
Sentence to Model: Cost-Effective Data Collection LLM Agent
Yael Einy

Tel Aviv University
Israel

yaeleiny@mail.tau.ac.il

Guy Dar
Tel Aviv University

Israel
guy.dar@cs.tau.ac.il

Slava Novgorodov
Tel Aviv University

Israel
slavanov@post.tau.ac.il

Tova Milo
Tel Aviv University

Israel
milo@cs.tau.ac.il

Abstract
We introduce Sentence-to-Model, an automated system that converts
natural language queries into tabular datasets and predictive mod-
els. The system utilizes LLM agents for planning and active learning
to prioritize data collection under budget constraints, such as API
costs and rate limits. By integrating resources, it generates datasets
and trains machine learning models with minimal human inter-
vention. Sentence-to-Model streamlines data collection and enables
the refinement of user needs and easy exploration of the data land-
scape. Our approach highlights the potential of combining LLMs
with algorithmic techniques for efficient data science workflows.

CCS Concepts
• Information systems→ Information integration.

Keywords
Data Enrichment, Data Integration, Large Language Models

ACM Reference Format:
Yael Einy, Guy Dar, Slava Novgorodov, and Tova Milo. 2025. Sentence to
Model: Cost-Effective Data Collection LLM Agent. In Companion of the
2025 International Conference on Management of Data (SIGMOD-Companion
’25), June 22–27, 2025, Berlin, Germany. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3722212.3725134

1 Introduction
Data collection is the backbone of data science and machine learn-
ing. Unfortunately, it requires expertise and reasoning capabilities
which classical algorithms struggle to provide. Often, relevant data
is available online or inside the organizational internal network,
albeit in an unstructured or unorganized way. In recent years, with
the advent of large language models (LLMs), new opportunities
have been unlocked. To enable LLMs to act autonomously in an
external environment, LLM agents [9] emerged. LLM agents use
LLMs as a planning faculty and use tools – search, retrieval, code
execution, and other – as their interface with the external world.

We present Sentence-to-Model, a new automated architecture for
data collection based on LLM agents. The architecture operates

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3725134

by exploring structured and unstructured sources on the web, in
knowledge graphs, and/or by searching in an internal network of an
organization. Our system covers a broad family of data collection
tasks (see Section 2) and is easily extendable. The user inputs a
data collection request (e.g., “create a dataset of NBA players for
predicting their salaries”) and the system outputs two artifacts: the
final dataset and a machine learning model trained on the dataset.
The proposed architecture allows the user to travel automagically
from a data science need to the end of a data science process in the
minimal human effort possible.

Given a user query, our system invokes a pipeline with four
components, as is depicted in Figure 1. The Explorer is a multi-agent
system that explores the web or an organizational network for
sources to scrape information from. Then, the system moves to the
enrichment step. As many data sources are incomplete, we need
to enrich certain rows to improve prediction. The enrichment step
consists of two components. The Prioritizer prioritizes the entities
and returns an ordering of them, ranked by order of importance.
The Extractor then uses the prioritized list to choose the entities to
augment, processing one entity at a time. After enrichment, in the
Modeling stage, a model is automatically trained on the dataset.

The system operates under budgetary constraints for three rea-
sons. First, certain websites have rate limits that prevent scrapers
from sending unlimited queries. If the website contains one page per
entity, we need to choose which entities to extract. Second, the ex-
traction of unstructured data, such as text (for instance, an entity’s
Wikipedia page), is difficult to streamline. To obtain these features
robustly we call an LLM. To keep costs in check, we must set a
cap on the number of calls allowed. Third, we strive to minimize
time costs. For useful deployment, our system must be optimally
responsive and return artifacts in the minimal time possible.

Our system marries the flexible nature of LLMs with algorithmic
approaches from data science. Moreover, other LLM systems might
also benefit from a similar marriage. Prioritization is important for
planning at large, and variants of our approach can be useful for
information-seeking agents in other settings.

The artifacts can be used as-is if the output satisfies the user.
Otherwise, the method can serve to test data hypotheses. The ac-
celerated data collection process opens up new opportunities for
data scientists to perform data collection exploration – a symbiotic
human-machine process of back-and-forth experimentation, which
helps identify the appropriate compromise between data needs and
available data. We can map out where human effort is still required
and/or refine user needs. Finally, the system can provide a summary

https://doi.org/10.1145/3722212.3725134
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3722212.3725134


SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Einy et al.

of artifacts, keep track of data provenance, and propose pointers
for further exploration by manual or automated work.

