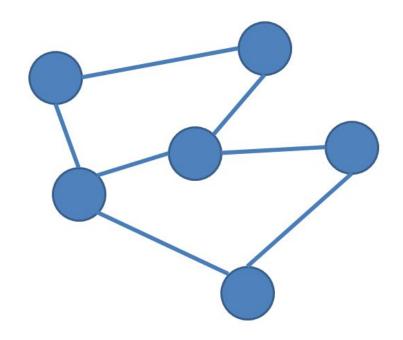
 Course consisted of 8-9 different topics in Social Networks (we will do an overview now)

 We learned both state-of-the-art algorithms and applications of these algorithms in the real world

• In addition we did practical (programming) exercises in these topics using Python and NetworkX library.

Network Definitions and Properties

Components of the Network

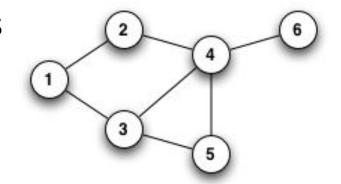


- Vertices, Nodes objects/individuals [V]
- Edges, Links interactions/relations [E]
- Graph, Network the system [G(V, E)]

Directed/Undirected Graphs

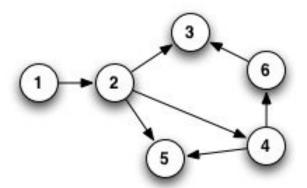
Undirected graph:

- Undirected, symmetrical edges
- Examples:
 - Friends (on Facebook)
 - Classmates

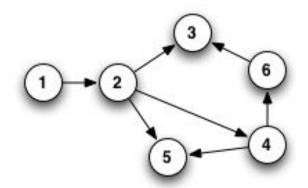


Directed graph:

- Directed edges
- Examples:
 - Followers (Instagram)
 - Phone calls



Representation of Graphs



Adjacency list

- **1**: 2
- **2**: 3, 4, 5
- 3:
- **4:** 5, 6
- **5**:
- **6**: 3

Edges list

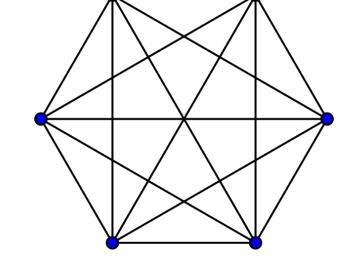
- (1, 2)
- (2, 3)
- (2, 4)
- (2, 5)
- (4, 5)
- (4, 6)
- (6, 3)

Adjacency matrix

	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	1	1	1	0
3	0	0	0	0	0	0
4	0	0	0	0	1	1
5	0	0	0	0	0	0
6	0	0	1	0	0	0

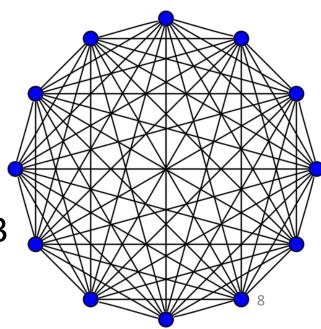
Complete Graph

The maximum number of edges in a graph of N nodes is N*(N-1)/2



Undirected graph with maximum number of edges called **complete**

- clique is a complete subgraph
- triangle is a complete graph of size 3

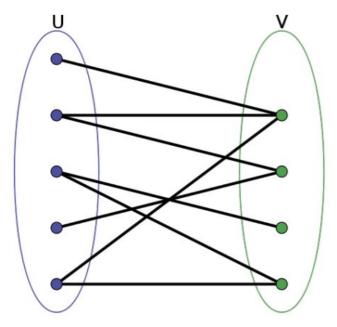


Key Network Properties

- Degree distribution P(k)
- Path length
- Clustering coefficient

Bipartite Graph

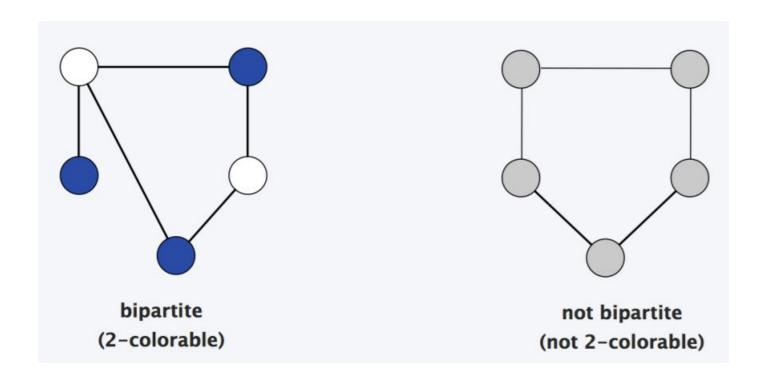
A graph whose vertices can be divided into two disjoint sets U
and V such that every edge connects a vertex in U to one in V



