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Abstract

Category trees, or taxonomies, are rooted trees where each node, called a category, corresponds to a
set of related items. The construction of taxonomies has been studied in various domains, including
e-commerce, document management, and question answering. Multiple algorithms for automating
construction have been proposed, employing a variety of clustering approaches and crowdsourcing.
However, no formal model to capture such categorization problems has been devised, and their
complexity has not been studied. To address this, we propose in this work a combinatorial model
that captures many practical settings and show that the aforementioned empirical approach has
been warranted, as we prove strong inapproximability bounds for various problem variants and
special cases when the goal is to produce a categorization of the maximum utility.

In our model, the input is a set of n weighted item sets that the tree would ideally contain as
categories. Each category, rather than perfectly match the corresponding input set, is allowed to
exceed a given threshold for a given similarity function. The goal is to produce a tree that maximizes
the total weight of the sets for which it contains a matching category. A key parameter is an upper
bound on the number of categories an item may belong to, which produces the hardness of the
problem, as initially each item may be contained in an arbitrary number of input sets.

For this model, we prove inapproximability bounds, of order Θ̃(
√

n) or Θ̃(n), for various problem
variants and special cases, loosely justifying the aforementioned heuristic approach. Our work
includes reductions based on parameterized randomized constructions that highlight how various
problem parameters and properties of the input may affect the hardness. Moreover, for the special
case where the category must be identical to the corresponding input set, we devise an algorithm
whose approximation guarantee depends solely on a more granular parameter, allowing improved
worst-case guarantees. Finally, we also generalize our results to DAG-based and non-hierarchical
categorization.
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1 Introduction

Category trees, or taxonomies, are rooted trees where each node corresponds to a labeled
category defined as a set of related items. Each non-leaf category is more general than its
descendants and contains the union of their item sets. Moreover, each item may typically
appear in a bounded number of tree branches. Such trees enable browsing-style information
access and play a central role in Web platforms. While taxonomists can identify many desirable
categories, producing a single categorization in a compact structure to maximize a given
utility measure is challenging. Therefore, multiple algorithms for automating construction
in various domains, e.g., e-commerce [3, 12], document management [10], and question
answering [24], have been proposed, employing a variety of clustering approaches, and
crowdsourcing [10, 21]. However, to our knowledge, the complexity of this problem has not
been studied w.r.t. a formal model, and solution evaluations were based on user-studies or
a similarity score of the tree categories to a collection of desired categories [17, 10, 18], to
measure how well these are captured by the much more succinct solution. Based on the latter
evaluation method, we propose a model that captures practical settings and show that the
aforementioned heuristic approach has been warranted, as we prove strong inapproximability
bounds.

Before describing our results, we first define the formal setting.
Model. The input is a set of n sets of items. The solution space consists of rooted

trees (we also examine other structures, as described in the sequel). Each node (category)
corresponds to a set of items (not necessarily identical to any set in the input), and every
non-leaf category contains the union of all the items of its descendants. Ideally, the tree would
have, for every input set, a category that is very similar to it. Each input set is weighted to
reflect how valuable it is for a solution to contain a matching category. In practice, an input
set represents items that match some criteria a user may have in mind when performing a
search, and its weight implies the predicted likelihood of seeking these criteria. The sets
are derived from a dataset of result sets to search queries, or, more generally, are formed by
grouping items w.r.t. shared properties.

This model has multiple variants, defined by two parameters. The first parameter is
a similarity function, which measures the similarity of an input set and a category. We
examine several variations of commonly used set-similarity functions, which extend the
original function with a threshold parameter. A similarity score below this parameter is
rounded down to 0, to capture the fact that, when the similarity score is too low, no category
is identifiable by the user as a matching category, and has no utility. Given such a function,
the tree score for a given input set is the maximum similarity score of any category for this
set. The overall tree score is the weighted (w.r.t. input weights) sum of the scores for all the
input sets. The goal is to produce a tree of the highest score.

The second parameter is a copy-bound, which limits the number of independent categories
any item can belong to, where categories are called independent if no two are on the same
path from the root to a leaf. Most real-life platforms set a low copy-bound, to ensure that
the categorization is coherent, compact, and easy to navigate. For example, eBay allows
listing an item in a single (lowermost) category for free, or two categories for an extra fee [1].

Our bounds also apply to the related problems, where the aim is to produce a flat
categorization or more general DAG structures. Flat categorization may be of independent
interest, as it also captures the setting where one seeks, given a collection of overlapping sets,
a partition that is maximally similar to the original collection. This may be particularly
relevant for clustering and partitioning problems in hypergraphs (see Section 7).
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Results. For the optimization problem of maximizing the tree score (as defined above),
we prove for all examined variants an inapproximability bound of Θ̃(

√
n) or Θ̃(n), where

n is the number of input sets, highlighting how different problem parameters may affect
the hardness. These bounds also apply to unweighted inputs and various special cases. On
the other hand, we show that finer properties, such as bounds on the cardinality of input
sets or the number of intersections among sets, aid in deriving more relaxed parameterized
hardness bounds. To that end, we also provide a positive result in the form of an algorithm
for the Exact variant, where a category must match an input set exactly to contribute to the
objective function. The tight performance guarantee of this algorithm depends only on a
parameter that measures the number of intersections between the input sets. Importantly,
we reduce this variant to the Maximum Independent Set problem, for which, despite its
inapproximability, practical solvers have been devised. We demonstrate the practical utility
of this result, in [4] and [5], complementary works focusing on constructing an e-commerce
category tree that is maximally similar to result sets of user queries. In these works, we show
that leveraging these solvers enables finding optimal solutions to real-world instances and
extend this approach to algorithms that solve well instances of more general variants.

An essential component in our methods is defining a generalized similarity function with
two threshold parameters that address two more granular similarity measures: precision and
recall. Our key results consist of reductions from the Maximum Independent Set problem
in hypergraphs, where we integrate into the reduced instance randomized constructions
that closely capture the precision and recall parameters. This not only enables us to derive
improved results for more subtle special cases but also to capture more refined properties of
hard inputs, which we then leverage to prove hardness w.r.t. other similarity functions (we
outline how to schematically apply our arguments to derive hardness bounds for similarity
functions not examined here).

While we are not aware of any theoretical results directly comparable to ours, Section 7
discusses motivating empirical research and possible applications to hypergraph partitioning.

Lastly, we note that the complementary problem of labeling the resulting categories has
been studied in various settings (e.g., [6]), and is outside the scope of our model.

Outline. Section 2 provides the necessary formalism for our model, while Section 3
presents useful theoretical tools. In Section 4 we provide a positive result for a common
problem variant. In Section 5 we prove various approximation hardness results derived w.r.t.
the generalized similarity function (with recall and precision thresholds). In Section 6 we
leverage these results to derive hardness bounds w.r.t. all other similarity functions defined
in Section 2. The related work appears in Section 7 and we conclude in Section 8.

For readability, we defer all formal proofs to the appendix, and instead present in the
main paper proof sketches and intuition.

2 Model

We now define the model underlying our work, followed by a discussion of problem parameters.
We conclude this section with illustrative examples of problem instances in our model.

2.1 Problem definition
The two problems we study are the Optimal Category Tree problem (OCT ) and the Optimal
Category Partition problem (OCP ). The input to both problems is ⟨Q, U, W ⟩, where Q ⊆ 2U

is a set of n sets over a finite universe U , and W : Q → [0, 1] is a weighting function that
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assigns a non-negative weight to each set in Q. We use the term query, to denote each set
in Q. Note, in advance, that in the definition of the model we discuss two types of element
sets: the queries and the sets corresponding to the tree nodes. In general, these sets are
not identical (however, these are typically similar, as the objective is, roughly speaking, to
maximize the similarity of the two types of sets, as defined formally below).

Both problems have multiple variants defined by two parameters (explained below,
in the context of the solution space): a copy bound r ∈ N, and a similarity function
S : [2U ] × [2U ] → [0, 1]. We denote by OCT r(S) the r-copy OCT problem with similarity
function S, and the analogous OCP variant is denoted by OCP r(S).

We next formally define the solution space for each of the two problems. We start with
OCP r(S), as it is a simpler form of the model for OCT r(S).

OCP. We call a set of sets over U an r-weak partition, if every element appears in at
most r sets. A 1-weak partition is a standard partition. The solution space of OCP r(S)
consists of all r-weak partitions of U . Any such solution is termed as a category partition,
denoted by P , with the sets contained in it termed as categories.

Given a query, q ∈ Q, and a category partition, P , we define the similarity score of a
category C ∈ P for q as S(q, C). The score of P for this query is defined by the category that
most closely matches the query as S(q, P ) = maxC∈P S(q, C). Note that the root of the tree,
as it is a valid category, may also be the most closely matching category for some queries.
The overall score of the category partition is defined as S(Q, P ) =

∑
q∈Q W (q) · S(q, P ).

