
Automated Category Tree Construction: Hardness Bounds and

Algorithms

SHAY GERSHTEIN, Tel Aviv University, Tel Aviv, Israel
URI AVRON, Tel Aviv University, Tel Aviv, Israel
IDO GUY, Ben-Gurion University of the Negev, Beer-Sheva, Israel

TOVA MILO, Tel Aviv University, Tel Aviv, Israel
SLAVA NOVGORODOV, Tel Aviv University, Tel Aviv, Israel

Category trees, or taxonomies, are rooted trees where each node, called a category, corresponds to a set of related items.

The construction of taxonomies has been studied in various domains, including e-commerce, document management, and

question answering. Multiple algorithms for automating construction have been proposed, employing a variety of clustering

approaches and crowdsourcing. However, no formal model to capture such categorization problems has been devised, and their

complexity has not been studied. To address this, we propose in this work a combinatorial model that captures many practical

settings and show that the aforementioned empirical approach has been warranted, as we prove strong inapproximability

bounds for various problem variants and special cases when the goal is to produce a categorization of the maximum utility.

In our model, the input is a set of � weighted item sets that the tree would ideally contain as categories. Each category,

rather than perfectly match the corresponding input set, is allowed to exceed a given threshold for a given similarity function.

The goal is to produce a tree that maximizes the total weight of the sets for which it contains a matching category. A key

parameter is an upper bound on the number of categories an item may belong to, which produces the hardness of the problem,

as initially each item may be contained in an arbitrary number of input sets.

For this model, we prove inapproximability bounds, of order Θ̃(
√
�) or Θ̃(�), for various problem variants and special cases,

loosely justifying the aforementioned heuristic approach. Our work includes reductions based on parameterized randomized

constructions that highlight how various problem parameters and properties of the input may afect the hardness. Moreover,

for the special case where the category must be identical to the corresponding input set, we devise an algorithm whose

approximation guarantee depends solely on a more granular parameter, allowing improved worst-case guarantees, as well

as the application of practical exact solvers. We further provide eicient algorithms with much improved approximation

guarantees for practical special cases where the cardinalities of the input sets or the number of input sets each items belongs

to are not too large. Finally, we also generalize our results to DAG-based and non-hierarchical categorization.

CCS Concepts: · Theory of computation→ Data structures and algorithms for data management; Approximation

algorithms analysis; Problems, reductions and completeness.

Additional Key Words and Phrases: maximum independent set, approximation algorithms, approximation hardness bounds,

taxonomy construction, category tree construction

Authors’ Contact Information: Shay Gershtein, Tel Aviv University, Tel Aviv, Israel; e-mail: shayg1@mail.tau.ac.il; Uri Avron, Tel Aviv

University, Tel Aviv, Israel; e-mail: uriavron@mail.tau.ac.il; Ido Guy, Ben-Gurion University of the Negev, Beer-Sheva, Southern, Israel;

e-mail: idoguy@acm.org; Tova Milo, Tel Aviv University, Tel Aviv, Israel; e-mail: milo@cs.tau.ac.il; Slava Novgorodov, Tel Aviv University,

Tel Aviv, Israel; e-mail: slavanov@post.tau.ac.il.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-4644/2024/5-ART

https://doi.org/10.1145/3664283

ACM Trans. Datab. Syst.

HTTPS://ORCID.ORG/0009-0008-6339-8358
HTTPS://ORCID.ORG/0009-0001-6164-768X
HTTPS://ORCID.ORG/0000-0002-5525-1064
HTTPS://ORCID.ORG/0000-0002-8566-8821
HTTPS://ORCID.ORG/0000-0003-4082-7128
https://orcid.org/0009-0008-6339-8358
https://orcid.org/0009-0001-6164-768X
https://orcid.org/0000-0002-5525-1064
https://orcid.org/0000-0002-8566-8821
https://orcid.org/0000-0003-4082-7128
https://doi.org/10.1145/3664283
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664283&domain=pdf&date_stamp=2024-05-09

2 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

1 INTRODUCTION

Category trees, or taxonomies, are rooted trees where each node corresponds to a labeled category deined as a
set of related items. Each non-leaf category is more general than its descendants and contains the union of their
item sets. Moreover, each item may typically appear in a bounded number of tree branches. Such trees enable
browsing-style information access and play a central role in Web platforms. While taxonomists can identify
many desirable categories, producing a single categorization in a compact structure to maximize a given utility
measure is challenging. Therefore, multiple algorithms for automating construction in various domains, e.g.,
e-commerce [3, 14], document management [11], and question answering [29], have been proposed, employing a
variety of clustering approaches, and crowdsourcing [11, 26]. However, to our knowledge, the complexity of this
problem has not been studied w.r.t. a formal model, and solution evaluations were based on user-studies or a
similarity score of the tree categories to a collection of desired categories [11, 22, 23], to measure how well these
are captured by the much more succinct solution. Based on the latter evaluation method, we propose a model
that captures practical settings and show that the aforementioned heuristic approach has been warranted, as we
prove strong inapproximability bounds.

Before describing our results, we irst deine the formal setting.
Model. The input is a set of � sets of items. The solution space consists of rooted trees (we also examine other

structures, as described in the sequel). Each node (category) corresponds to a set of items (not necessarily identical
to any set in the input), and every non-leaf category contains the union of all the items of its descendants. Ideally,
the tree would have, for every input set, a category that is very similar to it. Each input set is weighted to relect
how valuable it is for a solution to contain a matching category. In practice, an input set represents items that
match some criteria a user may have in mind when performing a search, and its weight implies the predicted
likelihood of seeking these criteria. The sets are derived from a dataset of result sets to search queries, or, more
generally, are formed by grouping items w.r.t. shared properties.
This model has multiple variants, deined by two parameters. The irst parameter is a similarity function,

which measures the similarity of an input set and a category. We examine several variations of commonly used
set-similarity functions, which extend the original function with a threshold parameter. A similarity score below
this parameter is rounded down to 0, to capture the fact that, when the similarity score is too low, no category is
identiiable by the user as a matching category, and has no utility. Given such a function, the tree score for a
given input set is the maximum similarity score of any category for this set. The overall tree score is the weighted
(w.r.t. input weights) sum of the scores for all the input sets. The goal is to produce a tree of the highest score.

The second parameter is a copy-bound, which limits the number of independent categories any item can belong
to, where categories are called independent if no two are on the same path from the root to a leaf. Most real-life
platforms set a low copy-bound, to ensure that the categorization is coherent, compact, and easy to navigate. For
example, eBay allows listing an item in a single (lowermost) category for free, or in two categories for an extra
fee [1]. In our model, we assume the copy-bound to be constant.
Our bounds also apply to the related problems, where the aim is to produce a lat categorization or more

general DAG structures. Flat categorization may be of independent interest, as it also captures the setting where
one seeks, given a collection of overlapping sets, a partition that is maximally similar to the original collection.
This may be particularly relevant for clustering and partitioning problems in hypergraphs (see Section 7).

Results. For the optimization problem ofmaximizing the tree score (as deined above), we prove for all examined

variants an inapproximability bound of Θ̃(
√
�) or Θ̃(�), where � is the number of input sets, highlighting how

diferent problem parameters may afect the hardness. These bounds also apply to unweighted inputs and various
special cases. On the other hand, we show that iner properties, such as bounds on the cardinality of input sets
or the number of intersections among sets, aid in deriving more relaxed parameterized hardness bounds. To
that end, we provide multiple results for special cases of the problem, where the guarantee in practical settings

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 3

can be much improved. Concretely, we irst show how one can at a small cost to the approximation guarantee
transform the problem such that the input is unweighted and all input sets are of roughly the same size. Moreover,
we provide a positive result in the form of an algorithm for the Exact variant, where a category must match
an input set exactly to contribute to the objective function. The tight performance guarantee of this algorithm
depends only on a parameter that measures the number of intersections between the input sets. Importantly, we
reduce this variant to the Maximum Independent Set problem, for which, despite its inapproximability, practical
solvers have been devised. We demonstrate the practical utility of this result, in [5] and [4], complementary
works focusing on constructing an e-commerce category tree that is maximally similar to result sets of user
queries. In these works, we show that leveraging these solvers enables inding optimal solutions to real-world
instances and extend this approach to heuristic algorithms that solve well instances of more general variants.
We further study more granular parameters of the problem, such as the maximum number of input sets an item
may belong to or the maximum cardinality of an input set. We devise eicient algorithms that provide much
improved approximation guarantees (including even constant approximation ratios) for practical special cases
where these parameters have relatively low values.

An essential component in our methods is deining a generalized similarity function with two threshold
parameters that address two more granular similarity measures: precision and recall. Our key results consist of
reductions from the Maximum Independent Set problem in hypergraphs, where we integrate into the reduced
instance randomized constructions that closely capture the precision and recall parameters. This not only enables
us to derive improved results for more subtle special cases but also to capture more reined properties of hard
inputs, which we then leverage to prove hardness w.r.t. other similarity functions (we outline how to schematically
apply our arguments to derive hardness bounds for similarity functions not examined here).

While we are not aware of any theoretical results directly comparable to ours, Section 7 discusses motivating
empirical research and possible applications to hypergraph partitioning.
We note that the complementary problem of labeling the resulting categories has been studied in various

settings (e.g., [7]), and is outside the scope of our model.
Real world problem setting. As detailed in Section 7, the construction of category trees has been studied

in numerous ields, including e-commerce, document management, and question answering. To motivate the
problem and provide practical intuition, we now describe typical real-world issues when constructing category
trees in e-commerce.
Product category trees are integral to the user experience on major e-commerce platforms, including eBay,

Amazon, Walmart, and Taobao, all billion-dollar corporations. These structures facilitate the organization of
products into well-deined groups based on speciic attributes, such as "memory size" for smartphones or "sleeve
length" for shirts. However, maintaining up-to-date and relevant category trees is a labor-intensive task, typically
managed by in-house taxonomist teams, which is expensive and time-consuming. The latter is particularly
problematic when the item repository is massive and evolves rapidly along with user interests. This manual
construction often leads to category trees that are lacking or outdated since it is hard to keep track of market
trends, seasonal changes, holidays, and special events [30]. To address this, many works have devised efective
automated construction and maintenance algorithms for tree-based categorizations, which struggle to keep pace
with changing market trends and user preferences [3, 12, 14].

While taxonomists can manually and algorithmically [20] identify numerous candidate categories, i.e. item
subsets with a shared label, most such categories cannot simultaneously exist in a category tree, due to the
aforementioned combinatorial restrictions. Concretely, all large retailers impose a very low bound (the copy-
bound in our model) on the number of leaf categories an item may belong to. Nevertheless, the goal is to have in
a tree a category that is very similar to the set of items the user is interested in examining (e.g. 60-inch Samsung
TVs), such that as many of the matching items are contained in a corresponding tree category (so that a user
doesn’t have to look in many places), and at the same time there are not many items in the category that are not

ACM Trans. Datab. Syst.

4 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

Input:
q1 = { a, b, c, d, e}
q2 = { a, b }
q3 = { c, d, e, f }
q4 = { a, b, f, g, h, i }

a b c d e f

a b c d e fC3

C1

C4

a b c d e f g h i

g h i

Root

C2

Fig. 1. Example of input sets and a category tree.

a b c d e

f g h i
Fig. 2. A sample of products from the shirts category.

in the set of items the user is interested in, so that the user would not have to ilter many items while browsing.
These two objectives are naturally mapped to the two granular similarity measures we discussed above: the
former objective maps to a recall requirement and the latter maps to a precision requirement. As we show in the
present work, adhering to the combinatorial constraints imposed on category trees in real-world settings, does
not lend itself to eicient solutions when aiming to maximize precision and recall.
We note that one approach to automatically identifying the sets of items users are interested in, such that

trends are captured, is to use search queries, submitted to the platform’s search engine. This has been explored in
[4, 5], works based on the model proposed here, and for this reason we will refer to the input sets as queries (to
simplify terminology, as sets are mentioned in many diferent contexts). The intuition for this approach is that if
the tree categories are very similar to result sets of user queries, then the tree arguably allows users to identify
exactly the sets of items they are interested in examining.

We next illustrate the setting of our problem with the following toy example, depicted in Figure 1. The igure
presents a possible tree that can be constructed over the input sets, denoted by �1, �2, �3 and �4, provided on the
left side. For brevity and consistency, we will denote the items throughout the paper by short literal notation.
Nevertheless, to provide a practical context, we show in Figure 2 a possible real-world instantiation of the items
in the example. Concretely, the 9 items depicted in the igure, corresponding to the items �, �, . . . , � in Figure 1
(the corresponding item appears under each photo), are a sample of the shirts available in a company’s catalog.
These shirts have diferent brands (�, � are Adidas, �, �, �, � are Nike, � is Puma, ℎ is Reebok, and � is Umbro),
colors (�, �, �, �, � are black, � is red, � is blue, ℎ is grey, and � is white), and sleeve lengths (�, �, � , �, ℎ, � have long
sleeves, and the rest have short sleeves). Then the sets �1, �2, �3, and �4 may correspond, respectively, to the
result sets of the following 4 queries: "black shirt," "black Adidas shirt," "Nike shirt," and "long sleeve shirt." We
will use these as the input sets for our model in the current example. We are interested in constructing a tree
whose categories are maximally similar to these four sets.