- A bipartite graph does not contain any odd-length cycles
- A bipartite graph can be vertex colored wtih 2 colors

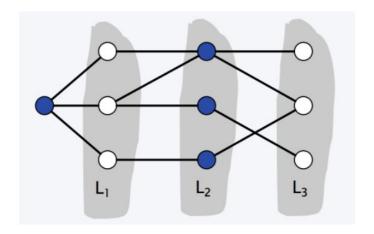
Testing Bipartiteness

- Triangle not bipatite
- Graph contains an odd cycle not bipartite



Testing Bipartiteness

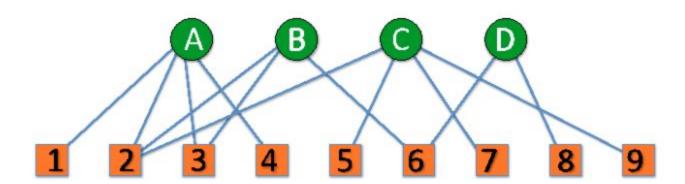
- Is given graph bipartite?
- Algorithm:
 - Select and node and perform BFS, color each layer alternate colors
 - Scan all the edges, see if any edge has nodes with the same color (one layer nodes)

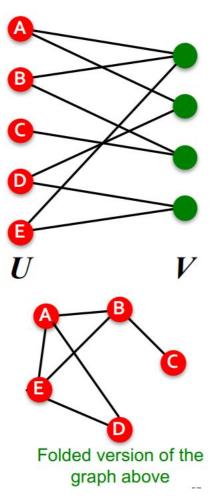


Usage of Bipartite Graph

- Different types of nodes:
 - Users/Items ranking
 - Papers/Authors
 - Courses/Students

Folded network





Random Graphs, Centrality, Balance

Erdős-Rényi model

- Two variants of the model:
 - G(n, m) a graph is chosen uniformly from a set of graphs with n nodes and m edges
 - G(n, p) a graph is constructed on n nodes, with probability of edge equals to p
- We will focus on the second variant
- Expected number of edges and average

$$\frac{-\deg \text{ree:}}{m} = \frac{n(n-1)}{2}p \qquad \qquad \bar{k} = \frac{1}{n} \sum_{i} k_{i} = \frac{2\bar{m}}{n} = p(n-1)$$

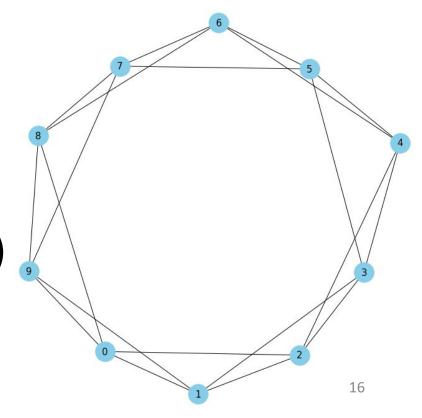
Watts-Strogatz model

 Input: N nodes, with average degree K and probability p of "recreating" the edge.

Step 1:

Create N nodes, connect each node to K/2 neighbors on the left and right (by IDs)