This score is the weighted sum of the scores for all queries, where the weight of each score
is the corresponding query weight. The objective of the OCP r(S) problem is to produce a
category partition of the maximum score: arg maxP S(Q, P ).

OCT. The solution space of OCT r(S) consists of rooted trees, termed category trees,
where every tree node, termed category, contains a subset of U . We abuse notation, and, when
clear from context, we use T to denote both the category tree and the set of its categories.
Similarly, we use C to denote a category as well as the set of elements it contains.

A category tree must satisfy the following two requirements. First, every non-leaf category
contains the union of the sets of elements contained by its child categories (and possibly
other elements). The root of the tree, thus, contains all the elements that appear in any
category. Second, for each element e ∈ U there are at most r semi-leaves w.r.t. e, where
the semi-leaves w.r.t. e are the most specific categories to which e belongs (i.e. none of
the descendants of any such semi-leaf contain e). Note that for a category tree, unlike a
category partition, it is no longer true (nor desirable) that an element is contained in at most
r categories. Even for r = 1, if an element is contained in some category in the tree, it must
also be contained in all its ancestor categories. Therefore, the copy-bound is applied to the
number of semi-leaves w.r.t. any given element, with the only other nodes containing the
element being all the ancestors of these semi-leaves. For r = 1 this requirement implies that
any given element in the tree is contained only in categories that are all on the same branch.

All definitions of relevant scoring functions are analogous to OCP r(S). Concretely, the
score of a tree, T , for a query, q, is defined as S(q, T ) = maxC∈T S(q, C). The overall score
of T is S(Q, T ) =

∑
q∈Q W (q) · S(q, T ). When Q is clear from context, we use the shorthand

S(T ). The objective of the OCT r(S) problem is to produce arg maxT S(Q, T ).
Unweighted variants. We refer to the special case of OCT (OCP ) where all weights are

uniform as unweighted OCT (OCP ) and set all weights to 1. Our hardness proofs leverage
unweighted inputs, and therefore our hardness bounds also apply to the unweighted case.
Accordingly, in our hardness discussions, the reader may assume this context. We directly
use weights only in the upper bound we provide in Section 4.
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2.2 Similarity functions
We study several similarity functions, that are dependent (in some cases, implicitly) on
the following two underlying similarity measures, precision p(q, C) = |C∩q|

|C| and recall
r(q, C) = |C∩q|

|q| . We distinguish between cutoff functions and threshold functions. Both have
a threshold parameter δ ∈ (0, 1] and use an underlying similarity function f . In both cases,
the function outputs 0 when f(q, C) < δ. However, when f(q, C) ≥ δ a cutoff function equals
f(q, C), whereas a threshold function equals 1. We first focus, however, on the following,
more general, threshold function, which sets a separate threshold for each measure.

▶ Definition 1 (Granular threshold function). Given parameters α, β ∈ [0, 1], the granular
threshold similarity Tα,β of a query q and category C is defined as follows: Tα,β(q, C) = 1
when p(q, C) ≥ α and r(q, C) ≥ β, and Tα,β(q, C) = 0 otherwise.

We will also study the common similarity functions defined below.

▶ Definition 2 (Jaccard similarity). The Jaccard similarity of a category C and a query q

is defined as J(q, C) = |q∩C|
|q∪C| . The threshold Jaccard similarity, with threshold parameter

δ ∈ (0, 1], is defined as Ĵδ(q, C) = 1 when J(q, C) ≥ δ and Ĵδ(q, C) = 0 otherwise. The
cutoff Jaccard similarity, with threshold parameter δ ∈ (0, 1], is defined as J̄δ(q, C) = J(q, C)
when J(q, C) ≥ δ and J̄δ(q, C) = 0 otherwise.

▶ Definition 3 (F1 score). The F1 score of a category C for a query q is defined as the
harmonic mean of the precision and the recall: F1(q, C) = 2 p(q,C)·r(q,C)

p(q,C)+r(q,C) . The threshold
F1 score, with parameter δ ∈ (0, 1], is defined as F̂1(δ)(q, C) = 1 when F1(q, C) ≥ δ and
F̂1(δ)(q, C) = 0 otherwise. The cutoff F1 score, with threshold δ ∈ (0, 1], is defined as
F̄1(δ)(q, C) = F1(q, C) when F1(q, C) ≥ δ and F̄1(δ)(q, C) = 0 otherwise.

Cover terminology. If a category C has the highest score for a query q (if necessary,
ties are broken arbitrarily), and that score is not 0, we say that C covers q. We call a
category that covers at least one query a covering category, and a branch containing a
covering category is a covering branch. A set of categories is independent if no two categories
are on the same branch (OCP categories are independent). Similarly, a set of queries are
independently-covered, if each is covered by a different category, and the covering categories
are independent. Observe that in unweighted instances (where, as noted earlier, all weights
are assumed to be 1) with threshold functions the score equals the number of covered queries.

Note that, all functions defined above share the special case of T1,1 (Definition 1) (equi-
valent to setting δ = 1 in Definitions 2 and 3), where a query q is covered by a category C

only if q = C. We refer to this variant as the Exact variant.
Canonical form. Any category tree can be reduced to a canonical form, without

decreasing the score, by (1) removing non-covering categories, (2) connecting the parent and
children of any removed category, and (3) removing from category C and its descendants
any element not contained in any query covered by C or categories below C (this may even
improve the precision and the score). If a query is covered by multiple categories, one can
assign arbitrarily a single category that is said to cover it, and then reduce it to a canonical
form, as described above, w.r.t. this assignment. Similarly, adding new categories that do not
affect the contents of the existing categories cannot decrease the tree score. This discussion
applies analogously to category partitions.

Choices of parameters. For practical applicability, we focus on variants where r = Θ(1)
and the similarity functions have threshold parameters. A low copy-bound ensures a concise
categorization, and in many platforms, r is a small constant, typically, 1 (e.g., [1]). This
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Input:
U = { a, b, c, d, e, f, g, h, i }

Q = { q1, q2, q3, q4 }
q1 = { a, b, c, d, e}
q2 = { a, b }
q3 = { c, d, e, f }
q4 = { a, b, f, g, h, i } 

W(q1) = 2
W(q2) = 1
W(q3) = 1
W(q4) = 1

a b c d e f

a b c d e fC3

C1

C4

a b c d e f g h i

g h i

Root

C2

a b c d e f g h i

a b c d e f g h i

a b c d e

Root

C1 C2

C3 C4

T1 - optimal solution for 
S(Q, T1) = 4

T2 - optimal solution for 
S(Q, T2) = 4 ⁵⁄₁₂

Figure 1 Optimal solutions for two OCT variants over the same input (where, for simplicity, the
input weights are not normalized), depicted on the left side. The category tree, T1, is an optimal
solution for the OCT 1(T0.8,1) variant, where C1 covers q1, C3 covers q2, and C4 covers q3, with the
overall score of W (q1) + W (q2) + W (q3) = 4. The rightmost tree, T2, is the optimal solution for the
cutoff Jaccard variant with δ = 0.6, where C1 covers q1 with the score of 1, C2 covers q4 with the
score of 2

3 , C3 covers q2 with the score of 1, and C4 covers q3 with the score of 3
4 , resulting in the

overall score of W (q1) · 1 + W (q2) · 1 + W (q3) · 3
4 + W (q4) · 2

3 = 4 5
12 .

parameter controls the trade-off between the score and the conciseness, and our parameterized
bounds hint at a quantification of this trade-off. Threshold parameters capture the fact that,
below a certain similarity score, a category has no utility. Without thresholds, trees that
cover unacceptably poorly all queries may be mathematically preferable to trees that cover
well a smaller number of queries. Nevertheless, to capture more tolerant settings, we also
provide approximation bounds for polynomially small threshold parameters.

We also note that, in practice, errors in precision and recall have an asymmetric effect.
For example, perfect recall with precision of 1

2 , enables the user to examine all relevant
items to identify the best matches, while ignoring every other item. This may be acceptable,
especially for smaller categories. However, in the analogous case of perfect precision and recall
of 1

2 , other categories may or may not contain better matching items, and the user might
waste time looking for non-existing or hard-to-find categories or be unaware of better options.
It may, therefore, be tempting, in some applications, to require perfect recall. To that end,
we examine this case separately and show that it admits the strictest inapproximability.

More generally, there exists a key tension between the recall and precision thresholds.
Consider, as an extreme example, a recall threshold of 1, and a precision threshold of 0 (i.e.,
perfect recall with no precision requirement). For this variant, a tree consisting only of a
root that contains all the elements is an optimal solution. At the other extreme, if we require
perfect precision with no constraint on the recall, then an optimal solution is a tree where
there is a leaf for each element, containing only that element, and a root connected directly to
all the leaves. This provides some intuition: high precision thresholds lead to more granular
trees with smaller covering categories, whereas high recall thresholds generally enforce larger
covering categories. These properties are formalized and leveraged in our hardness proofs.