For this input, it is not hard to convince oneself that it is impossible to construct a tree that contains four
categories that match the queries exactly, while satisfying the requirements that every category contains the
union of its descendants and that every item appears in exactly one tree branch. Therefore, one must relax the

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 5

objective to either only exactly matching a subset of queries or not matching them exactly. Figure 1 depicts a
possible tree for the latter case. It has two leaf categories, �3 and �4, that match �2 and �3 exactly, respectively.
For �1, the most similar matching category is �1. While it contains all the items of �1 (perfect recall score), it
contains also the item � , which means that the precision score is 5

6 . In a practical scenario, if we believe that the
user is only interested in seeing the items in �1, then including an irrelevant item diminishes the user experience.
Nevertheless, we cannot simply remove the item without negative consequences, as we would then also have
to remove it from �4, and it would no longer match �3 exactly. As for �4, the most similar category is �2. It has
perfect precision but only 0.5 recall (the category contains half of the items in �4). In some cases, such low recall
may not be considered satisfactory, and when evaluating the tree, it may not contribute to the tree at all if one
requires a higher standard of matching the input queries. In this work, we will formalize such considerations.

Outline. Section 2 provides the necessary formalism for our model, while Section 3 presents useful theoretical
tools. In Section 4 we prove various approximation hardness results derived w.r.t. the generalized similarity
function (with recall and precision thresholds). In Section 5 we leverage these results to derive hardness bounds
w.r.t. all other similarity functions deined in Section 2. In Section 6 we provide a positive result for a common
problem variant, as well algorithm with much improved approximation guarantees for various practical special
cases of the problem. The related work appears in Section 7 and we conclude in Section 8.

2 MODEL

We now deine the model underlying our work, followed by a discussion of problem parameters. We conclude
this section with illustrative examples of problem instances in our model.

2.1 Problem definition

The two problems we study are the Optimal Category Tree problem (���) and the Optimal Category Partition
problem (���). The input to both problems is ⟨�,� ,� ⟩, where � ⊆ 2� is a set of � sets over a inite universe �
of size � (���� (�)), and� : � → [0, 1] is a weighting function that assigns a non-negative weight to each set
in � . We use the term query, to denote each set in � . Note, in advance, that in the deinition of the model we
discuss two types of element sets: the queries and the sets corresponding to the tree nodes. In general, these
sets are not identical (however, these are typically similar, as the objective is, roughly speaking, to maximize
the similarity of the two types of sets, as deined formally below). To motivate the use of the query terminology,
recall that as mentioned in the introduction, each set in the input may in practice correspond to a result set for a
user query, and the weight can relect, e.g. the query frequency.
Both problems have multiple variants deined by two parameters (explained below, in the context of the

solution space): a copy-bound � ∈ N (assumed to be constant), and a similarity function S : [2�] × [2�] → [0, 1].
We denote by ��� � (S) the � -copy ��� problem with similarity function S, and the analogous ��� variant is
denoted by ���� (S).
We next formally deine the solution space for each of the two problems. We start with ���� (S), as it is a

simpler form of the model for ��� � (S).
OCP. We call a set of sets over � an � -weak partition, if every element appears in at most � sets. A 1-weak

partition is a standard partition. The solution space of ���� (S) consists of all � -weak partitions of � . Any such
solution is termed as a category partition, denoted by � , with the sets contained in it termed as categories.
Given a query, � ∈ � , and a category partition, � , we deine the similarity score of a category � ∈ � for

� as S(�,�). The score of � for this query is deined by the category that most closely matches the query as
� (�, �) = max�∈� S(�,�). The overall score of the category partition is deined as � (�, �) = ∑

�∈�� (�) · � (�, �).
This score is the weighted sum of the scores for all queries, where the weight of each score is the corresponding

ACM Trans. Datab. Syst.

6 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

query weight. The objective of the ���� (S) problem is to produce a category partition of the maximum score:
argmax� � (�, �).
OCT. The solution space of ��� � (S) consists of rooted trees, termed category trees, where every tree node,

termed category, contains a subset of � . We abuse notation, and, when clear from context, we use � to denote
both the category tree and the set of its categories. Similarly, we use � to denote a category as well as the set of
elements it contains.

A category tree must satisfy the following two requirements. First, every non-leaf category contains the union
of the sets of elements contained by its child categories (and possibly other elements). The root of the tree,
thus, contains all the elements that appear in any category. Second, for each element � ∈ � there are at most �
semi-leaves w.r.t. � , where the semi-leaves w.r.t. � are the most speciic categories to which � belongs (i.e. none of
the descendants of any such semi-leaf contain �). Alternatively stated, any set of tree categories with no two
categories in the set belonging to the same branch, where a branch is a simple path from the root to a leaf, must be
an � -weak partition. Note that for a category tree, unlike a category partition, it is no longer true (nor desirable)
that an element is contained in at most � categories. Even for � = 1, if an element is contained in some category
in the tree, it must also be contained in all its ancestor categories. Therefore, the copy-bound is applied to the
number of semi-leaves w.r.t. any given element, with the only other nodes containing the element being all the
ancestors of these semi-leaves. For � = 1 this requirement implies that any given element in the tree is contained
only in categories that are all on the same branch.
All deinitions of relevant scoring functions are analogous to ���� (S). Concretely, the score of a tree, � ,

for a query, �, is deined as � (�,�) = max�∈� S(�,�). The overall score of � is � (�,�) = ∑

�∈�� (�) · � (�,�).
When � is clear from context, we use the shorthand � (�). The objective of the ��� � (S) problem is to produce
argmax� � (�,�).

Unweighted variants.We refer to the special case of��� (���) where all weights are uniform as unweighted
��� (���) and set all weights to 1. Our hardness proofs leverage unweighted inputs, and therefore our hardness
bounds also apply to the unweighted case. Accordingly, in our hardness discussions, the reader may assume this
context. We directly use weights only in the algorithms we provide in Section 6.

2.2 Similarity functions

We study several similarity functions, that are dependent (in some cases, implicitly) on the following two

underlying similarity measures, precision � (�,�) = |�∩� |
|� | and recall � (�,�) = |�∩� |

|� | . We distinguish between cutof

functions and threshold functions. Both have a threshold parameter � ∈ (0, 1] and use an underlying similarity
function � . In both cases, the function outputs 0 when � (�,�) < � . However, when � (�,�) ≥ � a cutof function
equals � (�,�), whereas a threshold function equals 1. We irst focus, however, on the following, more general,
threshold function, which sets a separate threshold for each measure.

Deinition 2.1 (Granular threshold function). Given parameters �, � ∈ [0, 1], the granular threshold similarity

T�,� of a query � and category � is deined as follows: T�,� (�,�) = 1 when � (�,�) ≥ � and � (�,�) ≥ � , and
T�,� (�,�) = 0 otherwise.

We will also study the common similarity functions deined below.

Deinition 2.2 (Jaccard similarity). The Jaccard similarity of a category � and a query � is deined as � (�,�) =
|�∩� |
|�∪� | . The threshold Jaccard similarity, with threshold parameter � ∈ (0, 1], is deined as �̂� (�,�) = 1 when

� (�,�) ≥ � and �̂� (�,�) = 0 otherwise. The cutof Jaccard similarity, with threshold parameter � ∈ (0, 1], is
deined as �̄� (�,�) = � (�,�) when � (�,�) ≥ � and �̄� (�,�) = 0 otherwise.

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 7

Deinition 2.3 (�1 score). The �1 score of a category � for a query � is deined as the harmonic mean of the

precision and the recall: �1 (�,�) = 2
� (�,�) ·� (�,�)
� (�,�)+� (�,�) . The threshold �1 score, with parameter � ∈ (0, 1], is deined as

�̂1 (�) (�,�) = 1 when �1 (�,�) ≥ � and �̂1 (�) (�,�) = 0 otherwise. The cutof �1 score, with threshold � ∈ (0, 1], is
deined as �̄1 (�) (�,�) = �1 (�,�) when �1 (�,�) ≥ � and �̄1 (�) (�,�) = 0 otherwise.

We remark that unless speciied otherwise, we assume henceforth that the threshold parameters (� , � , and �)
are constants.

Cover terminology. If a category� has the highest score for a query � (if necessary, ties are broken arbitrarily),
and that score is not 0, we say that� covers �. We call a category that covers at least one query a covering category,
and a branch containing a covering category is a covering branch. A set of categories is independent if no two
categories are on the same branch (��� categories are independent). Similarly, a set of queries are independently-
covered, if each is covered by a diferent category, and the covering categories are independent. Observe that
in unweighted instances (where, as noted earlier, all weights are assumed to be 1) with threshold functions the
score equals the number of covered queries.

Note that, all functions deined above share the special case of T1,1 (Deinition 2.1) (equivalent to setting � = 1
in Deinitions 2.2 and 2.3), where a query � is covered by a category � only if � = � . We refer to this variant as
the Exact variant.
Canonical form. Any category tree can be reduced to a canonical form, without decreasing the score, by

(1) removing non-covering categories, (2) connecting the parent and children of any removed category, and (3)
removing from category� and its descendants any element not contained in any query covered by� or categories
below � (this may even improve the precision and the score). If a query is covered by multiple categories, one
can assign arbitrarily a single category that is said to cover it, and then reduce it to a canonical form, as described
above, w.r.t. this assignment. Similarly, adding new categories that do not afect the contents of the existing
categories cannot decrease the tree score. This discussion applies analogously to category partitions.
Choices of parameters. For practical applicability, we focus on variants where � = Θ(1) and the similarity

functions have threshold parameters. A low copy-bound ensures a concise categorization, and in many platforms,
� is a small constant, typically, 1 (e.g., [1]). This parameter controls the trade-of between the score and the
conciseness, and our parameterized bounds hint at a quantiication of this trade-of. Threshold parameters capture
the fact that, below a certain similarity score, a category has no utility. Without thresholds, trees that cover
unacceptably poorly all queries may be mathematically preferable to trees that cover well a smaller number of
queries. Nevertheless, to capture more tolerant settings, we also provide approximation bounds for polynomially
small threshold parameters.
We also note that, in practice, errors in precision and recall have an asymmetric efect. For example, perfect

recall with precision of 1
2 , enables the user to examine all relevant items to identify the best matches, while

ignoring every other item. This may be acceptable, especially for smaller categories. However, in the analogous
case of perfect precision and recall of 1

2 , other categories may or may not contain better matching items, and the
user might waste time looking for non-existing or hard-to-ind categories or be unaware of better options. It
may, therefore, be tempting, in some applications, to require perfect recall. To that end, we examine this case
separately and show that it admits the strictest inapproximability.

More generally, there exists a key tension between the recall and precision thresholds. Consider, as an extreme
example, a recall threshold of 1, and a precision threshold of 0 (i.e., perfect recall with no precision requirement).
For this variant, a tree consisting only of a root that contains all the elements is an optimal solution. At the other
extreme, if we require perfect precision with no constraint on the recall, then an optimal solution is a tree where
there is a leaf for each element, containing only that element, and a root connected directly to all the leaves.
These edge cases illustrate the following intuitive phenomenon: increasing precision thresholds leads to more
granular trees with smaller covering categories, whereas increasing recall thresholds generally produces a more

ACM Trans. Datab. Syst.

8 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

Input:
U = { a, b, c, d, e, f, g, h, i }

Q = { q1, q2, q3, q4 }
q1 = { a, b, c, d, e}
q2 = { a, b }
q3 = { c, d, e, f }
q4 = { a, b, f, g, h, i }

W(q1) = 2
W(q2) = 1
W(q3) = 1
W(q4) = 1

a b c d e f

a b c d e fC3

C1

C4

a b c d e f g h i

g h i

Root

C2

a b c d e f g h i

a b c d e f g h i

a b c d e

Root

C1 C2

C3 C4

T1 - optimal solution for
S(Q, T1) = 4

T2 - optimal solution for
S(Q, T2) = 4 ⁵⁄

Fig. 3. Optimal solutions for two ��� variants over the same input (where, for simplicity, the input weights are not

normalized), depicted on the let side. The category tree, �1, is an optimal solution for the ��� 1 (T0.8,1) variant, where �1
covers �1, �3 covers �2, and �4 covers �3, with the overall score of� (�1) +� (�2) +� (�3) = 4. The rightmost tree, �2,

is the optimal solution for the cutof Jaccard variant with � = 0.6, where �1 covers �1 with the score of 1, �2 covers �4
with the score of 2

3 , �3 covers �2 with the score of 1, and �4 covers �3 with the score of 3
4 , resulting in the overall score of

� (�1) · 1 +� (�2) · 1 +� (�3) · 34 +� (�4) · 23 = 4 5
12 .

coarse categorization with larger covering categories. These properties of the precision and recall thresholds are
formalized and leveraged in our hardness proofs.
The above edge cases also motivate the use of thresholds in our similarity functions, below which the score

is 0. Concretely, consider the following extreme example: if no restrictions are imposed, assume a very large
number of queries, each at most of cardinality 100. One could trivially achieve an approximation ratio of at least
100, by simply placing every item in a separate leaf category. The precision in all covers would be 1 and the recall
is at most 1/100. However, such a tree is of no practical use (e.g. when searching for clothes, the user would need
to inspect a separate category for every item).