Demonstration Scenario. Our demonstration will showcase the
application of our system for creating a tabular dataset and training
an XGBoost model. The audience will act as end-users, experienc-
ing the process from querying the system to analyzing results. The
demonstration consists of two parts: (1) querying the system with
predefined or custom queries, such as “predict All-Star Award re-
cipients among NBA players”, and (2) interacting with a dashboard
to explore the generated dataset, statistical summaries, and the
model’s performance metrics.

Algorithm 1 Planner
Require: User query of data collection task 𝑄
Ensure: Initial table T and actionable insights I
1: Initialize data source and insight registries 𝐷, 𝐼 ← ∅
2: Initialize search history with user query 𝐻 ← {𝑄}
3: while not exploration_complete(H) do
4: Refine plan and return tool and query: 𝑇, 𝑞 ← Plan(𝐻 )
5: Execute search and get source candidates 𝐶 = 𝑇 (𝑞)
6: Get (𝐻 ′, 𝐷′, 𝐼 ′) ←Worker(𝐶)
7: Update search history and registries 𝐻,𝐷, 𝐼 by appending

𝐻 ′, 𝐷′, 𝐼 ′.
8: end while
9: Process 𝐻, 𝐼 and decide on final set of insights I
10: Produce table T by joining or choosing a dataset in 𝐷

11: return Consolidated table T and insights I

Algorithm 2Worker
Require: Source candidates to explore 𝐶 from Planner
Ensure: Summary S = (𝐻 ′, 𝐷′, 𝐼 ′) of search journey
1: for each candidate source 𝑑 ∈ 𝐶 do
2: Navigate links and explore related content from 𝑑

3: if 𝑑 is batch-processable then
4: Generate and run extraction script Extract(𝑑)
5: Append to𝐷′ a tuple of the source’s path, description, and

extracted dataset (path, desc, dataset)
6: else
7: Append to 𝐼 ′ an entry (path, description)
8: end if
9: end for
10: Summarize search journey and save to 𝐻 ′
11: return Summary S = (𝐻 ′, 𝐷′, 𝐼 ′)

2 Setup
Input Query. The query specifies a tabular data collection task in

natural language. For concreteness, we concentrate on the family
of data collection tasks that can be described by a 2-tuple (𝐷,𝑇 ),
where 𝐷 is a domain of entities (e.g., “Basketball players” ), and 𝑇 is
a target feature (e.g., “salary” ). Each entity is represented by exactly
one row in the dataset. The query is stated in natural language
rather than a 2-tuple for user convenience at no cost (as the system

Algorithm 3 Extractor

Require: Prioritized list of entities 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}, insights I,
initial table T , budget 𝐵 ∈ N

Ensure: Updated table T
1: Set remaining budget 𝑏 ← 𝐵

2: for each entity 𝑒𝑖 ∈ 𝐸 and 𝑏 > 0 do
3: Select and execute extraction tactic:

• Entangled Sources: Extract features using path and
description

• Search Tools: Search for answer for specific question
on the entity

• LLM Knowledge: Use large language models as a
fallback

4: Update T with results from 𝑒𝑖
5: Incorporate new insights from the task execution: 𝐼 ′ ←

𝐼 ′ ∪ {𝐼 (𝑒𝑖 )}
6: Decrement budget: 𝑏 ← 𝑏 − cost(𝑒𝑖 )
7: end for
8: return updated table T

operates in natural language regardless). This category contains
a large part of the natural tabular data collection tasks. Filtering
criteria can be absorbed into the entity description (e.g., “Basketball
players born after 1980” ). Target transformations can be absorbed
into the target description (“Player’s weight-to-height ratio” ). Our
system is easily adaptable to data collection tasks beyond this scope.

Data Sources. Data sources are divided into two broad categories.
Batched Sources are sources where one page (one web page, one
SPARQL query, etc.) contains features for many entities simulta-
neously. For example, we can generate a DBPedia [2] query that
returns a table with all NBA players and their features. Other exam-
ples include a single webpage that contains a table with multiple
entities. These sources are the most economical, as features for
many entities can be extracted at once. When the Explorer finds
batched sources, it will extract them right away. To avoid relying
on the LLM’s ability to extract features directly, the LLM generates
a scraping code tailored for the source. In the case of a knowledge
graph, the LLM generates the SPARQL query.

Entangled Sources, on the other hand, assume “meta-structure”.
In entangled sources, information is spread across multiple pages,
and each entity requires access to a separate page. For example,
IMDB contains one page per movie. The Explorer does not extract
directly from entangled sources, as this is costly. Instead, it keeps
track of them and leaves them for the Extractor component, which
will refer to specific pages in the source according to prioritization.