Result: High clustering coefficient, but also big diameter

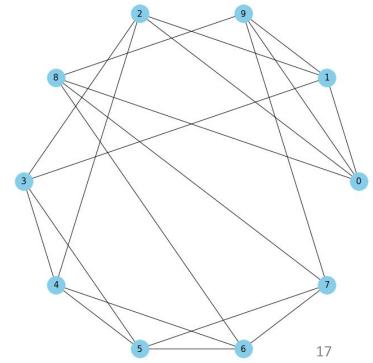


Watts-Strogatz model

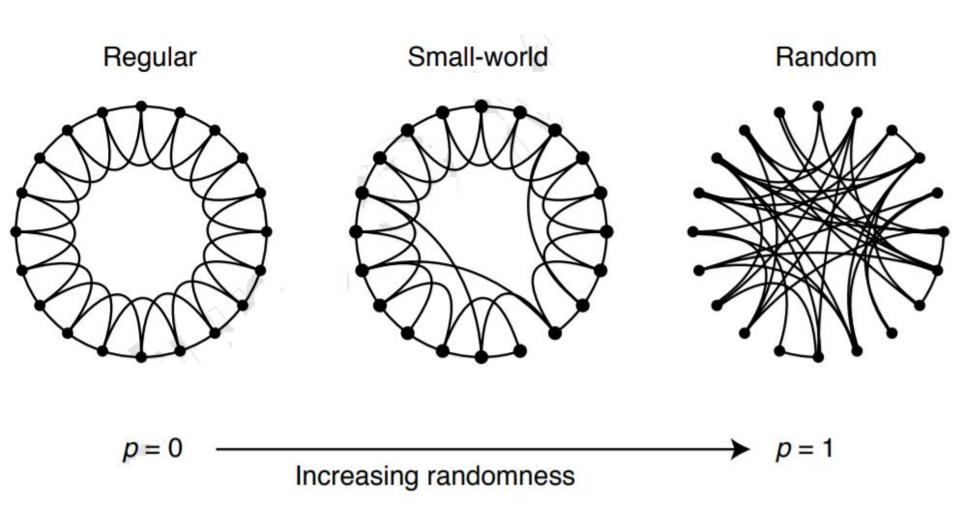
Step 2:

For each edge (i, j), decide if it should be recreated with probability p

Result: High clustering coefficient, and smaller diameter



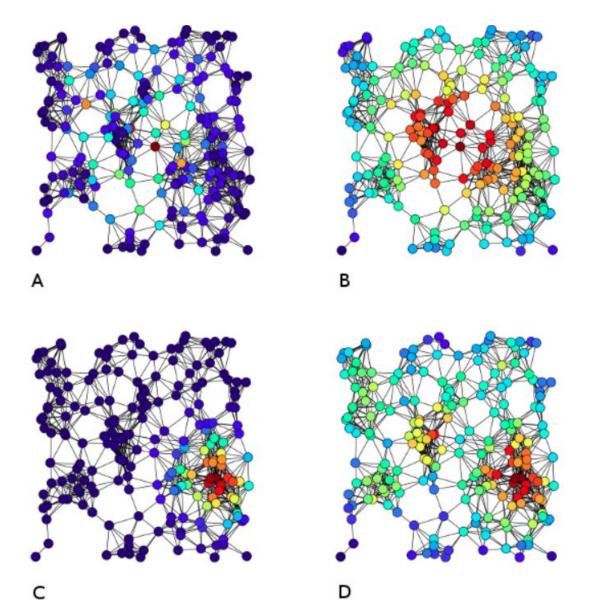
Watts-Strogatz model



Things to measure

- Degree Centrality:
 - Connectedness
- Closeness Centrality:
 - Ease of reaching other nodes
- Betweenness Centrality:
 - Role as an intermediary, connector
- Eigenvector Centrality
 - "Whom you know…"

Centralities



- A) Betweenness
- B) Closeness
- C) Eigenvector
- D) Degree

Networks with Signed Edges

Also called: "Signed Network"

Basic unit of investigation: Signed triangles

Can be undirected or directed:

Signed Networks

Network with positive or negative relationships

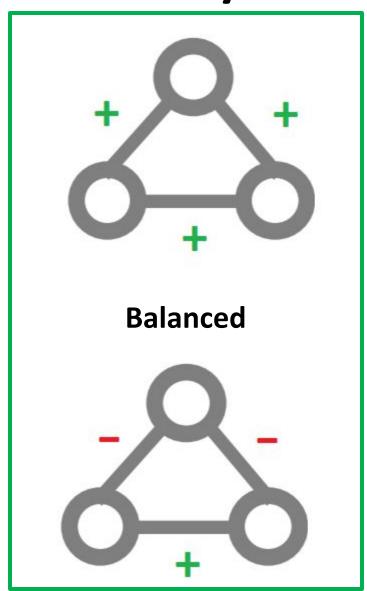
- Consider a complete signed undirected graph
 - Positive edges:
 - Friendship, positive sentiment, ...
 - Negative edges:
 - Enemy, negative sentiment
- Let's focus on three connected nodes A, B, C