Multiplicity parameter.We next deine the multiplicity parameter. We will prove hardness bounds and devise
algorithms with approximation guarantees that are parameterized by the multiplicity. For small multiplicity
values, we show that many problem variants are much easier to approximate than the general case.

Given a subset of queries� ′, the multiplicity�� ′ (�) = |{� ∈ � ′ | � ∈ �}| of an element � in� ′ is deined as the
number of queries in � ′ that � appears in. We refer to� (�) = �� (�) as the multiplicity of � (i.e. its multiplicity
across all input queries). The maximum multiplicity of any element is denoted by� = max� � (�). Henceforth,
any mention of multiplicity not in the context of a speciic item, refers to the maximum multiplicity� .

We can assume henceforth that� ≥ 2, as for� = 1 all queries are disjoint, and therefore the problem is trivial,
as one can simply output a solution that consists of a partition of categories that is identical to � .

2.3 Examples of Problem Instances

We illustrate the ��� setting with � = 1 via the following toy examples, depicted in Figure 3, that we also
described less formally in the Introduction. The igure presents two optimal solutions, computed by brute-force,
corresponding to two diferent��� variants, over the same input, provided on the left side. For convenience, as it
is easier to perform arithmetic with integers, we provide integer weights, instead of normalizing into [0, 1], since
the normalization of the weights and scores does not afect the complexity of the problem or the performance
ratio of the various solutions.

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 9

Observe that the overall weight of all four queries is 5, hence this is also an upper bound on the score of any
tree for any variant over this input. In addition, observe that, since � = 1, we cannot add any branches to either
of the depicted trees, without violating the copy-bound constraint.

Example 2.4. The tree �1, depicted in the middle of the igure, is the optimal solution for the ��� 1 (T0.8,1)
variant (i.e. precision 0.8 and perfect recall). The categories�3 and�4 cover the queries �2 and �3, respectively, as
they are identical to these queries (and would cover them even for � = 1). The category �1 covers �1 as its recall
score is 1, and 5 out of the 6 items in�1 are in �1, hence the precision is 5

6 > � . Note that, we must include � in�1

since it appears in �4, and removing � from both categories, would result in �4 no longer covering �3. Moreover,
there is no incentive to place � elsewhere, since the score, when using a binary function, is not penalized for
precision errors if the threshold is exceeded.

As for the category�2, its addition to the tree is optional, since it does not cover any query, despite all its items
belonging to the uncovered query, �4, as we can no longer achieve perfect recall without the items {�, �, � }. It
is easy to verify that there is no way to cover �4 by adding a matching category above or below �1, such that
the items {�, �, � } would be shared by all categories, without decreasing the precision of other queries to values
below the threshold.

Example 2.5. We next discuss,�2, the optimal solution for��� 1 (�̄0.65), the cutof Jaccard variant with � = 0.65,
depicted on the right side of Figure 3. It overlaps with�1, except for the item � , which is placed in�2 instead of�4

and �1. In this case, compared to the previously examined variant, since Jaccard variants allow for errors in both
precision and recall, and also since we use a lower threshold, it is now possible to cover all queries, albeit with
imperfect scores. Indeed, every non-root category in �2 covers a query, as explained in the igure. Moreover, �1 is
the query of the maximal weight, hence it is not surprising that the optimal tree covers it with a perfect score, at
the expense of errors in the covers of less signiicant queries. We note that, in practice, the same category often
covers multiple queries. For instance, if we decrease the threshold from 0.65 to 0.4, then �1 would also cover �2,
as its precision w.r.t. �2 is exactly 0.4.

3 PRELIMINARIES

We provide here known results and deinitions, that we will use in our hardness proofs. We conclude the section
by explaining how proofs are tailored to it both��� and��� simultaneously, and discuss generalizing a tree to
a DAG.

Notation. To simplify the presentation, we use a łtilde-Thetaž notation, Θ̃(·), to hide sub-polynomial factors.

Whenever we state that a variant has inapproximability of Θ̃(��), for some constant � ∈ (0, 1], this compact
notation implies the more formal argument that, for any � > 0, this variant cannot be approximated within a
factor of � (��−�). We note that a solution of score 1 can always be achieved by producing a single category that
equals one of the queries (for diferently weighted queries we will speciically select the query of the highest

weight). Thus, Θ̃(�) is the strictest possible inapproximability factor, using this notation.
ComplexityAssumptions.Wenext deine the complexity class��� , as some of our results use the assumption

��� ≠ �� . It is known that � ⊆ ��� ⊆ �� and that ��� ⊆ ��� , where ��� is the class of problems solvable
by a randomized PTIME algorithm with a two-sided error.

Deinition 3.1. The complexity class ��� contains the problems for which there is a PTIME algorithm that
outputs DO NOT KNOW with a probability of less than 1/2, and outputs the correct answer with the remaining
probability.

MIS.We leverage reductions from the Maximum Independent Set problem (���) in uniform hypergraphs. In
an � -uniform hypergraph, all (hyper)edges are vertex subsets of cardinality � . The special case of � = 2 is a graph.

ACM Trans. Datab. Syst.

10 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

Deinition 3.2. In the Maximum Independent Set problem (���) in uniform hypergraphs, the input is a uniform
hypergraph � = (� , �), and the objective is to ind a vertex set � ⊆ � of maximum cardinality, subject to the
constraint that no edge from � is contained in � .

We have made use of the following known results for��� , where � = |� |.
Theorem 3.3. [13] The��� problem in � -uniform hypergraphs, for constant � ≥ 2, cannot be approximated below

a Θ̃(�) factor, unless ��� = �� .

Theorem 3.4. [33][8] The��� problem in graphs has inapproximability of Θ̃(�), unless � = �� . Moreover, for

graphs of suiciently large constant degree bound � , ��� is hard to approximate below a Θ(�

log2 �
) factor, unless

��� = �� . Furthermore,��� is ��-hard even for regular graphs of degree 3.

Theorem 3.5. [9] For � -uniform hypergraphs with (not necessarily constant) maximum degree � , there exists a

�� ��� algorithm producing an independent set of size Ω(�

�
1
�−1

).

From Theorem 3.5, we derive the following lemma.

Lemma 3.6. Given an � -uniform hypergraph � = (� , �), there exists a PTIME algorithm that produces an

independent set in � of size Ω((|� |�
|� |)

1
�−1).

Proof of Lemma 3.6. The average degree of � is �̄ =
� |� |
|� | . Let �1 ⊆ � denote the set of vertices in � whose

degree is at most � = 2�̄ . A simple counting argument (concretely, Markov’s inequality) implies that |�1 | ≥ |� |
2 .

Consider the sub-hypergraph�1 of� induced by �1. Computing�1 is the irst step of the algorithm. Note that
�1 is still � -uniform. In particular, if an edge � ∈ � is not contained in �1 but at least one vertex in � is in �1, then
� is not replaced in �1 by � ∩�1. As follows from Deinition 3.2, including all the vertices in � ∩�1 in an ���
solution does not violate any��� constraint.

In the second and last step, we apply over�1 the algorithm from Theorem 3.5, which produces an independent
set � . By Theorem 3.5, the size of this independent set is

|� | ≥ Ω(
|� |
2

�
1
�−1

) = Ω(|� |
(� |� ||� |)

1
�−1

) = Ω((|� |�
|� |)

1
�−1).

□

Hard instances of MIS. When reducing from��� , we will restrict ourselves to instances where the optimal

solution is of size Θ̃(�). The Θ̃(�) inapproximability of��� implies that this subset of inputs captures the maximal
hardness. Accordingly, in our reductions, assuming this hard set of inputs, we will leverage the fact that one
cannot ind (in the worst case) an independent set of size Ω(��) for any � > 0.

Probabilistic Tools.We next deine the Hypergeometric and Binomial distributions and present known tail
bounds for both. These are useful in the analysis of our randomized reduction.

Deinition 3.7. Consider sampling without replacement � uniformly random and independent samples from a
set of � elements containing � special elements, and let � denote the number of special elements in the sample.
Then, � is a hypergeometric random variable, denoted as � ∼ � (�,�, �), and its probability mass function is

Pr (� = �) = (��) (� −�
�−�)

(��)
.

Deinition 3.8. Consider performing � independent experiments with success probability � . Let � denote
the number of successful experiments. Then, � is a binomial random variable, denoted as � ∼ �(�, �), with
probability mass function is Pr(� = �) =

(�
�

)

�� (1 − �)�−� .

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 11

We use the following tail-bound for the hypergeometric distribution.

Lemma 3.9. [25] If � ∼ � (�,�, �), as deined in Deinition 3.7, and letting � =
�
�
, then, for � > 0:

Pr(� ≥ (� + �)�) ≤ ((�

� + �)
�+�

(1 − �
1 − � − �)

1−�−�
)
�

.

We also use the following Chernof bound for the binomial distribution.

Lemma 3.10 (Chernoff Bound). [28] If � ∼ �(�, �), as deined in Deinition 3.8, then, denoting the expectation

� = �� , for � ≥ 1:

Pr(� > (1 + �)�) < (��

(1 + �)1+�
)
�

.

Hardness of OCP and DAGs. Finally, we explain how our hardness reductions for ��� were devised to also
apply for ��� , as well as for the more general problem where one is allowed to produce a rooted DAG with
analogous combinatorial constraints. Thus, while the hardness analysis focuses on ��� , the bounds apply for the

above two problems as well. Speciically, all the OCT hardness results, Theorems 4.1, 4.2, 5.1, and 5.2, apply exactly
to ��� as well. There are two components that, when combined, ensure that our ��� hardness results apply
to ��� as well. First, we will show below that it is straightforward to prove that over any input, the optimal
��� solution is of at least the same score as the optimal ��� solution. Second, we will construct our hardness

reductions such that the optimal scores for both problems are of the same maximum order of Θ̃(�). Hence, the
ratio between the best PTIME solution and the optimal solution can only be worse for ��� .
Loosely speaking, an algorithm that produces a tree has all the capabilities it would need for producing a

similar-score partition, along with several additional possibilities to increase the score. Hence, in our analysis, by
bounding what is possible for constructing a tree, we also bound what is possible for constructing a partition.

Concretely, observe that, over any given input, any category partition can be transformed into a category tree
of the same score, by connecting all the categories directly to a root. For this reason, over any given input, the
optimal score, that can be achieved by a category partition, cannot exceed the optimal score by a category tree.
Importantly, in all examined variants, we ensure that our hardness bounds are derived over a subset of inputs for

which there exists a category tree whose leaf categories induce a category partition of score Θ̃(�), implying that
the optimal score of both problems is of at least this order, which is roughly maximal (the score for any input
cannot exceed � = |� |). It follows that all our approximation hardness bounds for ��� hold for ��� as well.

We note that our hardness proofs also apply to the more general problem where instead of a tree, one is allowed
to produce any rooted DAG, maintaining the requirements that a category must contain all its descendants and
for each element � there are at most � diferent paths from the root to a semi-leaf w.r.t. � (recall that a semi-leaf
w.r.t. � is a most speciic node to which � belongs). This follows from the fact the any such DAG can be converted
to a valid tree solution, by removing edges, which does not afect the score.

4 HARDNESS OF ��� � (T�,�)
In this section, we prove approximation hardness bounds on ��� � (T�,�) for various ranges of the threshold
parameters. We irst provide a reduction from��� to ��� � (T�,�) where � = Θ(1) and � >

1
2 , proving Θ̃(� 1

�+1)
inapproximability (� is the number of queries, and � is the copy-bound), unless ��� = �� . For the special case of

��� � (T�,1) we improve this bound to Θ̃(�). For � = 1, we strengthen these bounds by using a weaker theoretical
assumption and also provide a bound for the case of queries of bounded size.

To prove that the Θ̃(� 1
�+1) inapproximability extends to the case where � ≤ 1

2 , we use a more involved
randomized reduction, and also provide an analysis that captures sub-constant ranges of the threshold parameters

to derive a Θ̃((� (�+2)��) 1
�+1) inapproximability bound.

ACM Trans. Datab. Syst.

12 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

The remainder of this section consists of two subsections, pertaining to the two reductions. Each subsection is
further divided into the reduction from��� , the hardness results it implies, the intuition underlying the proof,
and the formal proof. We also explain why diferent reductions were necessary.

4.1 Special cases with � >
1
2

Before describing the irst reduction, we provide a high-level sketch of the proof for the simpler special case of
the Exact variant with � = � = 1 and � = 1 to provide intuition. All hardness results in the sequel extend this
core reduction.
Concretely, given an input graph, we create an ��� instance by replacing every edge with a corresponding

edge-element and every vertex � with a query �� containing all the edge elements corresponding to the edges
incident to � , and also additional unique padding elements to ensure that all queries are of the same size. In
any ��� solution, a query set consisting of at most one query from every tree branch would correspond to
an independent set in the original graph. To see that this is indeed an independent set, assume for the sake of
contradiction that there is an edge {�, �} in this vertex set. This implies that there is an edge element that is in
both �� and �� , and due to the perfect recall requirement, it must appear in both the categories covering �� and
�� . However, since these are on diferent branches, that would violate the copy-bound constraint, thus proving
the claim. It follows that if we can produce a tree that covers categories on many branches, then this would allow
us to derive a large independent set, which would violate the��� hardness results. Thus, if we prove that any
tree that covers many queries has many diferent branches that cover a query, then this would imply that an
��� algorithm that inds a tree of a high score would also ind a large independent set. To prove this claim, we
can show that a tree can cover at most one query on every branch. Otherwise, the covering category � on that
branch that is closer to the root must contain the elements of both queries (since � = 1), but since none of the
two queries contains the other (they are guaranteed to be the same size), then� violates that precision constraint
(� = 1), as it contains at least one extra element that is not in the query it covers.