2.3 Examples of Problem Instances
We illustrate the OCT setting with r = 1 via the following toy examples, depicted in Figure
1. The figure presents two optimal solutions, computed by brute-force, corresponding to
two different OCT variants, over the same input, provided on the left side. For convenience,
as it is easier to perform arithmetic with integers, we provide integer weights, instead of
normalizing into [0, 1], since the normalization of the weights and scores does not affect the
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complexity of the problem or the performance ratio of the various solutions.
Observe that the overall weight of all four queries is 5, hence this is also an upper bound

on the score of any tree for any variant over this input. In addition, observe that, since r = 1,
we cannot add any branches to either of the depicted trees, without violating the copy-bound
constraint.

▶ Example 4. The tree T1, depicted in the middle of the figure, is the optimal solution for
the OCT 1(T0.8,1) variant (i.e. precision 0.8 and perfect recall). The categories C3 and C4
cover the queries q2 and q3, respectively, as they are identical to these queries (and would
cover them even for α = 1). The category C1 covers q1 as its recall score is 1, and 5 out of
the 6 items in C1 are in q1, hence the precision is 5

6 > α. Note that, we must include f in C1
since it appears in C4, and removing f from both categories, would result in C4 no longer
covering q3. Moreover, there is no incentive to place f elsewhere, since the score, when using
a binary function, is not penalized for precision errors if the threshold is exceeded.

As for the category C2, its addition to the tree is optional, since it does not cover any
query, despite all its items belonging to the uncovered query, q4, as we can no longer achieve
perfect recall without the items {a, b, f}. It is easy to verify that there is no way to cover q4
by adding a matching category above or below C1, such that the items {a, b, f} would be
shared by all categories, without decreasing the precision of other queries to values below
the threshold.

▶ Example 5. We next discuss, T2, the optimal solution for OCT 1(J̄0.65), the cutoff Jaccard
variant with δ = 0.65, depicted on the right side of Figure 1. It overlaps with T1, except
for the item f , which is placed in C2 instead of C4 and C1. In this case, compared to the
previously examined variant, since Jaccard variants allow for errors in both precision and
recall, and also since we use a lower threshold, it is now possible to cover all queries, albeit
with imperfect scores. Indeed, every non-root category in T2 covers a query, as explained
in the figure. Moreover, q1 is the query of the maximal weight, hence it is not surprising
that the optimal tree covers it with a perfect score, at the expense of errors in the covers of
less significant queries. We note that, in practice, the same category often covers multiple
queries. For instance, if we decrease the threshold from 0.65 to 0.4, then C1 would also cover
q2, as its precision w.r.t. q2 is exactly 0.4.

3 Preliminaries

We provide here known results and definitions, that we will use in our hardness proofs.
We conclude the section by explaining how proofs are tailored to fit both OCT and OCP

simultaneously, and discuss generalizing a tree to a DAG.
Notation. To simplify the presentation, we use a “soft-omega” notation, Θ̃(·), to hide

sub-polynomial factors. Whenever we state that a variant has inapproximability of Θ̃(nc),
for some constant c ∈ (0, 1], this compact notation implies the more formal argument that,
for any ϵ > 0, this variant cannot be approximated within a factor of O(nc−ϵ). We note that
a solution of score 1 can always be achieved by producing a single category that equals one of
the queries (for differently weighted queries we will specifically select the query of the highest
weight). Thus, Θ̃(n) is the strictest possible inapproximability factor, using this notation.

Complexity Assumptions. We next define the complexity class ZPP , as some of
our results use the assumption ZPP ̸= NP . It is known that P ⊆ ZPP ⊆ NP and that
ZPP ⊆ BPP , where BPP is the class of problems solvable by a randomized PTIME
algorithm with a two-sided error.
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▶ Definition 6. The complexity class ZPP contains the problems for which there is a PTIME
algorithm that outputs DO NOT KNOW with a probability of less than 1/2, and outputs the
correct answer with the remaining probability.

MIS. We leverage reductions from the Maximum Independent Set problem (MIS) in
uniform hypergraphs. In an r-uniform hypergraph, all (hyper)edges are vertex subsets of
cardinality r. The special case of r = 2 is a graph.

▶ Definition 7. In the Maximum Independent Set problem (MIS) in uniform hypergraphs,
the input is a uniform hypergraph G = (V, E), and the objective is to find a vertex set S ⊆ V

of maximum cardinality, subject to the constraint that no edge from E is contained in S.

We have made use of the following known results for MIS, where n = |V |.

▶ Theorem 8. [11] The MIS problem in r-uniform hypergraphs, for constant r ≥ 2, cannot
be approximated below a Θ̃(n) factor, unless ZPP = NP .

▶ Theorem 9. [27][7] The MIS problem in graphs has inapproximability of Θ̃(n), unless
P = NP . Moreover, for graphs of sufficiently large constant degree bound d, MIS is hard to
approximate below a Θ( d

log2 d
) factor, unless BPP = NP . Furthermore, MIS is NP -hard

even for regular graphs of degree 3.

▶ Theorem 10. [8] For r-uniform hypergraphs with (not necessarily constant) maximum
degree d, there exists a PTIME algorithm producing an independent set of size Ω( n

d
1

r−1
).

From Theorem 10, we derive the following lemma.

▶ Lemma 11. Given an r-uniform hypergraph G = (V, E), there exists a PTIME algorithm
that produces an independent set in G of size Ω(( |V |r

|E| )
1

r−1 ).

Proof of Lemma 11. The average degree of G is d̄ = r|E|
|V | . Let V1 ⊆ V denote the set of

vertices in G whose degree is at most d = 2d̄. A simple counting argument implies that
|V1| ≥ |V |

2 . Consider the sub-hypergraph G1 of G induced by V1. Computing G1 is the first
step of the algorithm.

In the second and last step, we apply over G1 the algorithm from Theorem 10, which
produces an independent set S. By Theorem 10, the size of this independent set is

|S| ≥ Ω(
|V |
2

d
1

r−1
) = Ω( |V |

( r|E|
|V | )

1
r−1

) = Ω(( |V |r

|E|
)

1
r−1 ).

◀

Hard instances of MIS. When reducing from MIS, we will restrict ourselves to
instances where the optimal solution is of size Θ̃(n). The Θ̃(n) inapproximability of MIS

implies that this subset of inputs captures the maximal hardness. Accordingly, in our
reductions, assuming this hard set of inputs, we will leverage the fact that one cannot find
(in the worst case) an independent set of size Ω(nϵ) for any ϵ > 0.

Probabilistic Tools. We next define the Hypergeometric and Binomial distributions
and present known tail bounds for both. These are useful in the analysis of our randomized
reduction.

▶ Definition 12. Consider sampling without replacement n uniformly random and independent
samples from a set of N elements containing K special elements, and let X denote the number
of special elements in the sample. Then, X is a hypergeometric random variable, denoted as
X ∼ H(N, K, n), and its probability mass function is Pr (X = i) = (K

i )(N−K
n−i )

(N
n) .
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▶ Definition 13. Consider performing n independent experiments with success probability p.
Let X denote the number of successful experiments. Then, X is a binomial random variable,
denoted as X ∼ B(n, p), with probability mass function is Pr(X = i) =

(
n
i

)
pi(1 − p)n−i.

We use the following tail-bound for the hypergeometric distribution.

▶ Lemma 14. [20] If X ∼ H(N, K, n), as defined in Definition 12, and letting u = K
N , then,

for t > 0:

Pr(X ≥ (u + t)n) ≤ (( u

u + t
)
u+t

( 1 − u

1 − u − t
)
1−u−t

)
n

.

We also use the following Chernoff bound for the binomial distribution.

▶ Lemma 15 (Chernoff Bound). [23] If X ∼ B(n, p), as defined in Definition 13, then,
denoting the expectation µ = np, for δ ≥ 1:

Pr(X > (1 + δ)µ) < ( eδ

(1 + δ)1+δ
)
µ

.

OCP and DAGs. Finally, we explain how our hardness reductions for OCT were
devised to also apply for OCP , as well as for the more general problem where one is allowed
to produce a rooted DAG with analogous combinatorial constraints. Thus, while the hardness
analysis focuses on OCT , the bounds apply for the above two problems as well.

Loosely speaking, an algorithm that produces a tree has all the capabilities it would need
for producing a similar-score partition, along with several additional possibilities to increase
the score. Hence, in our analysis, by bounding what is possible for constructing a tree, we
also bound what is possible for constructing a partition.

Concretely, observe that, over any given input, any category partition can be transformed
into a category tree of the same score, by connecting all the categories to a root. In particular,
over any given input, the optimal score, that can be achieved by a category partition, cannot
exceed the optimal score by a category tree. Importantly, in all examined variants, we
ensure that our hardness bounds are derived over a subset of inputs for which there exists a
category tree whose leaf categories induce a category partition of score Θ̃(n), implying that
the optimal score of both problems is of at least this order, which is roughly maximal (the
score for any input cannot exceed n = |Q|). It follows that all our approximation hardness
bounds for OCT hold for OCP as well.