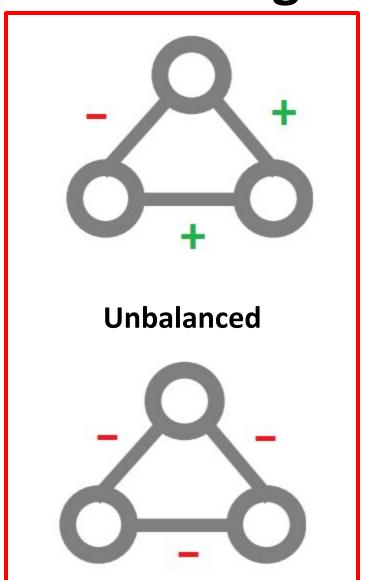
Theory of Structural Balance

- Intuition (theory by Fritz Heider 1946):
 - Friend of a friend is a friend
 - Enemy of an enemy is a friend
 - Enemy of a friend is an enemy

Let's have a look on a triangle in a graph

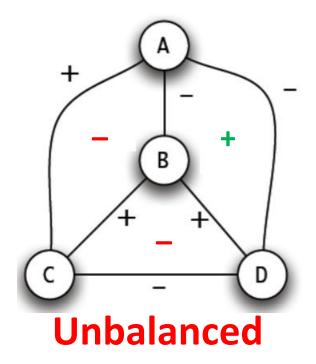
Balanced/Unbalanced Triangles

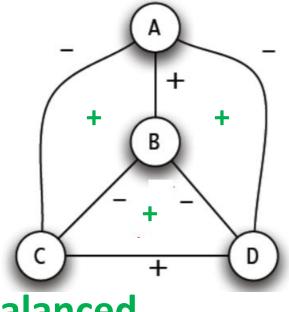




Balanced/Unbalanced Network

 Network is balanced if every triangle in the network is balanced.

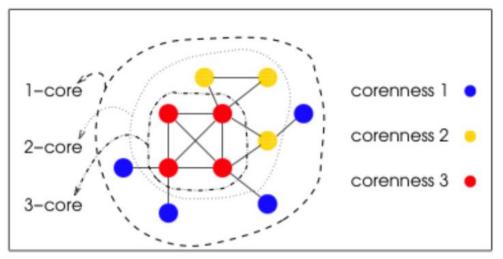




Communities

Graph Core

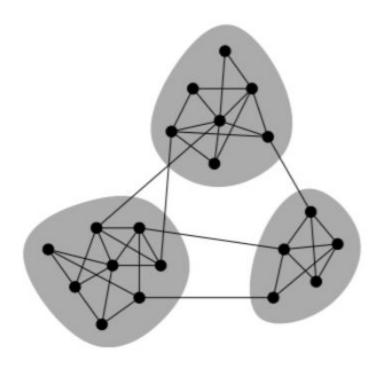
 A k-core is the largest subgraph S such as each node is connected to at least k nodes in S



- Every node in k-core has degree >= k
- (k+1)-core is always a subgraph of k-core
- Core number of node is the highest "k" of the k-core that contains this node

Community

Network Communities are group of vertices such that vertices inside the group connected with many more edges than between groups



Community Types

Detection algorithms:

- Non-Overlapping
 - Newman-Girvan algorithm
 - Label propagation
- Overlapping
 - K-clique percolation method
 - CONGO

Newman-Girvan algorithm

Algorithm: Newman-Girvan, 2004

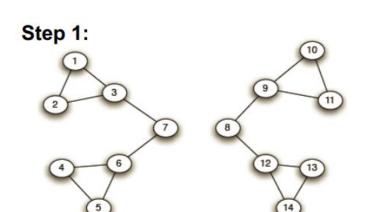
Input: graph G(V,E)Output: Dendrogram

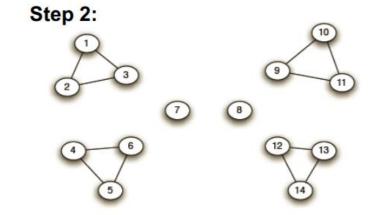
repeat

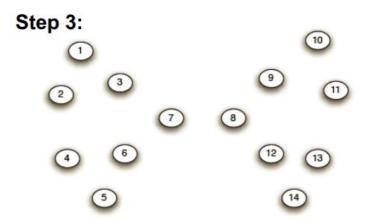
For all $e \in E$ compute edge betweenness $C_B(e)$; remove edge e_i with largest $C_B(e_i)$;