We now formally describe and analyze the irst reduction.
Reduction from��� . Given an algorithm for ��� � (T�,�), denoted by �, with a (worst-case) approximation

guarantee of � , we devise an algorithm � = �� for ��� in (� + 1)-uniform hypergraphs. We compute a lower
bound on the size of the independent set (��) that � produces as a function of the approximation guarantee � . This
implies a lower bound on � , as we will show that when � exceeds this bound, one can produce an independent set
of cardinality Ω(��) (� is the number of vertices in the hypergraph), for some small constant � > 0, contradicting
the hardness of��� .

The algorithm � consists of a sequence of three procedures, �1, �2, and �3:

(1) Given an (� + 1)-uniform hypergraph, � = (� , �), �1 transforms it into an instance � of ��� � (T�,�). The
universe of elements for� consists of three types of elements: an edge element for every edge in �, padding

elements, and
1−�
2�−1�

� joint elements. Speciically, for each vertex � ∈ � , we construct a query, �� , such that

� = {�� | � ∈ � }. Every query contains all the joint elements. Moreover, each query, �� , also contains all
the edge elements that correspond to edges incident to � in � . Finally, we add to every query as many

unique padding elements as necessary, such that the size of the query is ��

2�−1 . Every padding element

appears in only one query. It follows that every query contains
1−�
2�−1�

� joint elements and
�

2�−1�
� non-joint

elements.
(2) �2 consists simply of running � over � . Let � denote the category tree � outputs.

(3) �3 produces an �� � ⊆ � , as follows. Let Ĉ denote the set of categories that consists of the lowest (closest

to the leaves) covering category of every covering branch in� . Let �̂ denote a set of queries constructed by

selecting arbitrarily from every category in Ĉ a single query that it covers. Observe that �̂ is an � -weak

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 13

partition. We denote by �̂ = {� ∈ � | �� ∈ �̂} the set of vertices that corresponds to the queries in �̂ , and

denote by �̂ the sub-hypergraph of � induced by �̂ . �3 computes �̂ and applies over it the algorithm from
Lemma 3.6, producing an �� � , which is the inal output.

For simplicity, we ignore rounding issues, as rounding the parameters to the nearest rational fraction has a
negligible efect, and the number of vertices, �, can be manipulated by adding vertices that are connected to all
other vertices.

Hardness bounds. The construction above implies the following hardness bounds.

Theorem 4.1. The ��� � (T�,�) problem, with constant � ∈ (0, 1] and � >
1
2 , cannot be approximated below a

Θ̃(� 1
�+1) factor, unless ��� = �� . For ��� � (T�,1) this is improved to Θ̃(�). For � = 1 these bounds hold for the

assumption � ≠ �� . Moreover, ��� 1 (T�,1) with maximum query size � = Θ(1) is hard to approximate below a

Θ̃(��) factor, unless ��� = �� . Lastly, ��� 1 (T1,1) is ��-hard even when all queries are of size exactly 3. The
bounds for ��� 1 (T�,1) hold even when query intersections are of cardinality at most 1.

We explain below the intuition underlying the reduction and the proof outline, followed by the formal proof.
Intuition. When � = 1, there are no joint elements, and each query consists of all the relevant edge elements

along with padding elements that ensure its size is exactly �� . In the Exact variant, every covering branch in �
covers exactly one query, and this independently-covered set of queries corresponds to a set of vertices that is
independent in � . Therefore, if � covers ���� (�) queries, we can ind an �� of the same size in � .
When relaxing the precision threshold, � , it becomes possible for the same branch to cover multiple queries.

As we want to select one query from each branch to ensure independence, it may no longer be the case that the
number of covering branches is of the same order as the solution. Nevertheless, on every covering branch, the
covering category � closest to the root must contain all elements of all covered queries on the same branch. If
there are many such queries, then � would not satisfy the precision requirement. Intuitively, a branch can cover

no more than � (1
�
) = � (1) queries. It follows that the set of independently-covered queries, �̂ , is of the same

order as the score of the tree in this case as well.
Matters are more complicated when the recall threshold � is also relaxed. It is no longer the case that an

independently-covered set of queries corresponds to an �� . It is now possible for (� +1) such queries to correspond
to an edge in � , as the cover of at least one of these queries can avoid containing that edge-element. Without
including joint elements in the reduction, the cover of every query could omit a constant fraction of the edge
elements, which amounts to � (��+1) edge elements, such that a large independently-covered set of queries could
correspond to even a very dense subgraph in � .

To that end, we show that a cover of a query must include a joint element per every omitted edge element. Since
all queries share the joint elements, this hinders the ability of covers in other branches to omit edge elements. It
follows that the total number of edges in a subgraph corresponding to an independently-covered set of queries
contains at most � (��) edges which is the total number of joint elements. Therefore, a tree of high score would
correspond to a large vertex set which is also sparse. From this łalmost ��ž we can derive a somewhat smaller,
but still polynomial-sized, �� , using Lemma 3.6.
Adding joint elements may allow covering more queries on a single branch, as including joint elements in a

category contributes to its potential cover of all queries. However, we show that the number of covered queries
by a single branch is bounded by a constant.

We ensure that the optimal ��� solution is of score Θ̃(�). Thus, if the approximation factor of � is low, the
eventually derived �� is large. In particular, we ensure that the tree contains a category partition of the same
score so that all bounds also hold for ��� . Observe that the maximum �� in � induces the category partition
where every category covers a single query pertaining to a vertex in the set, with all covers including all of the
non-joint elements and no joint elements. The categories in this partition satisfy the recall condition as narrowly

ACM Trans. Datab. Syst.

14 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

as possible. Intuitively, this construction means that, while joint elements help an algorithm to an extent, beyond
that it must make progress on the��� problem.

Formal proof. We next formalize the intuition described above.

Proof of Theorem 4.1. Let � ′ denote a maximum independent set in the input graph� . Recall the we assume

inputs where |� ′ | = Θ̃(�). For any � ∈ � , let �� denote the category that consists of all the non-joint elements
of the query �� (as deined in step �1 of the ��� construction, at the beginning of this section). Observe that
�� covers �� , as the cover precision is 1 and the recall is exactly � . Consider the following set of categories:
� = {�� | � ∈ � ′}. Since � ′ is independent, we have that every element appears in at most � categories in � , which

makes it an � -weak partition. By connecting all categories in � to a root, we get a tree of score Θ̃(�), which is
also a lower bound on the optimal score over � . It follows, that the score of the tree � , which � produces, is at

least Θ̃(�
�
).

We next prove an upper bound on the number of queries that can be covered by a single branch. We use the
terminology the cover of a query to refer to the set of elements in its covering category. Given a covering branch,
let � denote the number of queries it covers, and let � denote its highest covering category, denoting by � one of
the queries � covers. We irst compute a lower bound on |� |. Because � is the highest covering category on the
branch, it contains all the elements in the covers of all � queries. Due to the recall condition, the cover of every

query contains at least
�

2�−1�
� of its elements. As there are only

1−�
2�−1�

� joint elements, the number of non-joint

elements of a query contained in its cover is at least

�

2� − 1
�� − 1 − �

2� − 1
�� = ��

The number of non-joint elements in the union of all � covers may be less than ��� because the same edge
element can be in several covers. However, since a padding element is in only one cover, and an edge element
can be in up to (� + 1) covers, we have that the number of non-joint elements in � , and, consequently, the total
number of elements in � , is at least

|� | ≥ ���

� + 1
On the other hand, from the precision condition of the cover of � by � , we get:

��

2�−1

|� | ≥ |� ∩ � |
|� | ≥ �

From this, we get the upper bound

|� | ≤ ��

� (2� − 1) .

Combining both bounds, we get:
���

� + 1
≤ ��

� (2� − 1) .

Finally, it follows that

� ≤ � + 1

� (2� − 1) = � (1).

Since the number of queries covered by any branch is bounded by a constant, we have that �̂ (the set of

independently-covered queries described in step �3 of the reduction algorithm �), and, consequently, �̂ (the

vertex set that corresponds to �̂ , also deined in step �3), are of the same order as � (�), which is Ω̃(�
�
).

When � = 1, we have that �̂ is already an independent set, since, to satisfy the recall condition, covers must

include all edge elements, and, with �̂ being independently-covered, no edge element can appear in the covers of

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 15

(� + 1) queries in �̂ . Therefore, following Theorem 3.3, we have � = Θ̃(�). The improved results for � = 1 follow
from Theorem 3.4. The bounds for the case of � = 1 where queries are also of bounded size � , follow from an
analogous proof, where the padding elements ensure that queries are of size � instead of �.

For � < 1, we make the following observation: for every edge � in �̂ , for at least one of the (� + 1) vertices
in � , the cover of its corresponding query in �̂ does not contain the edge element corresponding to � . Another
important observation is that the number of joint elements in the cover of every query is at least the number of
the query’s edge elements not in the cover. This is because a cover consisting of all non-joint elements matches
the recall threshold exactly, and removing any edge element from the cover necessitates its replacement by a

joint element. It follows that the total number of edge-elements omitted from covers of �̂ is at most the number

of joint elements which is Θ(��). Therefore, �̂ is a hypergraph of size Ω̃(�
�
) with � (��) edges. From Lemma

3.6 (recall that, in our context, � is (� + 1)-uniform, and not � -uniform), we get that the size of the resulting
independent set is

|� | = Ω̃(
(�
�
)�+1

��
) = Ω̃((�

��+1
) 1
�)

The Ω̃(� 1
�+1) bound on � follows from Theorems 3.3 and 3.4. □

4.2 General threshold parameters

We have examined so far the hardness of various special cases of ��� � (T�,�) where the recall threshold is � >
1
2 .

In particular, we proved for 1
2 < � < 1 inapproximability of Θ̃(� 1

�+1). We next devise a more involved construction

to show that this result extends to � ≤ 1
2 and also provide more general bounds for polynomially small threshold

parameters. We note that since the modiied construction is randomized, the bound derived for � = 1 does not
hold under the weaker assumption of � ≠ �� , unlike in the irst construction.

Modiications. To facilitate a precise discussion, irst recall that, given a subset of queries � ′, the multiplicity
�� ′ (�) = |{� ∈ � ′ | � ∈ �}| of an element � in � ′ is the number of queries in � ′ that � appears in. The reduction
used for Theorem 4.1 becomes inefective because in the��� instance constructed by �, the set of joint elements
makes up a (1 − �)-fraction of every query, and for � ≤ 1/2 the set of joint elements becomes large enough,
such that a category, that consists exactly of this set, covers all queries, yielding the optimal tree score. To ix
this, we need to alter the construction such that joint elements are not shared by all queries. We want to limit
the number of joint elements with high multiplicity in any large query set (we will formalize this high-level
statement with concrete thresholds in Lemma 4.5), to make it hard for a single branch to cover it while retaining
properties essential for the hardness proof.
Concretely, we want any single joint element to be shared by many queries, and for a (1 − �)-fraction of

every query to consist of joint elements, so that the tree that corresponds to the optimal��� solution narrowly
exceeds the recall requirements. This requires using more joint elements. However, having more joint elements

can make �̂ less sparse, reducing the size of the produced �� . To achieve these desired properties while minimally
increasing the number of joint elements, we devise a randomized reduction. Moreover, we parameterize it to
eiciently capture sub-constant ranges of � and � , to aim for a slower decay in the hardness bound, as these
thresholds are decreased.

Generalized reduction from MIS. Our revised��� algorithm denoted by �′ consists of a sequence of three
procedures, �′1, �′2 and �′3. To avoid a convoluted presentation, we reuse some of the notation, initially deined
in the context of the irst algorithm �.

(1) Given an (� + 1)-uniform hypergraph, � = (� , �), �′1 transforms it into an instance � = {�� | � ∈ � } of
��� � (T�,�). Each query, �� , contains all the edge elements that correspond to edges incident to � in � ,
and as many unique padding elements as necessary, such that the number of non-joint elements in every

ACM Trans. Datab. Syst.

16 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

query is exactly �� . Finally, we distribute (1
�
− 1) log

3 �

�
�� distinct joint elements to queries via the following

randomized scheme. We draw uniformly randomly (1
�
− 1)�� partitions of � into

log3 �
�

subsets, each of

size ��

log3 �
. Let P̂ denote this set of partitions. In every partition, �̂ ∈ P̂, every set, �̂ ∈ �̂ , in that partition is

assigned a distinct joint element to be included in all queries in the set. Note that the size of each query is

now exactly ��

�
.

(2) The procedure �′2, same as �2, runs over � the given ��� � (T�,�) algorithm � with an approximation
guarantee factor of � . Let � denote the category tree � outputs.

(3) Finally, �′3 is the same as �3, except for the following modiication: if there is a branch in � that covers

more than Θ̃(1
�
) queries, then it outputs DO NOT KNOW, and otherwise proceeds as �3 to produce an �� � .