We note that our hardness proofs also apply to the more general problem where instead
of a tree, one is allowed to produce any rooted DAG, maintaining the requirements that a
category must contain all its descendants and for each element e there are at most r different
paths from the root to a semi-leaf w.r.t. e (recall that a semi-leaf w.r.t. e is a most specific
node to which e belongs). This follows from the fact the any such DAG can be converted to
a valid tree solution, by removing edges, which does not affect the score.

4 Approximation Algorithm for the Exact Variant

Before diving into the hardness analyses, we provide a positive result based on PTIME
approximation algorithms for the Exact variant of (weighted) OCT 1(T1,1) and OCP r(T1,1).
Note that for OCT the algorithm applies when r = 1, while for OCP it applies to any
constant r. The Exact variant is of special interest because it is a special case of all variants
pertaining to all examined similarity functions, where the error threshold is δ = 1 (or
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α = β = 1 for Tα,β). We note that in [4] we show empirically that this algorithm can solve
real-world instances optimally, using as a subroutine modern weighted MIS solvers, and
extend it to algorithms suited for the more general OCT variants. Moreover, as mentioned,
the requirement r = 1 is the most prevalent in practice.

In Theorem 17 we prove that it is NP -hard to approximate this variant below a Θ̃(n)
factor. Hence, one cannot provide any non-trivial approximation guarantees for the general
case. Nevertheless, we devise an algorithm with an optimal approximation guarantee of Õ(D̄),
where D̄ ∈ [0, n], referred to as the average (weighted) degree of the input, is a parameter
relating to the number of intersections among the queries. Formally, we define a conflict as
any pair of queries that intersect and neither is a subset of the other (for OCP only the
former condition is relevant). The degree d(q) of a query q ∈ Q is defined as the number of
conflicts in the input that contain q. The average degree is the weighted average of all query

degrees in the input. That is, D̄ =
∑

q∈Q
W (q)·d(q)∑

q∈Q
W (q)

.

The proof of the following theorem and the description of the algorithms, which are based
on the connection to the weighted MIS problem, are deferred to the appendix.

▶ Theorem 16. There exist Θ̃(D̄)-approximation algorithms for OCT 1(T1,1) and OCP r(T1,1).
This factor is optimal (up to negligible factors), unless P = NP .

The result above shows that the approximation hardness is strongly dependent on the
average number of intersections between queries, and indeed, in the subsequent hardness
analysis, the only practical bound corresponds to a special case where Õ(D̄) is low (Theorem
17).

We remark that in all examined eBay datasets the average degree did not exceed log n,
even for high values of the maximum degree. However, we leave an in-depth empirical
evaluation along with devising algorithms for other problem variants to future work.

5 Hardness of OCT r(Tα,β)

In this section, we prove approximation hardness bounds on OCT r(Tα,β) for various ranges
of the threshold parameters. We first provide a reduction from MIS to OCT r(Tα,β) where
α = Θ(1) and β > 1

2 , proving Θ̃(n
1

r+1 ) inapproximability (n is the number of queries, and
r is the copy-bound), unless ZPP = NP . For the special case of OCT r(Tα,1) we improve
this bound to Θ̃(n). For r = 1, we strengthen these bounds by using a weaker theoretical
assumption and also provide a bound for the case of queries of bounded size.

To prove that the Θ̃(n
1

r+1 ) inapproximability extends to the case where β ≤ 1
2 , we use a

more involved randomized reduction, and also provide an analysis that captures sub-constant
ranges of the threshold parameters to derive a Θ̃((α(r+2)βn)

1
r+1 ) inapproximability bound.

The remainder of this section consists of two subsections, pertaining to the two reductions.
Each subsection is further divided into the reduction from MIS, the hardness results it
implies, and the intuition underlying the proof. We also explain why different reductions
were necessary. All formal proofs are deferred to the appendix.

5.1 Special cases with β > 1
2

We now describe and analyze the first reduction.
Reduction from MIS. Given an algorithm for OCT r(Tα,β), denoted by A, with a

(worst-case) approximation guarantee of γ, we devise an algorithm R = RA for MIS in
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(r + 1)-uniform hypergraphs. We compute a lower bound on the size of the independent set
(IS) that R produces as a function of the approximation guarantee γ. This implies a lower
bound on γ, below which R would produce an IS of size Θ(poly(n)) (n is the number of
vertices in the hypergraph), contradicting the hardness of MIS.

The algorithm R consists of a sequence of three procedures, R1, R2, and R3:
1. Given an (r + 1)-uniform hypergraph, G = (V, E), R1 transforms it into an instance Q of

OCT r(Tα,β). The universe of elements for Q consists of three types of elements: an edge
element for every edge in E, padding elements, and 1−β

2β−1 nr joint elements. Specifically,
for each vertex v ∈ V , we construct a query, qv, such that Q = {qv | v ∈ V }. Every
query contains all the joint elements. Moreover, each query, qv, also contains all the edge
elements that correspond to edges incident to v in G. Finally, we add to every query
as many unique padding elements as necessary, such that the size of the query is nr

2β−1 .
Every padding element appears in only one query. It follows that every query contains
1−β

2β−1 nr joint elements and β
2β−1 nr non-joint elements.

2. R2 consists simply of running A over Q. Let T denote the category tree A outputs.
3. R3 produces an IS S ⊆ V , as follows. Let Ĉ denote the set of categories that consists of

the lowest (closest to the leaves) covering category of every covering branch in T . Let
Q̂ denote a set of queries constructed by selecting arbitrarily from every category in
Ĉ a single query that it covers. Observe that Q̂ is an r-weak partition. We denote by
V̂ = {v ∈ V | qv ∈ Q̂} the set of vertices that corresponds to the queries in Q̂, and denote
by Ĝ the sub-hypergraph of G induced by V̂ . R3 computes Ĝ and applies over it the
algorithm from Lemma 11, producing an IS S, which is the final output.

For simplicity, we ignore rounding issues, as rounding the parameters to the nearest
rational fraction has a negligible effect, and the number of vertices, n, can be manipulated
by adding vertices that are connected to all other vertices.

Hardness bounds. The construction above implies the following hardness bounds.

▶ Theorem 17. The OCT r(Tα,β) problem, with constant α ∈ (0, 1] and β > 1
2 , cannot be

approximated below a Θ̃(n
1

r+1 ) factor, unless ZPP = NP . For OCT r(Tα,1) this is improved
to Θ̃(n). For r = 1 these bounds hold for the assumption P ̸= NP . Moreover, OCT 1(Tα,1)
with maximum query size d = Θ(1) is hard to approximate below a Θ̃(αd) factor, unless
BPP = NP . Lastly, OCT 1(T1,1) is NP -hard even when all queries are of size exactly 3.
The bounds for OCT 1(Tα,1) hold even when query intersections are of cardinality at most 1.

We explain below the intuition underlying the reduction and the proof outline.
Intuition. When β = 1, there are no joint elements, and each query consists of all the

relevant edge elements along with padding elements that ensure its size is exactly nr. In the
Exact variant, every covering branch in T covers exactly one query, and this independently-
covered set of queries corresponds to a set of vertices that is independent in G. Therefore, if
T covers poly(n) queries, we can find an IS of the same size in G.

When relaxing the precision threshold, α, it becomes possible for the same branch to cover
multiple queries. As we want to select one query from each branch to ensure independence,
it may no longer be the case that the number of covering branches is of the same order as
the solution. Nevertheless, on every covering branch, the covering category C closest to the
root must contain all elements of all covered queries on the same branch. If there are many
such queries, then C would not satisfy the precision requirement. Intuitively, a branch can
cover no more than O( 1

α ) = O(1) queries. It follows that the set of independently-covered
queries, Q̂, is of the same order as the score of the tree in this case as well.
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Matters are more complicated when the recall threshold β is also relaxed. It is no longer
the case that an independently-covered set of queries corresponds to an IS. It is now possible
for (r + 1) such queries to correspond to an edge in G, as the cover of at least one of these
queries can avoid containing that edge-element. Without including joint elements in the
reduction, the cover of every query could omit a constant fraction of the edge elements, which
amounts to O(nr+1) edge elements, such that a large independently-covered set of queries
could correspond to even a very dense subgraph in G.

To that end, we show that a cover of a query must include a joint element per every
omitted edge element. Since all queries share the joint elements, this hinders the ability of
covers in other branches to omit edge elements. It follows that the total number of edges in
a subgraph corresponding to an independently-covered set of queries contains at most O(nr)
edges which is the total number of joint elements. Therefore, a tree of high score would
correspond to a large vertex set which is also sparse. From this “almost IS” we can derive a
somewhat smaller, but still polynomial-sized, IS, using Lemma 11.

