Course Information

  • Location: Orentshtein 103
  • Time: Wednesday, 10:00 - 13:00

Instructor Information:

Tel Aviv University Intel
  • Dr. Amitai Armon
  • Dr. Itay Lieder
  • Avishai Wagner

Course Goals and Short Syllabus:

The course will provide an overview of data science methodologies and technology, including data understanding, modeling and analysis in big scale.
A joined set of teachers, from Intel and TAU, will cover each of the topics from both theoretical and practical perspectives.

Course Format:

Each class will be a 3 hours lecture (given by one of Intel lectors or by Dr. Slava Novgorodov) or a 3 hours recitations given by Feras Baransi.
Homework - 3 HW assigments during the semester (submission in pairs) - 30% of the final grade
Final exam - 70% of the final grade
Exam - Moed A: 18.08.2024
Exam - Moed B: 15.09.2024

Requirements:

  • Introduction to Probability/Statistics, Algorithms

Course Material:

All the material is available in Moodle.

Course Schedule

# Date Given by Title Note
1 29.05.2024 Avishai Wagner Introduction to Data Science, Data Understanding
2 05.06.2024 Avishai Wagner Feature Selection
3 19.06.2024 Feras Baransi Recitation #1 HW #1 [pdf][ipynb], until 03.07.2024
4 03.07.2024 Dr. Lieder Data Modeling #1
5 10.07.2024 Dr. Lieder Data Modeling #2
6 17.07.2024 Dr. Lieder Introduction to Deep Learning
7 24.07.2024 Feras Baransi Recitation #2 HW #2 [pdf][ipynb], until 03.08.2024
8 31.07.2024 Dr. Novgorodov Big Data - Overview
9 07.08.2024 Dr. Novgorodov Big Data - MapReduce HW #3 [pdf], until 18.08.2024
10 12.08.2024 Feras Baransi Recitation #3
11 TBD Dr. Novgorodov Course Summary and Exam preparation