Generalized hardness bounds.We now state the approximation bounds implied by the revised reduction,
followed by the intuition underlying the proof.

Theorem 4.2. The ��� � (T�,�) problem cannot be approximated below a Θ̃((� (�+2)��) 1
�+1) factor, unless ��� =

�� .

Intuition. The most signiicant component in the proof is the following technical Lemma.

Lemma 4.3. W.p. 1 − � (1) (over the choices of partitions in P̂) the maximum number of queries in � a single

branch (in any tree) can cover is �̃ (1
�
).

We wish to show that precision cannot be maintained past a certain number of covered queries on a branch.
We use the term relevant cover of a query �, to refer to the intersection of � with its covering category� , with the
relevant cover size being |� ∩� |. One must be careful in selecting the query for which the precision condition is
invoked, to derive a tight bound. On the one hand, we aim to select a query covered close to the root, so that its
covering category contains the covers of many other queries. On the other hand, we want to select a query whose
relevant cover is small. Thus, we irst prove that for any branch, there exists a query � covered by � , such that at
least a constant fraction of the covered queries on the branch are covered by � or a lower category, and that the
average relevant cover size of these queries is smaller than the relevant cover size of � by at most a logarithmic
factor.

Lemma 4.4. Given a branch � that covers � ′ queries, there exists a query � covered by a category � in �, with the

following two properties:

(1) the set of queries, �� , covered by � or categories below � is of cardinality � = Θ(� ′).
(2) let � ∈ [1, 1

�
] denote the value for which the average relevant cover size of queries in �� is ��� , then the

relevant cover size of � is at most (2 log�)��� .
Given � and � as in Lemma 4.4, we derive from the precision condition an upper bound on |� |. On the other

hand, � contains the union of the � covers of the queries in �� , and we show that for � = �̃ (1
�
), the union of

the � covers, and thereby � must contain many elements, beyond the upper bound, resulting in a contradiction.
The key to proving that � contains many elements is bounding the multiplicity of the joint elements in �� . If all
elements had constant multiplicity, then an � precision threshold implies that, when the relevant covers are on
average of roughly the same size as the relevant cover of � (which is the case following Lemma 4.4), the number
of covered queries is � (1

�
). To that end, we show that the multiplicity of almost every joint element in �� does

not exceed �̃ (�
�
).

Lemma 4.5. For any set �� of � = � (log
3 �

�
) queries, w.p. 1 − � (1), there are at most �

�

2 partitions in P̂ where a

joint element is assigned to more than � =
��

8 log� queries in �� .

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 17

The proof of Lemma 4.5 consists of a combination of probabilistic arguments. We irst prove that this � bound
on the number of partitions holds for a uniformly randomly selected set of � queries w.p. 1 − � (�−�). Then, by
using a union bound argument, it will follow that this bound holds for any selection of � queries w.p. 1 − � (1).

To prove the bounds of Lemma 4.5 for a randomly selected set �� of � queries, observe that a joint element is
shared by polylogarithmically less than a 1

�
-fraction of the queries in� . Therefore, its expected multiplicity in��

would constitute the same fraction. To bound the probability of signiicantly deviating from this expectation, we
show that the multiplicity of any joint element in �� is a hypergeometric random variable, and use a tail bound.
Following a diferent union bound argument, this bound on the probability is extended over every joint element

assigned in a given partition in P̂. Finally, since the partitions in P̂ are chosen independently, we use a Chernof

bound to derive an upper bound, that holds with high probability, on the number of partitions in P̂ in which a
joint element with high multiplicity was assigned. We show that if these deviations occur suiciently rarely, as

stated in Lemma 4.5, then the cardinality of � increases as a function of � , deriving the bound � = �̃ (1
�
).

Formal proofs.We conclude this subsection with the formal proofs of the theorems and lemmas presented
above.

Proof of Theorem 4.2. Given Lemma 4.3, the proof of Theorem 4.2 is mostly analogous to the proof of
Theorem 4.1. Hence, we only highlight here the modiied computations.

First, following the exact same arguments, the score of the tree � is Ω̃(�
�
). When the �̃ (1

�
) bound on the

number of covered queries by a single branch stated in Lemma 4.3 holds, then the number of vertices in �̂ is

Ω̃(��
�
). Following the same arguments as for the irst reduction, the number of edges in �̂ is upper bounded by

the total number of joint elements which is �̃ (��
��

). The lower bound on the independent set follows from Lemma

3.6:

|� | = Ω̃((
(��
�
)�+1
��

��

) 1
�) = Ω̃((�

�+2��

��+1
) 1
�)

From Theorem 3.3, we get � = Ω̃((� (�+2)��) 1
�+1).

Finally, observe that the bound in Lemma 4.3 on every branch in � is a suicient condition to guarantee the
approximation factor we derived for �′ as a function of � . When this bound does not hold for some branch in � ,
which Lemma 4.3 proves happens with probability � (1), �′ can always detect it by examining the set of queries
covered by each branch and output DO NOT KNOW. Therefore, �′ is a ��� algorithm. □

Proof of Lemma 4.4. Given a branch � that covers the set �� ′ of �
′ queries, we deine � ′ as the value for

which the average relevant cover size of queries in �� ′ is �
�� ′, and �′ is deined as the query in �� ′ covered by

the category �′ closest to the root (ties are broken arbitrarily). We use an iterative procedure to ind � with the
stated properties.
We irst set �0 = � ′, �0 = � ′, ��0 = �� ′ , �0 = �′ and �0 = �′. In the �-th iteration, we examine the set ���−1

of ��−1 queries of average relevant cover size ����−1. If the relevant cover of ��−1 is at most (2 log�)����−1, we
set � = ��−1 (and, consequently, � = ��−1 and �� = ���−1) and we are done (we will promptly prove that �� is
suiciently large). Otherwise, we set �� to be the query covered closest to the root of the queries in ���−1 whose
relevant cover size does not exceed ����−1 log�, and�� is set to be the category that covers �� . ��� is set to be the
subset of queries in ���−1 covered by �� or categories below it. Accordingly, �� is the cardinality of ��� , and �� is
set such that the average relevant cover size of queries in ��� is �

��� .

Observe that, if the stopping condition is not met, it follows that �� is smaller than ��−1
2 . Since the average

relevant cover size, due to the recall condition, cannot be lower than �� and is at most� (���� (�)), it follows that
there are at most log� ′ = � (log�) iterations before we get to the minimal average relevant cover size, where
the stopping condition is necessarily met. Moreover, observe that the number of queries in ���−1 whose relevant

ACM Trans. Datab. Syst.

18 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

cover size does exceed ����−1 log� is at most ��−1
log� . Therefore, there are at most ��−1

log� queries in ���−1 covered by

categories above �� , implying �� ≥ ��−1 (1 − 1/log�). Putting everything together, it follows that the number of
queries in �� is at least

� ≥ � ′ (1 − 1/log�)� (log�) ≥ � ′ (1/�)� (1)
= Θ(� ′).

note that we have used the fact that (1 − 1/log�)log� approaches 1/� as � tends to ininity. □

Proof of Lemma 4.5. We irst show that this bound holds for a uniformly randomly selected set�� of � queries
with probability at least 1−� (�−�). Since there are at most

(�
�

)

< �� sets of this cardinality, from the union bound
it would follow that this holds for every set of � queries with probability 1 − � (1).
We say that an element has high multiplicity when its multiplicity in �� exceeds � . We next bound the

probability that a joint element � , which was assigned to any given set �̂ ∈ �̂ in any given partition �̂ ∈ P̂ has
high multiplicity��� (�) in �� , using the tail bound on the hypergeometric distribution from Lemma 3.9. Then,
by a union bound argument, we bound the probability of this being the case for any joint element assigned to
any set in �̂ .

Observe that, in general, when proving the � bound in Lemma 4.5 for a randomly selected �� , the probabilities
are over the drawing of the partitions as well as the drawing of �� . However, due to symmetry, when bounding
the multiplicity of a joint element in �� , we can irst ix the partition �̂ and the set of queries �̂ to which a joint
element � is assigned.
Selecting �� uniformly randomly is equivalent to uniformly drawing � queries from � without replacement,

and since all sets in any partition are of size exactly ��

log3 �
, we have that the number of times a query from �̂ was

drawn, which equals��� (�), is a hypergeometric random variable (Deinition 3.7) � ∼ � (�, ��

log3 �
, �).

Hence, we can bound the probability of � having high multiplicity, using Lemma 3.9. We set � =
�

log3 �
and

� =
�

�
− � = (�

8 log�
− �

log3 �
),

and assume � = � (log
3 �

�
). Note that� = � (�), and, in particular, �

�
= Θ(1

log2 �
). Moreover, �� = � (log2 �). Applying

the tail bound, we get:

Pr(� ≥ �) = Pr(� ≥ (� + �)�)

≤ ((�

� + �)
�+�

(1 − �
1 − � − �)

1−�−�
)
�

≤ ((�

� + �)
�
(1 − �
1 − � − �))

�

≤ ((�
�
)� (1 + �

1 − � − �))
�
= ((�

�
)� (1 + �

1 − � − �)
2�
2�)�

≤ ((�
�
) (1 + 2�) 2

2�)�� = Θ(�
�
�2)�� ≤ Θ(1

log2 �
)��

= � (1

log2 �
)log2 � = � (�

�4
)

Note that we have used the fact that as � tends to ininity, 2� tends to 0, and, thus, (1 + 2�) 1
2�) approaches � .

From the union bound, we get that the probability, � , of the event where at least one of the Θ̃(1
�
) joint elements

assigned to the sets in �̂ has high multiplicity is � = � (1
�4
).

Let � = (1
�
− 1)�� < ��

�
denote the number of partitions in P̂. The number of partitions, where an element of

high multiplicity in �� is assigned, is a binomial random variable (Deinition 3.8) � ∼ �(�, �). The expectation of

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 19

� is

� = �� = � (�
�

�
· 1

�4
) = � (�

�−4

�
).

By applying the Chernof bound (Lemma 3.10), and setting

� =
��

2�
− 1 = � (��4),

we get a bound on the probability of this high multiplicity event occurring for more than ��/2 partitions:

Pr(� >

��

2
) = Pr(� > (1 + �)�)

< (��

(1 + �)1+�
)
�

= � ((�
�
)��) = � ((�

�
) �

�

2)

= � ((�

��4
) �

�

2) = � ((1
�2

) �
�

2) = � (�−��) = � (�−�)

□

Proof of Lemma 4.3. We assume here, for consistency, the same notation and deinitions as in Lemmas 4.5
and 4.4. Given any branch � that covers � ′ queries, we invoke the precision condition of a query �, covered by a
category � , with the properties stated in Lemma 4.4. The precision condition implies

(2 log�)���
|� | ≥ |� ∩ � |

|� | ≥ �,

from which it follows that

|� | ≤ 2 log�

�
���.

On the other hand, � contains the union of the covers of the � = Θ(� ′) queries, �� , covered by it, or by
categories below it. From Lemma 4.4, we have that the sum of the relevant covers sizes of�� is ��

�� . This sum of
the covers is also the sum of the multiplicities of all the elements in the union of the covers.

Assume, for the sake of contradiction, that � = � (log
3 �

�
). Then, by Lemma 4.5, we have that, with probability

1− � (1), there are at most �
�

2 ≤ ���
2 partitions in P̂ in which there is an element has high multiplicity in�� . In all

those cases we can assume the worst-case where there is a joint element with multiplicity � (observe that for
any given partition the sum of multiplicities of the corresponding joint elements cannot exceed �). Therefore,
when excluding all the elements with high multiplicity, we have that the sum of all � covers, and the sum of the
multiplicities, is at least

���� − ���

2
� =

����

2
.

For any of the remaining elements we have that its multiplicity is at most � =
��

8 log� . This multiplicity bound,

of course, extends to edge and padding elements that have constant multiplicity which is � (�). Therefore, the
number of (distinct) elements in � is at least

|� | ≥ ����

2�
=
4 log�

�
���.

This contradicts the upper bound of
2 log�
�

��� , and along with the fact that � ′ is of the same order as � , implies

that, with probability at least 1 − � (1) over the random partitions in P̂, there can be no branch on a category tree
for � that covers �̃ (1

�
) queries. □

ACM Trans. Datab. Syst.

20 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

5 HARDNESS OF OTHER VARIANTS

So far we have proven hardness of ��� � (T�,�). In this section, we provide approximation hardness bounds for
the remaining ��� variants, via reductions from ��� � (T�,�) and Theorems 4.1 and 4.2.

We irst show that the Θ̃(� 1
�+1) bound of��� � (T�,�) with constant thresholds extends to the threshold versions

of Jaccard and �1 scores, with similar inapproximability for sub-constant thresholds as well. We then use these
results to derive bounds for the cutof versions of these functions, which only difer for � = � (1).

We formulate our proofs schematically, such that they may be applied to threshold and cutof variants of other
functions.

For threshold functions, we derive the following bounds.

Theorem 5.1. The variants ��� � (�̂�) and ��� � (�̂1 (�)) cannot be approximated below a Θ̃((��+3�) 1
�+1) factor,

unless ��� = �� . For � = 1, we have Θ̃(
√
�) inapproximability, assuming � ≠ �� , for ��� � (�̂�) with � >

1
2 and

��� � (�̂1 (�)) with � >
2
3 .