3 Technical Overview
3.1 Explorer
The Explorer uses a multi-agent setup to explore knowledge graphs,
web resources, or an organizational network for sources to scrape
information. The flexibility of natural language allows agents to
adapt easily to different environments, as opposed to traditional
software. The Explorer has access to three (types of) tools. Search



Sentence to Model: Cost-Effective Data Collection LLM Agent SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Prioritizer

Find data sources
Construct initial table

Prioritize rows to enrich
Return an ordered list

Complete prioritized rows
Return final table

Create prediction model
Output summary

Extractor Modeling

Explorer
 1

 3

 2

 4

Figure 1: System Overview

Planner

Worker

Search: 
- Web Search
- Knowledge Graph
- Internal Network

Navigate: 
- Analyze results
- Read contents
- Explore links

Navigate, 
Scrape Data, 
Collect Insights, 
Report Back

Scrape: 
- Execute code to 
extract data

Plan, Search, Delegate 

Data Registry Insight Registry

Planner delegates

Worker reports 

Figure 2: Explorer Overview

Tools, including web search (natural language keywords), knowl-
edge graph search (SPARQL queries), and/or an internal network
search engine. The next set of tools is Navigation. Under naviga-
tion, we put the abilities of the agent to interact with the content
it retrieved. The agent can read the contents of a webpage and/or
navigate to another (linked or related) webpage. Scraping – a re-
stricted Python interpreter is provided to the system to execute
scraping scripts. The LLM will not extract the information but will
write a scraping script, as this process is more reliant.

The Explorer’s architecture consists of two agents: The Planner
and its Workers. The Planner chooses which actions to take (where
and what to search). The Worker analyzes the results and sends
a summary of its exploration to the Planner. The summary is ap-
pended to the Planner’s history, which based upon the exploration
history, outputs a new query. The separation of concerns between
the Planner and the Workers has two benefits: (a) It keeps the Plan-
ner’s history short by containing only summaries of explorations;
(b) It allows the Workers to focus on their specific task, which ren-
ders them less prone to distraction. Additionally, the Planner can
spawn multiple Workers in parallel for better efficiency. Schematic
algorithms are provided in Algorithms 1 & 2 is provided. A birdseye
view of the Explorer is given in Figure 2.

3.2 Enrichment
The enrichment process consists of two components with com-
plementary roles. A prioritization algorithm that decides on an
ordering of entities and an extraction agent that executes feature
extraction based on the prioritized list.

The Prioritizer is a prioritization algorithm that decides which
entities are most urgent to explore further. Our algorithm is a
variant of the method presented in [6]. In this paper, we will not
elaborate on the algorithm. In broad strokes, the algorithm trains
a decision-tree model and uses the model’s uncertainty about its
prediction to quantify importance. The more uncertain the model
is about an entity, the higher its urgency. The process incorporates
an online feedback loop to refine the prioritization dynamically.

The Extractor follows the prioritized list to choose which entities
to augment first. It uses a best-effort approach to extract features
for one entity at a time, beginning from the most prioritized entities,
going down the list until its set budget is exhausted. It has a list of
strategies for handling the extraction of features, which may differ
by entity. The algorithm for the Extractor is given in Algorithm 3.

Once the enrichment stage is done, an automatic machine learn-
ing pipeline is run on the final dataset. The model splits the data
into train and validation sets and trains an XGBoost model on the
training set and validates its performance on the validation dataset.

4 Additional Modules
Our proposed system supports extra modules that will not be pre-
sented as part of the demo. However, they are worth mentioning
and are planned to be incorporated in future versions.

Prediction Needs. In this demo, we take a dataset question and
output a prediction model. A further step is to start from a particular
question (“what will be Michael Jordan’s salary next year?” ) and
transform the problem into a dataset problem behind the scenes.

Prediction via Generalization. When data for a task is unavailable,
we may cast the problem as a subset of a general problem. For
example, to predict the election results in Narnia, train on data for
other election races, and predict on the features of Narnia. All steps,
including generalization strategies, can be automated with LLMs.

The Waze of Data Collection. We will request permission from
users to track the journeys taken by Sentence-to-Model on their
requests. By (manually and/or automatically) analyzing the crowd-
sourced data, we will identify common pitfalls and strategies that
we will incorporate into the system’s design.

5 Related Work
Large language models (LLMs) are used in data science to automate
tasks such as feature engineering. Frameworks like [5, 7] employ
LLMs to generate features for tabular data learning, relying on



SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Einy et al.