Adding joint elements may allow covering more queries on a single branch, as including
joint elements in a category contributes to its potential cover of all queries. However, we
show that the number of covered queries by a single branch is bounded by a constant.

We ensure that the optimal OCT solution is of score Θ̃(n). Thus, if the approximation
factor of A is low, the eventually derived IS is large. In particular, we ensure that the tree
contains a category partition of the same score so that all bounds also hold for OCP . Observe
that the maximum IS in G induces the category partition where every category covers a
single query pertaining to a vertex in the set, with all covers including all of the non-joint
elements and no joint elements. The categories in this partition satisfy the recall condition
as narrowly as possible. Intuitively, this construction means that, while joint elements help
an algorithm to an extent, beyond that it must make progress on the MIS problem.

5.2 General threshold parameters
We have examined so far the hardness of various special cases of OCT r(Tα,β) where the recall
threshold is β > 1

2 . In particular, we proved for 1
2 < β < 1 inapproximability of Θ̃(n

1
r+1 ).

We next devise a more involved construction to show that this result extends to β ≤ 1
2 and

also provide more general bounds for polynomially small threshold parameters. We note that
since the modified construction is randomized, the bound derived for r = 1 does not hold
under the weaker assumption of P ̸= NP , unlike in the first construction.

Modifications. To facilitate a precise discussion, we first define, given a subset of queries
Q′, the multiplicity MQ′(e) = |{q ∈ Q′ | e ∈ q}| of an element e in Q′ as the number of queries
in Q′ that e appears in. The reduction used for Theorem 17 becomes ineffective because in
the OCT instance constructed by R, the set of joint elements makes up a (1 − β)-fraction of
every query, and for β ≤ 1/2 the set of joint elements becomes large enough, such that a
category, that consists exactly of this set, covers all queries, yielding the optimal tree score.

To fix this, we need to alter the construction such that joint elements are not shared by
all queries. We want to limit the number of joint elements with high multiplicity in any large
query set (we will formalize this high-level statement with concrete thresholds in Lemma 21),
to make it hard for a single branch to cover it while retaining properties essential for the
hardness proof.

Concretely, we want any single joint element to be shared by many queries, and for a
(1 − β)-fraction of every query to consist of joint elements, so that the tree that corresponds
to the optimal MIS solution narrowly exceeds the recall requirements. This requires using
more joint elements. However, having more joint elements can make Ĝ less sparse, reducing
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the size of the produced IS. To achieve these desired properties while minimally increasing
the number of joint elements, we devise a randomized reduction. Moreover, we parameterize
it to efficiently capture sub-constant ranges of α and β, to aim for a slower decay in the
hardness bound, as these thresholds are decreased.

Generalized reduction from MIS. Our revised MIS algorithm denoted by R′ consists
of a sequence of three procedures, R′

1, R′
2 and R′

3. To avoid a convoluted presentation, we
reuse some of the notation, initially defined in the context of the first algorithm R.

1. Given an (r + 1)-uniform hypergraph, G = (V, E), R′
1 transforms it into an instance

Q = {qv | v ∈ V } of OCT r(Tα,β). Each query, qv, contains all the edge elements that
correspond to edges incident to v in G, and as many unique padding elements as necessary,
such that the number of non-joint elements in every query is exactly nr. Finally, we
distribute ( 1

β − 1) log3 n
α nr distinct joint elements to queries via the following randomized

scheme. We draw uniformly randomly ( 1
β − 1)nr partitions of Q into log3 n

α subsets, each
of size αn

log3 n
. Let P̂ denote this set of partitions. In every partition, p̂ ∈ P̂, every set,

ŝ ∈ p̂, in that partition is assigned a distinct joint element to be included in all queries in
the set. Note that the size of each query is now exactly n

β .
2. The procedure R′

2, same as R2, runs over Q the given OCT r(Tα,β) algorithm A with an
approximation guarantee factor of γ. Let T denote the category tree A outputs.

3. Finally, R′
3 is the same as R3, except for the following modification: if there is a branch in

T that covers more than Θ̃( 1
α ) queries, then it outputs DO NOT KNOW, and otherwise

proceeds as R3 to produce an IS S.

Generalized hardness bounds. We now state the approximation bounds implied by
the revised reduction, followed by the intuition underlying the proof.

▶ Theorem 18. The OCT r(Tα,β) problem cannot be approximated below a Θ̃((α(r+2)βn)
1

r+1 )
factor, unless ZPP = NP .

Intuition. The most significant component in the proof is the following technical Lemma.

▶ Lemma 19. W.p. 1 − o(1) (over the choices of partitions in P̂) the maximum number of
queries in Q a single branch (in any tree) can cover is Õ( 1

α ).

We wish to show that precision cannot be maintained past a certain number of covered
queries on a branch. We use the term relevant cover of a query q, to refer to the intersection
of q with its covering category C, with the relevant cover size being |q ∩ C|. One must be
careful in selecting the query for which the precision condition is invoked, to derive a tight
bound. On the one hand, we aim to select a query covered close to the root, so that its
covering category contains the covers of many other queries. On the other hand, we want to
select a query whose relevant cover is small. Thus, we first prove that for any branch, there
exists a query q covered by C, such that at least a constant fraction of the covered queries
on the branch are covered by C or a lower category, and that the average relevant cover size
of these queries is smaller than the relevant cover size of q by at most a logarithmic factor.

▶ Lemma 20. Given a branch B that covers k′ queries, there exists a query q covered by a
category C in B, with the following two properties:
1. the set of queries, Qk, covered by C or categories below C is of cardinality k = Θ(k′).
2. let d ∈ [1, 1

β ] denote the value for which the average relevant cover size of queries in Qk

is nrd, then the relevant cover size of q is at most (2 log n)nrd.
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Given q and C as in Lemma 20, we derive from the precision condition an upper bound
on |C|. On the other hand, C contains the union of the k covers of the queries in Qk, and
we show that for k = ω̃( 1

α ), the union of the k covers, and thereby C must contain many
elements, beyond the upper bound, resulting in a contradiction. The key to proving that
C contains many elements is bounding the multiplicity of the joint elements in Qk. If all
elements had constant multiplicity, then an α precision threshold implies that, when the
relevant covers are on average of roughly the same size as the relevant cover of q (which is
the case following Lemma 20), the number of covered queries is O( 1

α ). To that end, we show
that the multiplicity of almost every joint element in Qk does not exceed Õ( k

α ).

▶ Lemma 21. For any set Qk of k = ω( log3 n
α ) queries, w.p. 1 − o(1), there are at most nr

2
partitions in P̂ where a joint element is assigned to more than θ = αk

8 log n queries in Qk.

The proof of Lemma 21 consists of a combination of probabilistic arguments. We first
prove that this θ bound on the number of partitions holds for a uniformly randomly selected
set of k queries w.p. 1 − o(n−k). Then, by using a union bound argument, it will follow that
this bound holds for any selection of k queries w.p. 1 − o(1).

To prove the bounds of Lemma 21 for a randomly selected set Qk of k queries, observe
that a joint element is shared by polylogarithmically less than a 1

α -fraction of the queries in Q.
Therefore, its expected multiplicity in Qk would constitute the same fraction. To bound the
probability of significantly deviating from this expectation, we show that the multiplicity of
any joint element in Qk is a hypergeometric random variable, and use a tail bound. Following
a different union bound argument, this bound on the probability is extended over every
joint element assigned in a given partition in P̂. Finally, since the partitions in P̂ are chosen
independently, we use a Chernoff bound to derive an upper bound, that holds with high
probability, on the number of partitions in P̂ in which a joint element with high multiplicity
was assigned. We show that if these deviations occur sufficiently rarely, as stated in Lemma
21, then the cardinality of C increases as a function of k, deriving the bound k = Õ( 1

α ).

6 Other Variants

So far we have proven hardness of OCT r(Tα,β). In this section, we provide approximation
hardness bounds for the remaining OCT variants, via reductions from OCT r(Tα,β) and
Theorems 17 and 18.

We first show that the Θ̃(n
1

r+1 ) bound of OCT r(Tα,β) with constant thresholds extends
to the threshold versions of Jaccard and F1 scores, with similar inapproximability for sub-
constant thresholds as well. We then use these results to derive bounds for the cutoff versions
of these functions, which only differ for δ = o(1).

We formulate our proofs schematically, such that they may be applied to threshold and
cutoff variants of other functions.

For threshold functions, we derive the following bounds.

▶ Theorem 22. The variants OCT r(Ĵδ) and OCT r(F̂1(δ)) cannot be approximated below
a Θ̃((δr+3n)

1
r+1 ) factor, unless ZPP = NP . For r = 1, we have Θ̃(

√
n) inapproximability,

assuming P ̸= NP , for OCT r(Ĵδ) with δ > 1
2 and OCT r(F̂1(δ)) with δ > 2

3 .

