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ABSTRACT
Classic machine learning (ML) models excel in modeling tab-
ular datasets but lack broader world knowledge due to the
absence of pre-training, an area where Large Language Mod-
els (LLMs) stand out. This paper presents an effective method
that bridges the gap, leveraging LLMs to enrich tabular data
to enhance the performance of classical ML models. Despite
the previously limited success of direct LLM application to
tabular tasks due to their high computational demands, our
approach selectively enriches datasets with essential world
knowledge, balancing performance improvement with cost-
effectiveness. This work advances the capabilities of tradi-
tional ML models and opens new avenues for research at the
convergence of classical ML and LLMs, marking the onset
of a new era in cost-effective data enrichment.
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1 INTRODUCTION
In the realm of machine learning (ML), the analysis of tabular
datasets is crucial for a wide range of applications, from fi-
nancial forecasting to health diagnostics. Classic models like
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Random Forest and XGBoost have been pivotal in mastering
classification and regression tasks on tabular data, deliver-
ing state-of-the-art performance, computationally efficient.
However, these models face a significant challenge: their
lack of pre-training restricts them from grasping the broader
general knowledge that extends beyond the data.
This gap is precisely where pre-trained Large Language

Models (LLMs) excel, indicating an untapped potential to en-
hance the modeling. This potential comes into sharper focus
when considering that tabular datasets often lack essential
information vital for accurate target variable modeling.

LLMs have revolutionized various domains. They excel at
retrieving world knowledge and can also be fine-tuned with
specific data to become experts in particular fields, like the
data of a company. While their application to tabular data
tasks has been explored [3, 7, 8], significant challenges per-
sist. Direct application of LLMs to ML tasks on tabular data
encounters inherent limitations due to the structured nature
of tabular data. This often leads to LLMs being outperformed
by simpler, more resource-efficient ML models.

To address these gaps, we propose a novel method that ef-
ficiently leverages LLMs for enriching tabular datasets with
relevant knowledge. The proposed method tackles the chal-
lenges of data incompleteness and contextual unawareness
by economically utilizing LLMs to generate an extended
set of features. Samples classified as ‘hard’ receive enrich-
ment from a comprehensive array of base features, while
‘easy’ samples are processed with a narrower set. This novel
selective enrichment process is designed to optimize LLM uti-
lization, to improve the ML predictions. Let us illustrate the
potential application of our method with a practical example.

Example 1.1. Consider a dataset of male athletes, both
marathon and 100 meters runners, depicted in Figure 1. The
dataset consists of information about athletes’ names, na-
tionalities, and occasionally their weight and height. We aim
to predict whether an athlete is a sprinter or a marathon run-
ner. The true value is depicted in the last column (marked in
yellow) and not a part of the original data.1

1This information is indeed missing even in the reliable sources such as
Wikipedia. For example, as of April 2024, the page “Leul Gebresilase” on
English Wikipedia has no information about weight and height and “Sara
Hall” has no information about weight.
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Name Nationality Weight Height Type

Fred Kerley USA 100 meters

Trayvon Bromell USA 73 kg 170 cm 100 meters

Leul Gebresilase Ethiopia 58 kg 170 cm Marathon

Robert Cheruiyot Kenya 70kg Marathon

Andre De Grasse Canada 70kg 100 meters

Akani Simbine South Africa 74kg 100 meters

Dennis Kimetto Uganda 55kg 171 cm Marathon

Usain Bolt Jamaica 94 kg 100 meters

Asafa Powell Jamaica 100 meters

Jimmy Vicaut France 88 kg 100 meters

Figure 1: Athletes dataset - original

Some attribute contents like weight and height that can
be valuable for modeling are missing, whereas other infor-
mation, such as age, which may be relevant, is not even part
of the schema. Moreover, some existing attributes are sparse
and inadequate for learning. To address these limitations,
we use LLMs to infer and impute missing attribute values.
Possible example of such imputation is depicted in Figure 2,
with the extended information is marked in green.

A straightforward and somewhat non-realistic approach
could be to fill all the missing cells and add a multitude of
potentially relevant columns using the ‘state-of-the-art’ LLM.
However, interactions with an LLM on a large scale, can be-
come very costly, and hence one has to carefully consider
which and how many questions to ask, as well as which
LLM to use, as different LLMs can do similar enrichment at
different costs. Thus, asking for all possible missing values
or requesting each value of a completely new column, is
unlikely to be cost-effective, especially using ‘closed-book’
LLMs (like GPT [12]), that are using their encoded knowl-
edge, and cannot retrieve external data sources.
Typically, the expense of querying ‘closed-book’ LLMs