Figure 3: User Interface Figure 4: Results Dashboard

LLM world knowledge and the existing features. However, these
methods treat LLMs as standalone tools. Our approach integrates
LLMs with external tools for reliable data collection iteratively,
enabling cost-effective automated end-to-end data science.

LLM agents integrate language models with tool-based inter-
actions, enabling autonomous task execution. ReAct [9] uses an
LLM to decide on tool calls based on the outputs of previous calls.
Plan-and-Solve [8] uses the LLM to devise a plan ahead of time to
improve reasoning.

Works in AutoML for data science have largely neglected data
collection [3]. Most works assume a closed-world use case and
therefore can usually avoid open-ended exploration. Symphony [4]
translates keywords into neural embeddings in order to search over
a given data store. Evaporate [1] studies how an LLM can extract
tabular data from unstructured sources in a pre-defined data lake.
However, the process is designed by humans. It usually requires
some pre-defined setup. Here, we seek to automate the exploration
and design decisions from the problem statement alone.

6 Demonstration Scenario
To illustrate the application of our approach, we present a demon-
stration centered on creating a tabular dataset and an XGBoost
model. The conference audience will play the role of a user who
will benefit from the end-to-end experience of our system, start-
ing from the initial query to the generated dataset and the trained
model. The demonstration consists of two primary components: (1)
a user querying the system and exploring alternative queries, and
(2) an interactive dashboard for analyzing the generated dataset
and model performance.

In the first part, the user initiates a query, such as “predict All-
Star Award recipients among NBA players”. We will have a set of
pre-defined queries to speed up the demonstration, but the audi-
ence will be able to write their own queries. Figure 3 provides a
schematic view of this process. We can see a screenshot of an HTML
page that captures the user input along with a concise log of key
milestones. Additionally, the interface suggests alternative sibling
queries that might be more suitable for further exploration, from

a data availability point of view. The user can either proceed with
the original query or select one of the alternatives.

Figure 4 depicts a dashboard that offers an overview of the gen-
erated output. This includes a “peek mode” view of the tabular
dataset, general statistical summaries, and a birdseye visualization
of the XGBoost model’s performance metrics. The audience can in-
teract with the dashboard to examine the data, interpret the model’s
outputs, and identify insights. Finally, the generated model can be
exported as-is for future deployment in the real-world environment.

During the demonstration, wewill explain themechanisms under
the hood of the system and through these components, we plan to
highlights the workflow of constructing a data-driven model while
facilitating user engagement and exploration.

References
[1] Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel,

Immanuel Trummer, and Christopher Ré. 2023. Language models enable simple
systems for generating structured views of heterogeneous data lakes. arXiv
preprint arXiv:2304.09433 (2023).

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. DBpedia: a nucleus for a web of open data. In Proceedings
of the 6th International The Semantic Web and 2nd Asian Conference on Asian
Semantic Web Conference. Berlin, Heidelberg, 722–735.

[3] Rafael Barbudo, Sebastián Ventura, and José Raúl Romero. 2023. Eight years of
AutoML: categorisation, review and trends. Knowledge and Information Systems
65, 12 (2023), 5097–5149.

[4] Zui Chen, Zihui Gu, Lei Cao, Ju Fan, Samuel Madden, and Nan Tang. 2023. Sym-
phony: Towards Natural Language Query Answering over Multi-modal Data
Lakes.. In CIDR.

[5] Yael Einy, Tova Milo, and Slava Novgorodov. 2024. Cost-Effective LLM Utilization
for Machine Learning Tasks over Tabular Data. In GUIDE-AI. Association for
Computing Machinery, New York, NY, USA, 45–49. https://doi.org/10.1145/
3665601.3669848

[6] Aviv Hadar, Tova Milo, and Kathy Razmadze. 2025. Datamap-Driven Tabular
Coreset Selection for Classifier Training. VLDB (2025).

[7] Noah Hollmann, Samuel Müller, and Frank Hutter. 2023. Large Language Models
for Automated Data Science: Introducing CAAFE for Context-Aware Automated
Feature Engineering. In NeurIPS.

[8] Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and
Ee-Peng Lim. 2023. Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-
Thought Reasoning by Large Language Models. In Annual Meeting of the Associa-
tion for Computational Linguistics.

[9] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2022. ReAct: Synergizing Reasoning and Acting in Language
Models. ArXiv abs/2210.03629 (2022).

https://doi.org/10.1145/3665601.3669848
https://doi.org/10.1145/3665601.3669848

	Abstract
	1 Introduction
	2 Setup
	3 Technical Overview
	3.1 Explorer
	3.2 Enrichment

	4 Additional Modules
	5 Related Work
	6 Demonstration Scenario
	References