Finally, we provide bounds for cutoff functions, that follow from Theorem 22.
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▶ Theorem 23. The variants OCT r(J̄δ) and OCT r(F̄1(δ)), with δ ∈ [0, 1), have Θ̃((δ2r+4n)
1

r+1 )
inapproximability, unless ZPP = NP . For r = 1, we have Θ̃(

√
n) inapproximability, assum-

ing P ̸= NP , for OCT r(J̄δ) with δ > 1
2 and OCT r(F̄1(δ)) with δ > 2

3 .

7 Related Work

The construction of category trees/taxonomies has been studied in multiple domains, including
e-commerce, document management, and question answering [10, 24, 12]. Many algorithms
have been devised for automating taxonomy construction [17, 10, 18] and maintenance,
[22, 24, 26] employing different clustering approaches [10, 17], as well as crowdsourcing [21].

In the lines of work specified above, the quality of the resulting taxonomy is assessed
along the following two dimensions.

The first dimension of quality assessment is user-study [10, 17], an evaluation which we
incorporate w.r.t. our model in the complementary empirical work [4]. This evaluation is
naturally entirely subjective.

The second dimension, which is the focus of the present paper, is the similarity of
the resulting category tree to a given (combinatorially unrestricted) ground-truth set of
items/documents. For example, the F1 score used in [17, 10, 18] is a variant (without a
threshold) of our corresponding F1 measure for r = 1. Similarly, [22] computes recall and F1
scores for the resulting trees, also with r = 1.

To our knowledge, however, no previous work investigates the theoretical complexity
of the optimization problem of computing the tree of the highest score. The score is only
used as an evaluation measure, to which the algorithm is oblivious. This approach, to an
extent, is loosely justified by our worst-case bounds. Nevertheless, we show in [4] and [5],
that leveraging the relation we outlined in Section 4 to the weighted MIS problem, allows
solving well (and, in some cases, optimally) real-world problem instances, via extensively
studied MIS solvers.

Our model differs from clustering models [19, 13] that typically focus on item-similarity,
optimizing the similarity within each cluster or the dissimilarity across clusters. Moreover,
these models are commonly defined by pairwise similarities, while our model also considers
relations of a higher order. Thus, closest to our work in this domain is the field of hypergraph
partitioning (clustering) [14, 16]. Specifically, the OCP problem with copy-bound r = 1
corresponds to seeking a partition of the vertices that maximizes the weight of (hyper)edges
for which there is a similar set in the partition. Relaxing the copy-bound corresponds to
overlapping clusters. Importantly, this relation between hypergraph clustering and our model
is different from the more artificial relation leveraged in our reductions, where we cluster
the hypergraph edges, instead of the vertices. Nevertheless, our proposed framework differs
from existing models in several aspects. Notably, hypergraph clustering typically studies a
multi-way cut problem, intending to minimize the weight of the cut edges. Recently [16]
suggested that there is a benefit in quantifying how an edge is cut, in terms of which subsets
of its vertices are clustered together. Our work is relevant in that respect, as we quantify
how similar these subsets are to the original edge.

A work resembling ours in a different aspect is [25], where the objective is to maximize
the edge weights inside the cluster (we also maximize the covered “demand”, instead of the
less natural minimization of uncovered demand). However, the models of [16] and [25] (and
many others [15, 9]) are easier to approximate, due to principal technical differences (e.g.,
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bounds on the size and number of clusters), and we are not aware of clustering research that
resembles our model or bounds.

8 Conclusion

In this paper, we studied the hardness of computing categorizations with a bounded number
of possible repetitions, that best capture a given collection of item sets. We defined a model
that captures various practical settings and proved inapproximability results for multiple
variants and special cases. We also provided an algorithm for the Exact variant with an
approximation guarantee that depends on finer input parameters.

An interesting direction for future work would be to identify more special cases that
admit improved performance. Another intriguing avenue of exploration is determining for
cases where we showed Θ̃(

√
n) hardness, whether one can devise algorithms with matching

approximation guarantees or prove stronger bounds.
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A Appendix

A.1 Missing Algorithms and Proofs in Section 4

A.1.1 Algorithms for OCT 1(T1,1) and OCP r(T1,1)
We first describe the algorithm AT for OCT 1(T1,1). The first step in AT is to construct a
conflict graph G, which is a weighted graph whose vertices are the queries (with the weight
of the vertex being the weight of the query), and the edges are the conflicts. We next run
over G the approximation algorithm for the Weighted MIS (WMIS) problem in [2]. The
WMIS problem is a generalization of the MIS problem, where the vertices are weighted,
and the goal is to produce the independent set of the highest total weight. Note that the
degree of a vertex in the G is the degree of the query and the average (weighted) degree
in the graph, which is defined as the weighted average of the vertex degrees, is D̄, hence
the terminology and the values are the same. The algorithm in [2] is based on semidefinite
programming, and provides an O(D̄ log log D̄

log D̄
) approximation guarantee. There also exist

simple greedy Õ(D̄)-approximation algorithms, as mentioned in [2].
Let S denote the independent set produced by the above algorithm over the conflict

hypergraph. For any query q ∈ S that is contained in at least one other query in S, we
denote by P (q) ∈ S the query that contains q and is not contained in any other query that
contains q. This is well defined because there is exactly one such query. If there were (at
least) two such queries, then they necessarily intersect as both contain the elements of q, and
since by definition of P (q) neither of the two contains the other, it follows that these two
queries conflict, which is a contradiction since S is an independent set in the conflict graph.

The last step is to build the category tree T . Besides the root, which contains all elements
in U , the categories in T are made up of one category per every query in S, which contains
exactly the elements of the query. The root is the parent of every category that corresponds
to a query that is not contained in any other query in S. Whereas, for any other category
that corresponds to a query q, its parent is the category corresponding to P (q).

The algorithm Ar
P for OCP r(T1,1) is analogous, yet simpler. Concretely, a conflict is

defined as any subset of (r + 1) of queries whose (collective) intersection is not empty. Thus,
the resulting conflict graph for r > 1 is in fact a hypergraph (once again, the hyperedges are
the conflicts). Since r = Θ(1), checking all conflicts can be done in PTIME. Importantly, the
WMIS algorithm in [2] also applies for hypergraphs, with the same performance guarantee.
Once the WMIS algorithm produces an independent set S, one simply outputs the category
partition that consists of one category per each query in S, containing exactly the elements
of that query.

It is important to note that the same generalization does not work for OCT , as one can
show simple counterexamples of independent sets in a conflict hypergraph that cannot be
transformed into a tree that covers the entire set.

Proof of Theorem 16. We focus here on the proof for AT , the algorithm for OCT , as the
proof for OCP is analogous.

To prove the stated approximation factor, we show that for any independent set S in the
conflict graph G of total weight W (S) there exists a category tree T that covers exactly the
queries of S (and thus has a score of W (S) as well), and in the other direction, we show that
every tree T ′, in which the set of covered queries is S′, the set S′ is also an independent set
in G. This one-to-one correspondence implies that the approximation factor of AT for OCT

is the same as the guarantee of the WMIS algorithm, proving the stated factor.
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The first direction is trivial, as the algorithm AT contains the procedure that turns every
independent set S into a category tree that covers S. As for the other direction, assume for
the sake of contraction that a set of queries S′ that is covered by some category tree T ′ is not
an independent set in G. That means that there exist two queries q1, q2 ∈ S′ that conflict.
Let e denote some element in their intersection. Since in the Exact variant any cover requires
perfect precision and perfect recall, it follows that both queries are covered by different
categories, and since neither query contains the other (otherwise it is not a conflict), it also
follows that the two covering categories are on different branches. The perfect recall also
implies that e appears in both covering categories. However, this implies that e appears in
two different branches, which violates the copy-bound restriction, and yields a contradiction,
proving the claim.