Proof. Let S denote any given function in {� , �1} and let Ŝ� denote its corresponding threshold version in

{ �̂� , �̂1 (�) }. We deine �� as the set of all query-category pairs, � and � , such that � (�,�) = 1 and � (�,�) = � ,
and analogously deine �� as the set of all query-category pairs such that � (�,�) = 1 and � (�,�) = � . Let�� (S)
denote the score S(�,�) of any (�,�) ∈ �� , and let �� (S) denote the score S(�,�) in the latter case (we will
promptly show that this score is well deined and uniform across all pairs in the same set). Finally, given the
parameter values � and � , let� (S) = ��,� (S) = max{�� (S), �� (S)}.

For both variants, we use the same reduction from��� � (T�,�) where the input� is not modiied at all. We set,
however, diferent threshold parameters for the original ��� � (T�,�) instance, depending on which variant we
reduce to.
The proof for each variant consists of two arguments, and relies on ensuring that� (S) = �� (S) = � . For the

two particular functions examined here, we will also ensure that�� (S) = � , which is, in general, preferable, as
we want to use the highest possible value of � (�� (S) is a monotonically increasing function of �), such that the
bound for the set of ��� � (T�,�) inputs we reduce from is stricter.

The irst argument is that optimal score over the input � w.r.t. Ŝ� is of at least the same order as the optimal
score w.r.t. T�,� . To that end, when reducing from ��� � (T�,�), we restrict ourselves to the hard set of inputs
of ��� � (T�,�) mapped to by our reduction from hard inputs of ��� in the proof of Theorems 4.1 and 4.2. We
showed that for any such input, � , there exists a category tree (not necessarily optimal), we denote here by � ′

� ,

whose leaves induce a category partition covering Θ̃(�) queries, each covered with precision 1 and recall � . It
follows that the score of � ′

� , w.r.t. S, for each query is�� (S). We will show that, for our choice of threshold

parameters, �� (S)} = � , and hence � ′
� is also of score Θ̃(�), w.r.t. Ŝ� . Note that leveraging the fact that the

covers are of precision 1 is essential since in general the same score could have hypothetically been achieved
over the��� � (T�,�) instance, such that in every cover both the precision and recall equaled the threshold values,
however, this would not imply that the covers are each of score S(�,�) ≥ � .
The second argument is that the score of any tree, w.r.t. Ŝ� , cannot exceed its score w.r.t. T�,� . This, along

with the irst argument, would imply the hardness bound. To that end, observe, that, since S is a monotonically
increasing function of both the precision and the recall, for a given query-category pair, � and � , the highest
score S(�,�) that can be achieved, such that T�,� = 0, occurs when either the precision is 1 and the recall is
ininitesimally smaller than � , or the recall is 1 and the precision is ininitesimally smaller than � . Therefore, for
any such case, the score S(�,�) would be below� (S). Ensuring that� (S) = � , implies the argument.

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 21

Speciically, we have, when � (�,�) = 1 and � (�,�) = � , that � ∪� = � . Therefore, in this case, for S = � , it
follows that

�� = � (�,�) = |� ∩� |
|� ∪� | =

|� ∩� |
|� | = � (�,�) = �.

Similarly, when � (�,�) = 1 and � (�,�) = � , then � ∪� = �, and

�� =
|� ∩� |
|� | = � (�,�) = �.

Therefore, we reduce to ��� � (�̂�) from ��� � (T�,�), which implies,� (�) = �� (�) = � , as required. Following
Theorem 4.2, the inapproximability factor for ��� � (�̂�) is

Θ̃((� (�+2)��) 1
�+1) = Θ̃((��+3�) 1

�+1)
Similarly, for S = �1, when � (�,�) = 1 and � (�,�) = � , we have

�� = �1 (�,�) = 2
�

1 + � .

We also have, analogously, that�� = 2
�

1+� .

We, therefore, reduce to ��� � (�̂1 (�)) from ��� � (T� ′,� ′), where � ′ = �
2−� , which implies,� (�1) = �� (�1) = � ,

as required. For any constant � ∈ (0, 0.5) we have that when � ∈ [�, 1 − �] then �
2 < � ′ < 1

1+� , thus �
′
= Θ(�).

Moreover, for � = � (1), we have � ′ ≈ �
2 = Θ(�), as well. Hence, the inapproximability bound of ��� � (�̂1 (�)) is

also Θ̃((��+3�) 1
�+1).

The improved hardness for � = 1 and a suiciently high � parameter follows from Theorem 4.1. □

Finally, we provide bounds for cutof functions, that follow from Theorem 5.1.

Theorem 5.2. The variants ��� � (�̄�) and ��� � (�̄1 (�)), with � ∈ [0, 1), have Θ̃((�2�+4�) 1
�+1) inapproximability,

unless ��� = �� . For � = 1, we have Θ̃(
√
�) inapproximability, assuming � ≠ �� , for ��� � (�̄�) with � >

1
2 and

��� � (�̄1 (�)) with � >
2
3 .

Proof of Theorem 5.2. For both cutof functions, we use a reduction from its corresponding threshold variant,
with the same threshold parameter � , where we do not modify the input. By deinition, the score of any tree in
the cutof variant cannot exceed its score in the threshold variant. On the other hand, the score of any tree for
the cutof instance is at least a �-fraction of its score for the threshold instance. In particular, while the score of
the optimal solution for the cutof instance can be lower, it is, nevertheless, at least a �-fraction of the score of
the optimal solution for the threshold instance. Therefore, the approximation factor can be lower by at most a �
factor, yielding the stated bound. □

6 ALGORITHMS

We next present algorithms, that despite the harsh hardness bounds of the general case, can provide much
improved guarantees for various special cases, based on the values of more granular problem parameters. For the
Exact variant with � = 1, we also provide an algorithm, that we showed to solve the problem optimally on all
examined inputs, as detailed in [5].

Concretely, we irst describe procedures that, for the cost of logarithmic factors, allow one to assume that the
input is unweighted and that all queries are of roughly the same cardinality. These assumptions are used in some
of our devised algorithms.

ACM Trans. Datab. Syst.

22 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

We then provide the algorithms for the Exact variant that have the same performance ratio as the underlying
��� algorithm they leverage. This both allows to use��� exact solvers that are shown in practice to run eiciently,
but also, on the theoretical side, to guarantee an approximation factor, that may be much improved compared to
the general case, based on a parameter related to the intersections of the queries.
Finally, we provide approximation algorithms for multiple variants, that are parameterized by the maximum

multiplicity of the instance. Concretely, we show that one can achieve an approximation factor of roughly the
same order as the multiplicity, by an eicient randomized algorithm.

We note that all similarity threshold parameters are assumed to be constants.

6.1 Reducing to unweighted instances of near-uniform query size

We irst describe two standard procedures, that each, for the cost of a logarithmic factor, can reduce any problem
instance to an unweighted instance and to an instance where all queries are of roughly the same cardinality,
respectively. We will use these procedures in some, but not all, of our algorithms.
We irst explain how to eliminate weights at the cost of a � (log�) factor. Let �′ denote the query of the

highest weight, ���� . At the cost of a constant factor, we can ignore all queries whose weight is less than
���� =

����
2� , since if the total weight of these queries is a constant fraction of the weight covered by the

optimal solution, then a solution that covers only �′ (by having a single category that is identical to �′) achieves
constant approximation. Next, for the remaining queries, we can partition these into sets based on weight ranges
that increase exponentially. Speciically, consider all the sets �� that contain all queries of weights in the range
[���� ∗ 2� ,���� ∗ 2�+1) for 0 ≤ � ≤ � (log�) (once the range exceeds���� there are no longer non-empty sets).
By a simple counting argument, at least one of these sets contains a 1/� (log�)-fraction of the queries covered
by the optimal solution (note that not necessarily all queries can be covered by an optimal solution, as that would
imply based on the proof of Theorem 4.1 that a large independent set always exists) . Therefore, we can solve the
problem separately for each �� , and we are guaranteed that for at least one of these instances, the optimal weight
that can be covered is at least a 1/� (log�)-fraction of the optimal solution to the original instance. Finally, we
can treat each separate instance as unweighted, as this will cost at most an additional factor of 2 (since in each
instance the maximum weight ratio of two queries is bounded by 2).
To reduce to instances where all queries are of roughly the same cardinality, we use a slightly generalized

variant of the same method. Concretely, for any constant � > 0, we partition the queries into the sets �� that
contain all queries of cardinality in the range [(1 + �)� , (1 + �)�+1), for 0 ≤ � ≤ � (log�). Since we assume in our
model that the size of the universe is � (���� (�)), � (log�) sets are indeed suicient to account for all queries.
Once again, solving the problem separately over each set �� and selecting the solution of the highest value would
lose at most a � (log�) factor. Note that, in each instance, all queries are of the same size up to a (1 + �) factor.

6.2 Approximation algorithm for the Exact variant

We next provide PTIME approximation algorithms for the Exact variant of (weighted)��� 1 (T1,1) and���� (T1,1).
Note that for��� the algorithm applies when � = 1, while for��� it applies to any constant � . The Exact variant
is of special interest because it is a special case of all variants pertaining to all examined similarity functions,
where the error threshold is � = 1 (or � = � = 1 for T�,�). We note that in [5] we show empirically that this
algorithm can solve real-world instances optimally, where � = 1, using as a subroutine a modern weighted���
exact solver [17]. Moreover, as mentioned, the requirement � = 1 is the most prevalent in practice.

In Theorem 4.1 we prove that it is ��-hard to approximate this variant below a Θ̃(�) factor. Hence, one cannot
provide any non-trivial approximation guarantees for the general case. Nevertheless, we devise an algorithm with

an optimal approximation guarantee of �̃ (�̄), where �̄ ∈ [0, �], referred to as the average (weighted) degree of
the input, is a parameter relating to the number of intersections among the queries. Formally, we deine a conlict

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 23

as any pair of queries that intersect and neither is a subset of the other (for ��� only the former condition is
relevant). The degree � (�) of a query � ∈ � is deined as the number of conlicts in the input that contain �. The

average degree is the weighted average of all query degrees in the input. That is, �̄ =

∑

�∈�� (�) ·� (�)
∑

�∈�� (�) .

Algorithm 1: �� Algorithm

Input: � - queries,� - query weights, ����� - WMIS Algorithm
Output: � - category tree

1 Construct a weighted graph � where the nodes are � (with the same weights) and an edge connects every

two queries that intersect without one containing the other;

2 Run ����� over � producing a query set � ;

3 Construct a tree � where the categories are � and a ���� (that contains the union of the queries in �), and

the parent of every category � in � is the smallest category in � ∪ ���� that contains �;
4 return � ;

Algorithm 2: ��
�
Algorithm

Input: � - queries,� - query weights, ����� - WMIS Algorithm
Output: � - category partition

1 Construct a weighted hypergraph� where the nodes are� (with the same weights�) and the hyperedges

are all the sets of (� + 1) queries whose intersection is not empty;

2 Run ����� over � producing a query set � ;

3 return � ;

6.2.1 Algorithms for ��� 1 (T1,1) and ���� (T1,1). We irst describe the algorithm �� for ��� 1 (T1,1), depicted
in Algorithm 1 and 2, respectively. Note that both algorithms receive as input an underlying algorithm for the
weighted ��� problem (or the unweighted problem, if the ��� or ��� instance is unweighted as well). The
irst step in �� is to construct a conlict graph � , which is a weighted graph whose vertices are the queries (with
the weight of the vertex being the weight of the query), and the edges are the conlicts. We next run over� the
approximation algorithm for the Weighted��� (����) problem in [2]. The���� problem is a generalization of
the��� problem, where the vertices are weighted, and the goal is to produce the independent set of the highest
total weight. Note that the degree of a vertex in the� is the degree of the query and the average (weighted) degree
in the graph, which is deined as the weighted average of the vertex degrees, is �̄ , hence the terminology and the

values are the same. The algorithm in [2] is based on semideinite programming, and provides an � (�̄ log log �̄

log �̄
)

approximation guarantee. There also exist simple greedy �̃ (�̄)-approximation algorithms, as mentioned in

[2], and for the special case of unweighted graphs, there is an improved SDP algorithm in [6] with a �̃ (�

log2 �
)

approximation guarantee, where � is the maximum degree.
Let � denote the independent set produced by the above algorithm over the conlict hypergraph. For any query

� ∈ � that is contained in at least one other query in � , we denote by � (�) ∈ � the query that contains � and is
not contained in any other query that contains �. This is well deined because there is exactly one such query. If
there were (at least) two such queries, then they necessarily intersect as both contain the elements of �, and since
by deinition of � (�) neither of the two contains the other, it follows that these two queries conlict, which is a
contradiction since � is an independent set in the conlict graph.

ACM Trans. Datab. Syst.

24 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

The last step is to build the category tree � . Besides the root, which contains all elements in� , the categories
in � are made up of one category per every query in � , which contains exactly the elements of the query. The
root is the parent of every category that corresponds to a query that is not contained in any other query in � .
Whereas, for any other category that corresponds to a query �, its parent is the category corresponding to � (�).