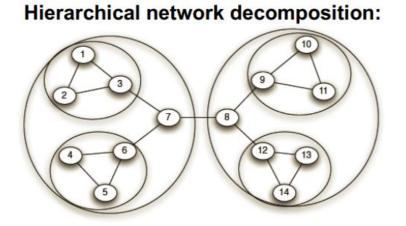
until edges left;

NG – Step-by-step









k-clique percolation method

By Palla et al. 2005:

- Find all maximal cliques
- Create clique overlap matrix
- Threshold matrix with k-1
- Communities are connected components

k-clique – Step-by-step k=4

Influence Maximization, Social Learning, Link Prediction

Models of influence

Two basic models:

- Linear Threshold Model
- Independent Cascade Model

Setup:

- A social network is represented as a directed weighted graph,
 with each person as a node
- Nodes start either active or inactive
- An active node may trigger activation of neighboring nodes
- Monotonicity assumption: active nodes never deactivate

Linear Threshold Model

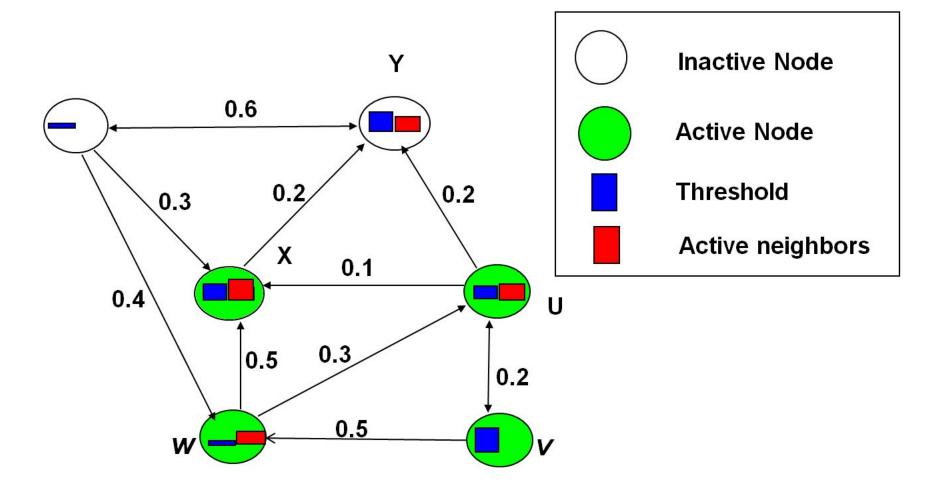
- A node v has random threshold $\theta_v \sim U[0,1]$
- A node v is influenced by each neighbor w according to a weight b_{vw} such that

$$\sum_{w \text{ neighbor of } v} b_{v,w} \le 1$$

• A node v becomes active when at least (weighted) θ_v fraction of its neighbors are active

$$\sum_{w \text{ active neighbor of } v} b_{v,w} \ge \theta_v$$

LT - Example

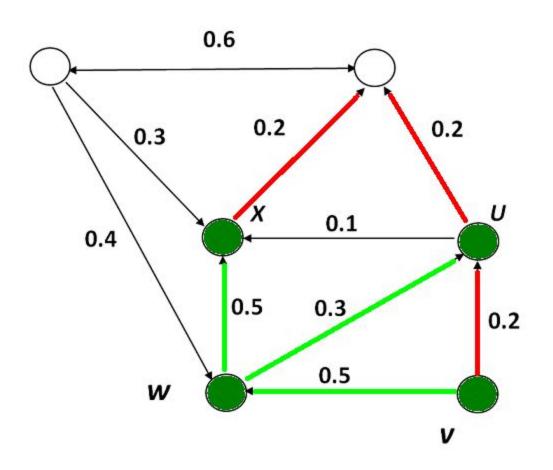


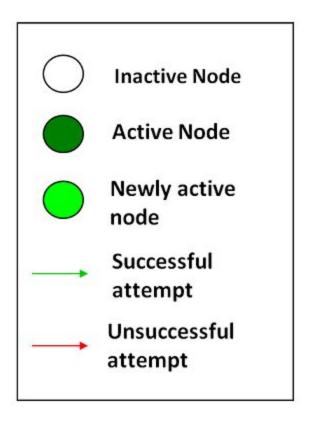
Independent Cascade Model

 When node v becomes active, it has a single chance of activating each currently inactive neighbor w.