It remains to prove that this factor is optimal (for OCP this is true only for r = 1). To
that end, recall that in Theorem 17 we proved that when all queries are of size at most
d = Θ(1) it is NP -hard to approximate OCT 1(T1,1) below a Θ̃(d) factor. Moreover, in
the proof of this claim in Theorem 17 these hard OCT instances were reduced from MIS

instances where the maximum degree is d, and each element in the OCT instance either
pertains to an edge in the MIS instance, and thus appears only in 2 queries, or it is a
unique padding element and appears only in one query (to ensures every query is of size
exactly d). Since in these OCT instances in each query there are exactly d elements, and
each such element appears in at most one other query, it follows that the degree (number of
conflicts) of each query is at most d, and thus also the average degree D̄ is at most d. We
have proven these instances are NP -hard to approximate below a Θ̃(D̄) factor, which proves
the optimality claim. ◀

A.2 Missing Proofs in Section 5
Proof of Theorem 17. Let S′ denote a maximum independent set in the input graph G.
Recall the we assume inputs where |S′| = Θ̃(n). For any v ∈ V , let Cv denote the category
that consists of all the non-joint elements of the query qv (as defined in step R1 of the
MIS construction, at the beginning of this section). Observe that Cv covers qv, as the
cover precision is 1 and the recall is exactly β. Consider the following set of categories:
P = {Cv | v ∈ S′}. Since S′ is independent, we have that every element appears in at most
r categories in P , which makes it an r-weak partition. By connecting all categories in P to a
root, we get a tree of score Θ̃(n), which is also a lower bound on the optimal score over Q.
It follows, that the score of the tree T , which A produces, is at least Θ̃( n

γ ).
We next prove an upper bound on the number of queries that can be covered by a single

branch. We use the terminology the cover of a query to refer to the set of elements in its
covering category. Given a covering branch, let k denote the number of queries it covers,
and let C denote its highest covering category, denoting by q one of the queries C covers.
We first compute a lower bound on |C|. Because C is the highest covering category on the
branch, it contains all the elements in the covers of all k queries. Due to the recall condition,
the cover of every query contains at least β

2β−1 nr of its elements. As there are only 1−β
2β−1 nr

joint elements, the number of non-joint elements of a query contained in its cover is at least

β

2β − 1nr − 1 − β

2β − 1nr = nr

The number of non-joint elements in the union of all k covers may be less than knr because
the same edge element can be in several covers. However, since a padding element is in only
one cover, and an edge element can be in up to (r + 1) covers, we have that the number of
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non-joint elements in C, and, consequently, the total number of elements in C, is at least

|C| ≥ knr

r + 1

On the other hand, from the precision condition of the cover of q by C, we get:

nr

2β−1

|C|
≥ |C ∩ q|

|C|
≥ α

From this, we get the upper bound

|C| ≤ nr

α(2β − 1) .

Combining both bounds, we get:

knr

r + 1 ≤ nr

α(2β − 1) .

Finally, it follows that
k ≤ r + 1

α(2β − 1) = O(1).

Since the number of queries covered by any branch is bounded by a constant, we have that
Q̂ (the set of independently-covered queries described in step R3 of the reduction algorithm
R), and, consequently, V̂ (the vertex set that corresponds to Q̂, also defined in step R3), are
of the same order as S(T ), which is Ω̃( n

γ ).
When β = 1, we have that V̂ is already an independent set, since, to satisfy the recall

condition, covers must include all edge elements, and, with Q̂ being independently-covered,
no edge element can appear in the covers of (r + 1) queries in Q̂. Therefore, following
Theorem 8, we have γ = Θ̃(n). The improved results for r = 1 follow from Theorem 9.
The bounds for the case of r = 1 where queries are also of bounded size d, follow from an
analogous proof, where the padding elements ensure that queries are of size d instead of n.

For β < 1, we make the following observation: for every edge e in Ĝ, for at least one
of the (r + 1) vertices in e, the cover of its corresponding query in Q̂ does not contain the
edge element corresponding to e. Another important observation is that the number of joint
elements in the cover of every query is at least the number of the query’s edge elements not
in the cover. This is because a cover consisting of all non-joint elements matches the recall
threshold exactly, and removing any edge element from the cover necessitates its replacement
by a joint element. It follows that the total number of edge-elements omitted from covers of Q̂

is at most the number of joint elements which is Θ(nr). Therefore, Ĝ is a hypergraph of size
Ω̃( n

γ ) with O(nr) edges. From Lemma 11 (recall that, in our context, G is (r + 1)-uniform,
and not r-uniform), we get that the size of the resulting independent set is

|S| = Ω̃(
( n

γ )r+1

nr
) = Ω̃(( n

γr+1 ) 1
r )

The Ω̃(n
1

r+1 ) bound on γ follows from Theorems 8 and 9. ◀

Proof of Theorem 18. Given Lemma 19, the proof of Theorem 18 is mostly analogous to
the proof of Theorem 17. Hence, we only highlight here the modified computations.

First, following the exact same arguments, the score of the tree T is Ω̃(n
γ ). When the

Õ( 1
α ) bound on the number of covered queries by a single branch stated in Lemma 19 holds,
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then the number of vertices in V̂ is Ω̃(αn
γ ). Following the same arguments as for the first

reduction, the number of edges in Ĝ is upper bounded by the total number of joint elements
which is Õ( nr

αβ ). The lower bound on the independent set follows from Lemma 11:

|S| = Ω̃((
( αn

γ )r+1

nr

αβ

) 1
r ) = Ω̃((αr+2βn

γr+1 ) 1
r )

From Theorem 8, we get γ = Ω̃((α(r+2)βn)
1

r+1 ).
Finally, observe that the bound in Lemma 19 on every branch in T is a sufficient condition

to guarantee the approximation factor we derived for R′ as a function of γ. When this bound
does not hold for some branch in T , which Lemma 19 proves happens with probability o(1),
R′ can always detect it by examining the set of queries covered by each branch and output
DO NOT KNOW. Therefore, R′ is a ZPP algorithm. ◀

Proof of Lemma 20. Given a branch B that covers the set Qk′ of k′ queries, we define d′

as the value for which the average relevant cover size of queries in Qk′ is nrd′, and q′ is
defined as the query in Qk′ covered by the category C ′ closest to the root (ties are broken
arbitrarily). We use an iterative procedure to find q with the stated properties.

We first set k0 = k′, d0 = d′, Qk0 = Qk′ , q0 = q′ and C0 = C ′. In the i-th iteration, we
examine the set Qki−1 of ki−1 queries of average relevant cover size nrdi−1. If the relevant
cover of qi−1 is at most (2 log n)nrdi−1, we set q = qi−1 (and, consequently, C = Ci−1
and Qk = Qki−1) and we are done (we will promptly prove that Qk is sufficiently large).
Otherwise, we set qi to be the query covered closest to the root of the queries in Qki−1

whose relevant cover size does not exceed nrdi−1 log n, and Ci is set to be the category that
covers qi. Qki

is set to be the subset of queries in Qki−1 covered by Ci or categories below it.
Accordingly, ki is the cardinality of Qki , and di is set such that the average relevant cover
size of queries in Qki

is nrdi.
Observe that, if the stopping condition is not met, it follows that di is smaller than di−1

2 .
Since the average relevant cover size, due to the recall condition, cannot be lower than nr

and is at most O(poly(n)), it follows that there are at most log d′ = O(log n) iterations
before we get to the minimal average relevant cover size, where the stopping condition is
necessarily met. Moreover, observe that the number of queries in Qki−1 whose relevant cover
size does exceed nrdi−1 log n is at most ki−1

log n . Therefore, there are at most ki−1
log n queries in

Qki−1 covered by categories above Ci, implying ki ≥ ki−1(1 − 1/ log n). Putting everything
together, it follows that the number of queries in Qk is at least

k ≥ k′(1 − 1/ log n)O(log n) ≥ k′(1/e)O(1) = Θ(k′).

note that we have used the fact that (1−1/ log n)log n approaches 1/e as n tends to infinity. ◀

Proof of Lemma 21. We first show that this bound holds for a uniformly randomly selected
set Qk of k queries with probability at least 1 − o(n−k). Since there are at most

(
n
k

)
< nk

sets of this cardinality, from the union bound it would follow that this holds for every set of
k queries with probability 1 − o(1).

We say that an element has high multiplicity when its multiplicity in Qk exceeds θ. We
next bound the probability that a joint element e, which was assigned to any given set ŝ ∈ p̂

in any given partition p̂ ∈ P̂ has high multiplicity MQk
(e) in Qk, using the tail bound on the

hypergeometric distribution from Lemma 14. Then, by a union bound argument, we bound
the probability of this being the case for any joint element assigned to any set in p̂.
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Observe that, in general, when proving the θ bound in Lemma 21 for a randomly selected
Qk, the probabilities are over the drawing of the partitions as well as the drawing of Qk.
However, due to symmetry, when bounding the multiplicity of a joint element in Qk, we can
first fix the partition p̂ and the set of queries ŝ to which a joint element e is assigned.

Selecting Qk uniformly randomly is equivalent to uniformly drawing k queries from Q

without replacement, and since all sets in any partition are of size exactly αn
log3 n

, we have that
the number of times a query from ŝ was drawn, which equals MQk

(e), is a hypergeometric
random variable (Definition 12) X ∼ H(n, αn

log3 n
, k).