correlates with the number of processed tokens, whereas
other types of LLMs prioritize different cost objectives. For
example, a type of LLM that can be cost effective for the
task of introducing new columns is a Retrieval-Augmented
Generation (RAG) model [10]. Unlike ‘closed-book’ LLMs,
RAG models integrate retrieval mechanisms, enabling the
fetching of external data sources to join the desired column.
This means that instead of making multiple LLM queries for
each data point, we might only need a single query (along
with a retrieval operation) to add an entire column. The data
sources can be retrieved from the Internet or from an internal
corpus of a company. Another benefit of RAG models is their
capability to access data sources released after their training,
thus integrating current information into the dataset.
Transitioning from these capabilities, our system is de-

signed to maximize gain based on improvements in ML
model predictions, while staying within the cost budget. To
select enrichment queries and the appropriate LLM for each,
we assess the potential gain against the associated costs,
which include querying the LLMs, processing tokens, and
retrieving and processing external data, if required.

Name Nationality Continent Weight Height Type

Fred Kerley USA North America 93 kg 191 cm 100 meters

Trayvon Bromell USA North America 73 kg 170 cm 100 meters

Leul Gebresilase Ethiopia Africa 58 kg 170 cm Marathon

Robert Cheruiyot Kenya Africa 70kg 190 cm Marathon

Andre De Grasse Canada North America 70kg 176 cm 100 meters

Akani Simbine South Africa Africa 74kg 176 cm 100 meters

Dennis Kimetto Uganda Africa 55kg 171 cm Marathon

Usain Bolt Jamaica North America 94 kg 195 cm 100 meters

Asafa Powell Jamaica North America 88 kg 187 cm 100 meters

Jimmy Vicaut France Europe 88 kg 186 cm 100 meters

Figure 2: Athletes dataset - enhanced
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Figure 3: Potential models to classify the athletes.

Moving on to the practical application of these strategies,
Figure 3 depicts two simple models that can correctly classify
the athletes based on the additional data. Model (a) heavily
relies on the weight and height information and needs all
these cells correctly filled while model (b) uses the continent
information and does not need any additional information.
Moreover, not all samples need to be augmented. For exam-
ple, since there is not many Jamaican marathon runners, we
could skip adding the continent information to the all the
Jamaican athletes. The model then could be modified to start
with the “Nationality = Jamaica” node, which would classify
all the Jamaican athletes as 100 meters sprinters if the answer
is yes and continue as model (b) if the answer is no.
To address the problem of cost-effective utilization of

LLMs, we propose to build on previous work in the field
of crowdsourcing (e.g., [2, 4]). Similarly to our setting, there
the research problems often involved determining the opti-
mal questions to pose to a crowd and identifying the most
suitable individuals within the crowd to approach for specific
tasks. This involves strategies to maximize the quality and
relevance of responses. Other than the different practical
application setting there is also a key difference in terms of
the properties of the underlying optimization problem - the
latency when interacting with LLMs, that respond almost
instantly, is much lower. This allows for practical iterative
solution, where each individual query can be decided after
receiving the answer to the previous queries, whereas in
crowdsourcing there is a human bottleneck that requires
a more parallelized approach, that decided on the queries
based on less information, thereby reducing the upper bound
on optimization potential.
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Figure 4: System architecture.

Contribution: We propose a novel, cost-effective frame-
work for enriching tabular data using various LLMs to im-
prove ML predictions, especially when the initial data is
inadequate for effective learning.

2 TECHNICAL OVERVIEW
Next, we formally define the problem, followed by the system
overview we propose and the research agenda.

2.1 Problem Definition
Dataset: Assume a tabular dataset 𝐷 with 𝑛 rows and 𝑑

columns (features), 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, where each 𝑥𝑖 is a
𝑑-dimensional feature vector and 𝑦𝑖 is a target value. We
assume that each column has a natural-language name such
as weight, height, or nationality.

LLMQuery:We define several types of LLM queries2 we use
to enrich the data. First, we define the values-queries - queries
that explicitly ask for a set of feature values for a given
entity. An example of such a query is “What is the nationality
of Usain Bolt”. We assume for simplicity that the response
is retrieved in the following structured format: {“𝑘𝑒𝑦1” :
“𝑣𝑎𝑙𝑢𝑒1”, ..., “𝑘𝑒𝑦𝑛” : “𝑣𝑎𝑙𝑢𝑒𝑛”}, hence the response to the
query about Usain Bolt will be {“𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦” : “𝐽𝑎𝑚𝑎𝑖𝑐𝑎”}.