The algorithm ��
�
for ���� (T1,1) is analogous, yet simpler. Concretely, a conlict is deined as any subset of

(� + 1) of queries whose (collective) intersection is not empty. Thus, the resulting conlict graph for � > 1 is in fact
a hypergraph (once again, the hyperedges are the conlicts). Since � = Θ(1), checking all conlicts can be done
in PTIME. Importantly, the���� algorithm in [2] also applies for hypergraphs, with the same performance
guarantee. Once the���� algorithm produces an independent set � , one simply outputs the category partition
that consists of one category per each query in � , containing exactly the elements of that query.

It is important to note that the same generalization does not work for��� , as one can show simple counterex-
amples of independent sets in a conlict hypergraph that cannot be transformed into a tree that covers the entire
set.

Lastly, we note that, as explained above, for an additional loss of a � (log�) factor, one can reduce the problem
to unweighted instances, and for � > 1 we show that the approximation of ��� can then be improved.

Theorem 6.1. The �� and ��
�
algorithms, with the underlying���� algorithm being the algorithm for solving

WMIS in [2], provide an � (�̄)-approximation for ��� 1 (T1,1) and ���� (T1,1), respectively. This factor is optimal

(up to negligible factors) for � = 1, unless � = �� .

Proof. We focus here on the proof for �� , the algorithm for ��� , as the proof for ��� is analogous.
To prove the stated approximation factor, we show that for any independent set � in the conlict graph � of

total weight� (�) there exists a category tree� that covers exactly the queries of � (and thus has a score of� (�)
as well), and in the other direction, we show that every tree � ′, in which the set of covered queries is � ′, the set
� ′ is also an independent set in � . This one-to-one correspondence implies that the approximation factor of ��
for ��� is the same as the guarantee of the���� algorithm, proving the stated factor.
The irst direction is trivial, as the algorithm �� contains the procedure that turns every independent set �

into a category tree that covers � . As for the other direction, assume for the sake of contraction that a set of
queries � ′ that is covered by some category tree� ′ is not an independent set in� . That means that there exist two
queries �1, �2 ∈ � ′ that conlict. Let � denote some element in their intersection. Since in the Exact variant any
cover requires perfect precision and perfect recall, it follows that both queries are covered by diferent categories,
and since neither query contains the other (otherwise it is not a conlict), it also follows that the two covering
categories are on diferent branches. The perfect recall also implies that � appears in both covering categories.
However, this implies that � appears in two diferent branches, which violates the copy-bound restriction, and
yields a contradiction, proving the claim.
It remains to prove that this factor is optimal (for ��� this is true only for � = 1). To that end, recall that

in Theorem 4.1 we proved that when all queries are of size at most � = Θ(1) it is ��-hard to approximate

��� 1 (T1,1) below a Θ̃(�) factor. Moreover, in the proof of this claim in Theorem 4.1 these hard ��� instances
were reduced from��� instances where the maximum degree is � , and each element in the ��� instance either
pertains to an edge in the ��� instance, and thus appears only in 2 queries, or it is a unique padding element
and appears only in one query (to ensures every query is of size exactly �). Since in these ��� instances in each
query there are exactly � elements, and each such element appears in at most one other query, it follows that the
degree (number of conlicts) of each query is at most � , and thus also the average degree �̄ is at most � . We have

proven these instances are ��-hard to approximate below a Θ̃(�̄) factor, which proves the optimality claim.
□

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 25

The result above shows that the approximation hardness of the Exact variant is strongly dependent on the
average number of intersections between queries.

6.3 Approximation algorithms for variants with bounded multiplicity

We next provide approximation algorithms parameterized by the maximum multiplicity� .
Reduction to MIS.We irst show that, for small values of� , with a slightly diminished guarantee, the ��

�

algorithm, based on the MIS solver, described above for the Exact ��� problem, can also be applied with similar
success to variants that require perfect recall but relax the precision threshold. More importantly, while we prove

in Section 4 that for variants where � = 1, the problem has Θ̃(�) worst-case inapproximability even for� = 2,
we later show that for variants where � < 1, a solution that covers at least a Θ(1/�)-fraction of the total weight
of the input queries can be found by a randomized PTIME algorithm.
Starting with the case where � = 1, by slight abuse of terminology and notation, we henceforth refer to a

conlict according to the deinition given above for the Exact variant of ��� , rather than ��� , reusing the same
notation as well. That is, a conlict is any pair of queries that intersect. This is due to the fact that we prove that
the ��

�
algorithm, described above for the Exact variant of ��� , provides the same guarantees up to a factor of

� , and then we prove that, for bounded multiplicity, the optimal solution for ��� must contain a partition of
categories that cover queries constituting at least a Ω(1/log�)-fraction of the total covered weight. Therefore,
the ��

�
��� algorithm works for ��� as well, with an extra logarithmic loss factor in the guarantee.

Note that for � = � (1) the guarantees are roughly the same, up to negligible factors. Moreover, another
advantage of our approach is that the queries that are guaranteed to be covered are covered such that both the
precision and recall scores are perfect (the solution may also cover more queries beyond the approximation
guarantee, but only a fraction of the queries that corresponds to the worst-case approximation factor is guaranteed
to be covered with by identical categories with perfect recall and precision).

Theorem 6.2. The��
�
algorithm, with the underlying���� algorithm in [2], provide� (�̄� log�)- and� (�̄�)-

approximation for ��� 1 (T�,1) and ���� (T�,1), respectively. Moreover, these guaranteed fractions of queries are

covered by the above algorithms with both precision and recall scores of 1.

Proof. The proof for ��� is based on the following key claim: the maximum number of queries that can be
covered by a single category is � (�). This implies that there exists a solution whose score is a Ω(1/�)-fraction
of the optimal score where each category is identical to some query. Speciically, this solution corresponds to
selecting only the query of the highest weight that is covered by each category and removing from the category
all the items that are not in this query. Note that each such query is now covered with perfect precision (as well
as perfect recall), therefore we can apply the algorithm for the Exact variant (for which the optimal solution is
at least as good as the solution proven above to exist), and we lose only an � (�) factor in the approximation
guarantee, compared to all the factors stated in Theorem 6.1.
To prove that at most � (�) queries can be covered by the same category, let �� of cardinality � denote the

set of queries covered by a given category. When � = 1 the category must contain the union of all the covered
queries in �� . Let �

′ ∈ �� denote the query of the lowest cardinality, |�′ | = � ′. The sum of cardinalities of all
queries in �� is at least ��

′. Since each element can appear in at most� queries the cardinality of the union of all
queries in �� is at least ��

′/� . However, due to the precision requirement of covering �′, we get that the size of
the covering category is bounded by � ′� . Therefore, � ≤ �/� , implying the result.
To get the bound for OCT, we irst prove the following similar, yet more general, claim: If� covers a query � of

size � , then, for any constant � > 0, the number of queries of size at least �� covered in the subtree rooted on� is
� (�). To prove this claim, let �� of size � denote the set of queries covered in the subtree rooted on� . Following,
the same argument as for the claim above, the number of elements in � (which contains all the elements in all

ACM Trans. Datab. Syst.

26 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

queries in ��) is at least ���/� . And also as in the proof of the claim above, due to the precision requirement on
covering �, the number of elements in � is at most �/� , implying that � ≤ �/(��).
To see how the above claim implies the bound for OCT, consider a partition of all the queries covered by any

given branch in the optimal ��� solution, into � (log�) sets, {�� }, of exponentially growing cardinality ranges,
exactly as described in Subsection 6.1. From a simple counting argument, at least one of these sets accounts for
at least a Ω(1/log�)-fraction of the total weight covered by the optimal solution. Let �1 denote this set. Next,
consider the set �2 of queries in �1 such that no queries in �1 are covered above them (i.e. by a category closer to
the root). By deinition, for every query in �1 there is a subtree rooted in a category that covers a query in �2.
And since all queries in �1 are of the same cardinality up to a constant factor, there are at most � (�) queries
covered in each such subtree. Finally, consider the set �3 consisting of the query of the highest weight in each of
the subtrees described above. This set of queries accounts for at least a Ω(1/�)-fraction of the total weight of �1,
and thus a Ω(1/� log�)-fraction of the total weight covered by the optimal solution. It follows that the set of
categories that cover �3 is an ��� solution (since these categories belong to disjoint subtrees) covering at least a
Ω(1/� log�)-fraction of the optimal ��� solution. □

Queries of constant cardinality.We next show that when all query cardinalities are upper bounded by a
constant, then, for any ��� or ��� (with � = 1) problem variant with constant, the ��

�
algorithm covers at least

an Ω̃(1/�) fraction of the total weight of � , with perfect recall and precision (i.e., via an identical category).

Note that, in particular, the algorithm guarantees an �̃ (�)-approximation. We will later also prove that, by using
a diferent algorithm, the same guarantee can be provided for all variants that do not require perfect recall, even
without assuming any bounds on the query cardinalities.

Concretely, when the query sizes are bounded by a constant, we can simply use the ��
�
algorithm (depicted in

Algorithm 2) with the MIS algorithm in Theorem 3.5 as the underlying��� algorithm. We next show that the
number of conlicts is guaranteed to be small (when� is small) which implies the approximation guarantee.

Theorem 6.3. The ��
�
algorithm produces a solution that covers an Ω(1

� log�)-fraction of the total weight of the

input queries for both ��� 1 (T�,�) and ���� (T�,�) instances, where the query size is bounded by a constant. For

unweighted variants, this guarantee improves to a Ω(1
�
)-fraction. Moreover, this guaranteed fraction of queries are

covered with both precision and recall scores of 1. Lastly, this guarantee also applies to variants using the Jaccard or
�1 similarity functions.

Proof. We prove the result below for unweighted inputs, as we showed in Subsection 6.1 how one transforms
weighted instances into unweighted instances at the cost of a log� factor. Let � = � (1) denote the maximum
cardinality of an input query. Since each element appears in at most� queries, the number of queries each given
query intersects with cannot exceed �� . Therefore, the average degree in the conlict graph is at most� (�), and
by using the��� solver in Theorem 3.5, we get the desired result. Note that since ��

�
covers the queries produced

by the��� algorithm with identical categories, these covers have perfect precision and recall and apply to all
variants. □

Non-perfect recall.We next show that, for variants where � = 1 and perfect recall is not required, a simple
randomized algorithm,����� , depicted in Algorithm 3, can with high probability produce a solution that covers at
least an Ω(1/�)-fraction of the total weight of the input queries. Note the stark contrast to variants with perfect
recall, discussed above, where even for� = 2 one cannot guarantee anything signiicantly above a trivial result
(whereas, in the cases below for constant� we get a constant approximation). We assume below that all query
cardinalities exceed a suiciently large constant, � . This loses at most a constant factor of 2 in the approximation
guarantee, as one can partition the input into two instances - one consisting of all queries of cardinality at most
� , and one of the remaining queries. For the former, we can use the ��

�
algorithm described above, and for the

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 27

latter - the ����� algorithm we describe below with the same coverage guarantee. At least one of the two inputs
must contain at least half of the total weight of the queries in the original input, proving that we lose at most a
factor of 2 (however, note that for weighted cases with queries of bounded size the guaranteed fraction is smaller
by an additional log� factor, as described in Theorem 6.3).
We next describe the randomized algorithm, and then state and prove its performance guarantee. In the irst

stage, it selects a sample �1 ⊆ � where every query is selected independently with probability 1
��

) where � is a
suiciently large constant (whose value will be determined later in the probabilistic analysis). It then computes
for each sampled query �, its subset �′ of elements that only appear in one sampled query (i.e., only in �). Then,
for each sampled query �, if �′ contains at least a �-fraction of its elements, it is added to a set denoted by �2.
Lastly, the set categories in the inal output consists, for every � ∈ �2, of the corresponding subset �′. Clearly,
since every element in each category has a multiplicity of 1 in �1, the output is a valid category partition. As
before for ��� , we use the standard adaption of the ��� solution of adding a root as the direct ancestor of all
the categories in the partition. Also note that the set of covered queries is �2, where each query is covered with
perfect precision and the recall is at least � .

Algorithm 3: ����� Algorithm

Input: � - queries,� - query weights, � - recall threshold
Output: � - category partition/tree

1 Select a sample �1 ⊆ � where every query is selected independently with probability Θ(1/�).;
2 For each sampled query � compute its subset �′ of elements that only appear in one sampled query ;

3 Compute the set �2 ⊆ �1 consisting of every query � such that |�′ | ≥ � |� |;
4 Compute � = ∪�∈�2�′ ;
5 return � (for ��� also add a root that connects to all categories in �);

Theorem 6.4. The ����� algorithm covers an Ω(1/�)-fraction of the total weight of � for ��� 1 (T�,�) and
���1 (T�,�) variants where � < 1, with an arbitrarily small constant probabilistic error. The same guarantee also

applies to the ��� 1 (�̂�) and ���1 (�̂�) variants, where � < 1.