Hence, we can bound the probability of e having high multiplicity, using Lemma 14. We
set u = α

log3 n
and

t = θ

k
− u = ( α

8 log n
− α

log3 n
),

and assume k = ω( log3 n
α ). Note that u = o(t), and, in particular, u

t = Θ( 1
log2 n

). Moreover,
kt = ω(log2 n). Applying the tail bound, we get:

Pr(X ≥ θ) = Pr(X ≥ (u + t)k)

≤ (( u

u + t
)
u+t

( 1 − u

1 − u − t
)
1−u−t

)
k

≤ (( u

u + t
)
t
( 1 − u

1 − u − t
))

k

≤ ((u

t
)t(1 + t

1 − u − t
))k = ((u

t
)t(1 + t

1 − u − t
) 2t

2t )k

≤ ((u

t
)(1 + 2t) 2

2t )kt = Θ(u

t
e2)kt ≤ Θ( 1

log2 n
)kt

= o( 1
log2 n

)log2 n = o( α

n4 )

Note that we have used the fact that as n tends to infinity, 2t tends to 0, and, thus, (1+2t) 1
2t )

approaches e.
From the union bound, we get that the probability, p, of the event where at least one of

the Θ̃( 1
α ) joint elements assigned to the sets in p̂ has high multiplicity is p = o( 1

n4 ).
Let l = ( 1

β − 1)nr < nr

β denote the number of partitions in P̂. The number of partitions,
where an element of high multiplicity in Qk is assigned, is a binomial random variable
(Definition 13) Y ∼ B(l, p). The expectation of Y is

µ = lp = o(nr

β
· 1

n4 ) = o(nr−4

β
).

By applying the Chernoff bound (Lemma 15), and setting

δ = nr

2µ
− 1 = ω(βn4),

we get a bound on the probability of this high multiplicity event occurring for more than
nr/2 partitions:

Pr(Y >
nr

2 ) = Pr(Y > (1 + δ)µ)

< ( eδ

(1 + δ)1+δ
)
µ

= O((e

δ
)δµ) = O((e

δ
) nr

2 )

= o(( e

βn4 ) nr

2 ) = o(( 1
n2 ) nr

2 ) = o(n−nr

) = o(n−k)

◀
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Proof of Lemma 19. We assume here, for consistency, the same notation and definitions as
in Lemmas 21 and 20. Given any branch B that covers k′ queries, we invoke the precision
condition of a query q, covered by a category C, with the properties stated in Lemma 20.
The precision condition implies

(2 log n)nrd

|C|
≥ |C ∩ q|

|C|
≥ α,

from which it follows that
|C| ≤ 2 log n

α
nrd.

On the other hand, C contains the union of the covers of the k = Θ(k′) queries, Qk,
covered by it, or by categories below it. From Lemma 20, we have that the sum of the
relevant covers sizes of Qk is knrd. This sum of the covers is also the sum of the multiplicities
of all the elements in the union of the covers.

Assume, for the sake of contradiction, that k = ω( log3 n
α ). Then, by Lemma 21, we have

that, with probability 1 − o(1), there are at most nr

2 ≤ nrd
2 partitions in P̂ in which there

is an element has high multiplicity in Qk. In all those cases we can assume the worst-case
where there is a joint element with multiplicity k (observe that for any given partition the
sum of multiplicities of the corresponding joint elements cannot exceed k). Therefore, when
excluding all the elements with high multiplicity, we have that the sum of all k covers, and
the sum of the multiplicities, is at least

knrd − nrd

2 k = knrd

2 .

For any of the remaining elements we have that its multiplicity is at most θ = αk
8 log n . This

multiplicity bound, of course, extends to edge and padding elements that have constant
multiplicity which is o(θ). Therefore, the number of (distinct) elements in C is at least

|C| ≥ knrd

2θ
= 4 log n

α
nrd.

This contradicts the upper bound of 2 log n
α nrd, and along with the fact that k′ is of the

same order as k, implies that, with probability at least 1 − o(1) over the random partitions
in P̂, there can be no branch on a category tree for Q that covers ω̃( 1

α ) queries. ◀

A.3 Missing Proofs in Section 6
Proof of Theorem 22. Let S denote any given function in {J, F1} and let Ŝδ denote its
corresponding threshold version in {Ĵδ, F̂1(δ)}. We define Iα as the set of all query-category
pairs, q and C, such that r(q, C) = 1 and p(q, C) = α, and analogously define Iβ as the set of
all query-category pairs such that p(q, C) = 1 and r(q, C) = β. Let Mα(S) denote the score
S(q, C) of any (q, C) ∈ Iα, and let Mβ(S) denote the score S(q, C) in the latter case (we will
promptly show that this score is well defined and uniform across all pairs in the same set).
Finally, given the parameter values α and β, let M(S) = Mα,β(S) = max{Mα(S), Mβ(S)}.

For both variants, we use the same reduction from OCT r(Tα,β) where the input Q is not
modified at all. We set, however, different threshold parameters for the original OCT r(Tα,β)
instance, depending on which variant we reduce to.

The proof for each variant consists of two arguments, and relies on ensuring that M(S) =
Mβ(S) = δ. For the two particular functions examined here, we will also ensure that
Mα(S) = δ, which is, in general, preferable, as we want to use the highest possible value of



24 REFERENCES

α (Mα(S) is a monotonically increasing function of α), such that the bound for the set of
OCT r(Tα,β) inputs we reduce from is stricter.

The first argument is that optimal score over the input Q w.r.t. Ŝδ is of at least the same
order as the optimal score w.r.t. Tα,β . To that end, when reducing from OCT r(Tα,β), we
restrict ourselves to the hard set of inputs of OCT r(Tα,β) mapped to by our reduction from
hard inputs of MIS in the proof of Theorems 17 and 18. We showed that for any such input,
Q, there exists a category tree (not necessarily optimal), we denote here by T ′

Q, whose leaves
induce a category partition covering Θ̃(n) queries, each covered with precision 1 and recall β.
It follows that the score of T ′

Q, w.r.t. S, for each query is Mβ(S). We will show that, for our
choice of threshold parameters, Mβ(S)} = δ, and hence T ′

Q is also of score Θ̃(n), w.r.t. Ŝδ.
Note that leveraging the fact that the covers are of precision 1 is essential since in general
the same score could have hypothetically been achieved over the OCT r(Tα,β) instance, such
that in every cover both the precision and recall equaled the threshold values, however, this
would not imply that the covers are each of score S(q, C) ≥ δ.

The second argument is that the score of any tree, w.r.t. Ŝδ, cannot exceed its score
w.r.t. Tα,β . This, along with the first argument, would imply the hardness bound. To
that end, observe, that, since S is a monotonically increasing function of both the precision
and the recall, for a given query-category pair, q and C, the highest score S(q, C) that can
be achieved, such that Tα,β = 0, occurs when either the precision is 1 and the recall is
infinitesimally smaller than β, or the recall is 1 and the precision is infinitesimally smaller
than α. Therefore, for any such case, the score S(q, C) would be below M(S). Ensuring that
M(S) = δ, implies the argument.

Specifically, we have, when r(q, C) = 1 and p(q, C) = α, that q ∪ C = C. Therefore, in
this case, for S = J , it follows that

Mα = J(q, C) = |q ∩ C|
|q ∪ C|

= |q ∩ C|
|C|

= p(q, C) = α.

Similarly, when p(q, C) = 1 and r(q, C) = β, then q ∪ C = q, and

Mβ = |q ∩ C|
|q|

= r(q, C) = β.

Therefore, we reduce to OCT r(Ĵδ) from OCT r(Tδ,δ), which implies, M(J) = Mβ(J) = δ,
as required. Following Theorem 18, the inapproximability factor for OCT r(Ĵδ) is

Θ̃((α(r+2)βn)
1

r+1 ) = Θ̃((δr+3n)
1

r+1 )

Similarly, for S = F1, when r(q, C) = 1 and p(q, C) = α, we have

Mα = F1(q, C) = 2 α

1 + α
.

We also have, analogously, that Mβ = 2 β
1+β .

We, therefore, reduce to OCT r(F̂1(δ)) from OCT r(Tδ′,δ′), where δ′ = δ
2−δ , which implies,

M(F1) = Mβ(F1) = δ, as required. For any constant ϵ ∈ (0, 0.5) we have that when
δ ∈ [ϵ, 1 − ϵ] then ϵ

2 < δ′ < 1
1+ϵ , thus δ′ = Θ(δ). Moreover, for δ = o(1), we have

δ′ ≈ δ
2 = Θ(δ), as well. Hence, the inapproximability bound of OCT r(F̂1(δ)) is also

Θ̃((δr+3n)
1

r+1 ).
The improved hardness for r = 1 and a sufficiently high δ parameter follows from Theorem

17. ◀
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Proof of Theorem 23. For both cutoff functions, we use a reduction from its corresponding
threshold variant, with the same threshold parameter δ, where we do not modify the input.
By definition, the score of any tree in the cutoff variant cannot exceed its score in the
threshold variant. On the other hand, the score of any tree for the cutoff instance is at least a
δ-fraction of its score for the threshold instance. In particular, while the score of the optimal
solution for the cutoff instance can be lower, it is, nevertheless, at least a δ-fraction of the
score of the optimal solution for the threshold instance. Therefore, the approximation factor
can be lower by at most a delta factor, yielding the stated bound. ◀
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