• The activation attempt succeeds with probability p_{yw} .

IC - Example





Modeling Social Learning

Nodes: Directors

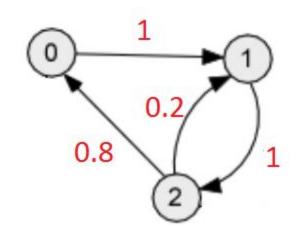
Links: Influence ("listens to")

Weights: % of influence (sum up to 1)

Example:

- "0" listens to "1"
- "1" listens to "2"
- "2" listens to "0" (80%) and "1" (20%)

How to "guess" the final decision?



DeGroot Model – Example

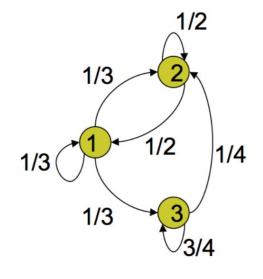
$$p(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$p(1) = Tp(0) = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 1/2 & 0 \\ 0 & 1/4 & 3/4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/2 \\ 0 \end{pmatrix}$$

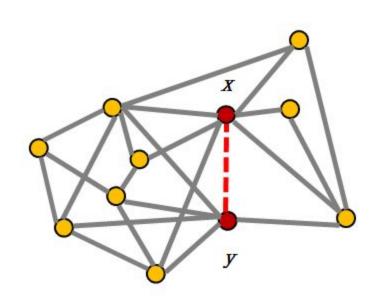
$$p(2) = Tp(1) = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 1/2 & 0 \\ 0 & 1/4 & 3/4 \end{pmatrix} \begin{pmatrix} 1/3 \\ 1/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 5/18 \\ 5/12 \\ 1/8 \end{pmatrix}$$

$$p(20) = Tp(19) = \begin{pmatrix} 3/11 \\ 3/11 \\ 3/11 \end{pmatrix}$$

$$p(21) = Tp(20) = p(20)$$



Link Prediction



Local

- (negated) Shortest path (SP)
- Common neighbors (CN)
- Jaccard (JC)
- Adamic-Adar (AA)
- Preferential attachment (PA)
- ...

Global

- Katz score
- Hitting time
- PageRank
- •

Notation: Neighbors of x: $N(x) = \frac{\Gamma(x)}{\Gamma(x)}$ Degree of x: $d_x = |N(x)| = |T(x)|$

Link Prediction

- Pick a favorite heuristic method
- Compute over all pairs of nodes
- Sort
- Take the top-k

Evaluation methods (precision, recall)

Large Scale networks, Applications, Riddles

M/R Approach

- Read the data
- Map: Extract information from each row
- Shuffle
- Reduce: Aggregate, filter, transform...
- Write the results

M/R and Social Networks

- Representation:
 - Adjacency Matrix vs Neighbors list?

 As Map Reduce takes text files and works line by line, better to have each line as a separate node:

A -> B C D B -> A C D E

C->ABDE

D->ABCE

E->BCD

Applications

- Crime, Fraud, Terrorism detection and prevention:
 - Bi-partite graphs
 - Centrality
 - Communities detection
 - Link prediction
 - **—** ...
- Feed generation algorithms
- Advertisement in Social Networks and outside
- Data leakage & its prevention

Riddles

- Short questions related to Social Networks, that can be solved without prior knowledge in SN, but much easier if you did the course.
- Related to possible/non possible network structure, number of edges, nodes, average degree, path length, diameter, balance, communities, etc.
- Sometimes these questions are used as a "logical" quiz in interviews.

Last slide

I hope you enjoyed the course as much as I enjoyed it!

 Please fill the feedback ("Seker Horaa") – it's very important for me for the future courses

Stay in touch (<u>slavanov@post.tau.ac.il</u>)

GOOD LUCK!