Proof. To simplify the presentation, we will prove the statement for unweighted instances, and then describe
the simple generalization of several arguments, so that the proof applies analogously to weighted instances as
well. Also note that since, as discussed above, we only handle the case where all queries are suiciently large, we
can ignore any rounding issues when discussing constant fractions of cardinalities of queries.
We will show that for any constant � (we also assume that � < 1/2 as this only makes the argument stronger),

one can adjust the parameter � (recall that in the irst phase of the algorithm every query is sampled with
probability 1

��
)), such that, with probability at least (1 − �) the total cardinality of the set �2, which is covered by

the inal solution, is at least Ω(�/�).
In the probabilistic analysis below, we condition on the event that the total number of sampled queries is at

least a 1
��

) − �′, where �′ is an arbitrarily small constant (i.e. the size of the sample is at least negligibly less than
the expectation). A straightforward application of the Chernof bound (Lemma 3.10 implies that this happens
with probability 1 − � (1). Since this probabilistic error is negligibly small, for simplicity of presentation, we
ignore it in the subsequent analysis. It, therefore, remains to prove that the size of �2 is with high probability a
constant fraction of �1.
We call every element whose multiplicity in the sample is 1 (i.e. it appears in only one query) as a good element,

whereas all other elements are bad elements. We similarly call every sampled query in �2 a good query, whereas
all other sampled queries are bad. We next analyze the number of good elements and queries in �1.

ACM Trans. Datab. Syst.

28 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

For any given query � ∈ �1, each of its elements is good only if all other queries that contain it are not sampled.
Since there are at most � − 1 such queries, the probability that an element is good is 1 − (1 − 1/(��))�−1.
Applying Bernoulli’s inequality [21] we get that

1 − (1 − 1/(��))�−1 ≥ 1 − � − 1

��
≥ 1 − 1/�.

Hence, the probability that the element is bad is at least 1/� . We can choose � suiciently large (yet still a

constant) such that the probability of an element being bad is
1−�
�/2 . From the linearity of expectation, it would

then follow that the expected fraction of bad elements is
1−�
�2

. Then a simple counting argument (concretely,
Markov’s inequality), implies that the probability that the fraction of bad elements exceeds (1 − �), i.e., that
the query is bad, is at most �2. It follows that the expected fraction of bad queries is at most �2. From the same
Markov’s inequality argument, the probability that the fraction of bad queries exceeds 2�2/� = 2� is at most � .
Therefore, with probability at least �/2, the number of good queries is at least a (1 − 2�)-fraction of the queries
in �1 (recall that we assumed that � < 1/2). And since we conditioned on the high probability event that the
cardinality of �1 is Ω(�/�), this concludes the proof.
To generalize the proof for the weighted instances, we only need to nominally generalize the three arguments

regarding the number of bad queries. Concretely, the same bound for the expected fraction of the number of bad
queries of the total sampled queries applies to the fraction of the total expected weight of the covered queries
out of the total weight of the sampled queries. This is also the case for the expected fraction of the weight of
the sampled queries which generalizes the fraction of the sampled queries out of �. Moreover, the same exact
counting argument, based on the Markov bound, that implies that the number of bad queries with high probability
does not exceed its expectation, applies for the total weight of the bad queries not exceeding its expectation by
much. The rest of the proof is exactly the same (in the above arguments we ignored degenerate cases where a
constant fraction of the total weight is concentrated in a few queries, as one can in �� ��� test all small solutions
and ind this set).

Lastly, the result also applies to the analogous Jaccard variants, since if the Jaccard similarity is at least � then
the recall is at least � as well (in fact, when the precision is 1, then the recall equals the Jaccard similarity. □

7 RELATED WORK

The construction of category trees/taxonomies has been studied in multiple domains, including e-commerce,
document management, and question answering [11, 14, 29]. Many algorithms have been devised for automating
taxonomy construction [11, 22, 23] and maintenance, [27, 29, 32] employing diferent clustering approaches
[11, 22], as well as crowdsourcing [26].

In the lines of work speciied above, the quality of the resulting taxonomy is assessed along the following two
dimensions.

The irst dimension of quality assessment is user-study [11, 22], an evaluation which we incorporate w.r.t. our
model in the complementary empirical work [5]. This evaluation is naturally entirely subjective.

The second dimension, which is the focus of the present paper, is the similarity of the resulting category tree
to a given (combinatorially unrestricted) ground-truth set of items/documents. For example, the �1 score used in
[11, 22, 23] is a variant (without a threshold) of our corresponding �1 measure for � = 1. Similarly, [27] computes
recall and �1 scores for the resulting trees, also with � = 1.
To our knowledge, however, no previous work investigates the theoretical complexity of the optimization

problem of computing the tree of the highest score. The score is only used as an evaluation measure, to which the
algorithm is oblivious. This approach, to an extent, is loosely justiied by our worst-case bounds. Nevertheless,
we show in [5] and [4], that leveraging the relation we outlined in Section 6 to the weighted��� problem, allows
solving well (and, in some cases, optimally) real-world problem instances, via extensively studied��� solvers.

ACM Trans. Datab. Syst.

Automated Category Tree Construction: Hardness Bounds and Algorithms • 29

Our model difers from clustering models [15, 24] that typically focus on item-similarity, optimizing the
similarity within each cluster or the dissimilarity across clusters. Moreover, these models are commonly deined
by pairwise similarities, while our model also considers relations of a higher order. Thus, closest to our work
in this domain is the ield of hypergraph partitioning (clustering) [16, 19]. Speciically, the ��� problem with
copy-bound � = 1 corresponds to seeking a partition of the vertices that maximizes the weight of (hyper)edges
for which there is a similar set in the partition. Relaxing the copy-bound corresponds to overlapping clusters.
Importantly, this relation between hypergraph clustering and our model is diferent from the more artiicial
relation leveraged in our reductions, where we cluster the hypergraph edges, instead of the vertices. Nevertheless,
our proposed framework difers from existing models in several aspects. Notably, hypergraph clustering typically
studies a multi-way cut problem, intending to minimize the weight of the cut edges. Recently [19] suggested
that there is a beneit in quantifying how an edge is cut, in terms of which subsets of its vertices are clustered
together. Our work is relevant in that respect, as we quantify how similar these subsets are to the original edge.
A work resembling ours in a diferent aspect is [31], where the objective is to maximize the edge weights

inside the cluster (we also maximize the covered łdemandž, instead of the less natural minimization of uncovered
demand). However, the models of [19] and [31] (and many others [10, 18]) are easier to approximate, due to
principal technical diferences (e.g., bounds on the size and number of clusters), and we are not aware of clustering
research that resembles our model or bounds.

8 CONCLUSION

In this paper, we studied the hardness of computing categorizations with a bounded number of possible repetitions,
that best capture a given collection of item sets. We deined a model that captures various practical settings and
proved inapproximability results for multiple variants and special cases. We also provided an algorithm for the
Exact variant with an approximation guarantee that depends on iner input parameters, along with algorithms,
with much improved guarantees compared to the worst case, for various special cases where the cardinality of
the input sets or the number of sets each item belongs to are upper bounded.
An interesting direction for future work would be to identify more special cases that admit improved perfor-

mance. Another intriguing avenue of exploration is determining for cases where we showed Θ̃(
√
�) hardness,

whether one can devise algorithms with matching approximation guarantees or prove stronger bounds.

REFERENCES

[1] [n. d.]. https://export.ebay.com/en/start-sell/selling-basics/seller-fees/fees-optional-listing-upgrades/.

[2] Geir Agnarsson, Magnús M Halldórsson, and Elena Losievskaja. 2013. SDP-based algorithms for maximum independent set problems on

hypergraphs. Theoretical Computer Science 470 (2013), 1ś9.

[3] Rakesh Agrawal, Amit Somani, and Yirong Xu. 2001. Storage and querying of e-commerce data. In VLDB. 149ś158.

[4] Uri Avron, Shay Gershtein, Ido Guy, Tova Milo, and Slava Novgorodov. 2021. ConCaT: Construction of Category Trees from Search

Queries in E-Commerce. In ICDE.

[5] Uri Avron, Shay Gershtein, Ido Guy, Tova Milo, and Slava Novgorodov. 2022. Automated Category Tree Construction in E-Commerce.

In SIGMOD. 1770ś1783.

[6] Nikhil Bansal, Anupam Gupta, and Guru Guruganesh. 2015. On the Lovász Theta function for Independent Sets in Sparse Graphs. CoRR

abs/1504.04767 (2015).

[7] Slobodan Beliga, Ana Meštrović, and Sanda Martinčić-Ipšić. 2015. An overview of graph-based keyword extraction methods and

approaches. JIOS 39, 1 (2015), 1ś20.

[8] Amey Bhangale and Subhash Khot. 2019. UG-hardness to NP-hardness by Losing Half. In CCC.

[9] Yair Caro and Zsolt Tuza. 1991. Improved lower bounds on k-independence. Journal of Graph Theory 15, 1 (1991), 99ś107.

[10] Karthekeyan Chandrasekaran, Chao Xu, and Xilin Yu. 2019. Hypergraph k-cut in randomized polynomial time. Mathematical

Programming (2019), 1ś29.

ACM Trans. Datab. Syst.

https://export.ebay.com/en/start-sell/selling-basics/seller-fees/fees-optional-listing-upgrades/

30 • Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, Slava Novgorodov, Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava

Novgorodov

[11] Shui-Lung Chuang and Lee-Feng Chien. 2004. A Practical Web-Based Approach to Generating Topic Hierarchy for Text Segments. In

CIKM. 127ś136.

[12] Idan Hasson, Slava Novgorodov, Gilad Fuchs, and Yoni Acriche. 2021. Category Recognition in E-Commerce using Sequence-to-Sequence

Hierarchical Classiication. In WSDM.

[13] Thomas Hofmeister and Hanno Lefmann. 1998. Approximating maximum independent sets in uniform hypergraphs. In Proc. of MFCS.

562ś570.

[14] Yi-Hsiang Hsieh, Shih-Hung Wu, Liang-Pu Chen, and Ping-Che Yang. 2017. Constructing Hierarchical Product Categories for E-

Commerce by Word Embedding and Clustering. In IRI. 397ś402.

[15] Anna Huang. 2008. Similarity measures for text document clustering. In NZCSRSC, Vol. 4. 9ś56.

[16] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1999. Multilevel hypergraph partitioning: applications in VLSI

domain. VLSI 7, 1 (1999), 69ś79.

[17] Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo Zhang. 2019. Exactly solving the maximum weight

independent set problem on large real-world graphs. In 2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and

Experiments (ALENEX). SIAM, 144ś158.

[18] Tom Leighton, Fillia Makedon, and SG Tragoudas. 1990. Approximation algorithms for VLSI partition problems. In ISCAS. 2865ś2868.

[19] Pan Li and Olgica Milenkovic. 2017. Inhomogeneous hypergraph clustering with applications. In NIPS. 2308ś2318.

[20] Xueqing Liu, Yangqiu Song, Shixia Liu, and Haixun Wang. 2012. Automatic taxonomy construction from keywords. In Proceedings of the

18th ACM SIGKDD international conference on Knowledge discovery and data mining. 1433ś1441.

[21] Dragoslav S Mitrinovic and Petar M Vasic. 1970. Analytic inequalities. Vol. 1. Springer.

[22] Kunal Punera, Suju Rajan, and Joydeep Ghosh. 2005. Automatically Learning Document Taxonomies for Hierarchical Classiication. In

Proc. of WWW.

[23] Cécile Robin, James O’Neill, and Paul Buitelaar. 2017. Automatic Taxonomy Generation - A Use-Case in the Legal Domain. In LCT.

[24] Lior Rokach and Oded Maimon. 2005. Clustering methods. In Data mining and knowledge discovery handbook. Springer, 321ś352.

[25] Matthew Skala. 2013. Hypergeometric tail inequalities: ending the insanity. arXiv:1311.5939 [math.PR]

[26] Yuyin Sun, Adish Singla, Dieter Fox, and Andreas Krause. 2015. Building Hierarchies of Concepts via Crowdsourcing. In IJCAI 2015.

[27] Lei Tang, Jianping Zhang, and Huan Liu. 2006. Acclimatizing taxonomic semantics for hierarchical content classiication. In Proc. of

KDD. 384ś393.

[28] Eli Upfal. 2005. Probability and computing: randomized algorithms and probabilistic analysis. Cambridge university press.

[29] Quan Yuan, Gao Cong, Aixin Sun, Chin-Yew Lin, and Nadia Magnenat Thalmann. 2012. Category hierarchy maintenance: a data-driven

approach. In SIGIR. 791ś800.

[30] Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and Alexander Smola. 2014. Taxonomy discovery for personalized recommendation. In

WSDM. 243ś252.

[31] Wenxing Zhu and Chuanyin Guo. 2010. Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems.

Research Report, Fuzhou University (2010).

[32] Hai Zhuge and Lei He. 2017. Automatic maintenance of category hierarchy. Future Generation Computer Systems 67 (2017), 1 ś 12.

[33] David Zuckerman. 2006. Linear degree extractors and the inapproximability of max clique and chromatic number. In Proc. of STOC.

681ś690.

Received 27 February 2023; revised 2 October 2023; accepted 2 April 2024

ACM Trans. Datab. Syst.

https://arxiv.org/abs/1311.5939

	Abstract
	1 Introduction
	2 Model
	2.1 Problem definition
	2.2 Similarity functions
	2.3 Examples of Problem Instances

	3 Preliminaries
	4 Hardness of OCTr(T,)
	4.1 Special cases with > 12
	4.2 General threshold parameters

	5 Hardness of Other Variants
	6 Algorithms
	6.1 Reducing to unweighted instances of near-uniform query size
	6.2 Approximation algorithm for the Exact variant
	6.3 Approximation algorithms for variants with bounded multiplicity

	7 Related Work
	8 Conclusion
	References