A column query is a type of value query that generates val-
ues for a new feature across multiple entities in a single query.
For instance, a column query might be “Provide the GDP for
each of the countries in {“𝐼𝑡𝑎𝑙𝑦”, “𝐶ℎ𝑖𝑙𝑒”, ...}”, will produce
responses like {“𝐼𝑡𝑎𝑙𝑦” : “𝐺𝐷𝑃1”, “𝐶ℎ𝑖𝑙𝑒” : “𝐺𝐷𝑃2”, ...}. Us-
ing RAG models for column queries is efficient because it
leverages retrieval mechanisms to fetch and integrate the
required data from external information.
Another type of query is a keys query, which is used to

retrieve a possible set of features that we may want to add
for a specific entity type. For example, such A query may
be “What are the three most useful features of countries, be-
sides ‘continent’?”, with the response may be {“𝐹𝑒𝑎𝑡𝑢𝑟𝑒1” :
“𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛”, “𝐹𝑒𝑎𝑡𝑢𝑟𝑒2” : “𝐴𝑟𝑒𝑎”, “𝐹𝑒𝑎𝑡𝑢𝑟𝑒3” : “𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑦”, ...}.

Query cost: For all types of queries, we define the cost
function of a single query, when pointed to a ‘closed-book’

2We use the notion of query while describing the interaction with the LLM,
while this may be sometimes referred as “propmt” or “request”.

LLM,𝑀 as:

𝑐𝑜𝑠𝑡 (𝑞,𝑀) = 𝑐𝑞 (𝑀) + 𝑐𝑡𝑞 (𝑀) · number_of_query_tokens
+ 𝑐𝑡𝑟 (𝑀) · number_of_response_tokens

In this definition, we “pay” 𝑐𝑞 (𝑀) for the query itself and
𝑐𝑡𝑞 (𝑀), for each of the processed tokens in the query 𝑞,
𝑐𝑡𝑟 (𝑀) for each of the produced response tokens. The actual
costs depends on the chosen LLM, 𝑀 . This definition is in-
spired by the fact that the existing LLMs usually charge per
tokens, more feature correlate with more tokens.

Using a RAGLLM involves retrieval cost 𝑐𝑟 (𝑀), processing
cost for |𝐷 | documents 𝑐𝑑𝑝 (𝑀, |𝐷 |), and the prior factors:

𝑐𝑜𝑠𝑡 (𝑞,𝑀) = 𝑐𝑞 (𝑀) + 𝑐𝑡𝑞 (𝑀) · number_of_query_tokens
+ 𝑐𝑟 (𝑀) + 𝑐𝑑𝑝 (𝑀, |𝐷 |)
+ 𝑐𝑡𝑟 (𝑀) · number_of_response_tokens

Using RAG models, a single query can generate an en-
tire column, reducing the number of queries needed. Thus,
since processing response tokens with RAG models may
be cheaper, using RAG for generating new columns likely
results in a lower total cost despite retrieval expenses.

Gain: We define the gain of the additional set of feature
values to dataset D as, for classification tasks as follows:

𝑔𝑎𝑖𝑛(𝐷𝑛𝑒𝑤) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑀𝑜𝑑𝑒𝑙 (𝐷𝑛𝑒𝑤))−𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑀𝑜𝑑𝑒𝑙 (𝐷))
For regression tasks:

𝑔𝑎𝑖𝑛(𝐷𝑛𝑒𝑤) = 𝑀𝑆𝐸 (𝑀𝑜𝑑𝑒𝑙 (𝐷𝑛𝑒𝑤)) −𝑀𝑆𝐸 (𝑀𝑜𝑑𝑒𝑙 (𝐷))
This simply shows the relative improvement of the model
trained on the enriched data.

Task: Enriching the data with extra features that maximize
the gain while maintaining the cost within a defined budget.

2.2 System Overview
The visionary systemwe propose comprises several intercon-
nected modules, each serving a specific purpose to facilitate
efficient data processing and improve the accuracy of the
downstream ML tasks. Figure 4 depicts the modules of the
system. Next, we focus on the two main modules (marked in
grey in the figure) and describe their operation in details.

Data Enrichment Module. This module is responsible for
the interaction with ML models (both with the baseline and



the improved models). It receives the data, the results from
the ML model and the set of input parameters, such as cost
and gain functions, together with the budget. The module
interacts with the Query Selector and enriches the data that
later passes to the improved ML model. This process is itera-
tive until the budget limit is reached.

To address LLM hallucinations, the iterative Data Enrich-
ment Module verifies at each phase that the retrieved feature
genuinely enhances ML performance. Features which do not
improve ML performance are excluded from the dataset.

Query Selector. This pivotal component is responsible for
the interaction with the LLM to enrich data. This module re-
ceives the data and the parameters from the Data Enrichment
module and decides which queries to send, and to which of
the LLMs, based on various factors. For example, one of
such factors may be the applicability of the feature across
multiple ML tasks, thereby maximizing resource utilization.
In this case the gain will be computed as the sum of gains
over all the relevant ML tasks. The selection of the LLM is
determined by the varying costs and levels of uncertainty
associated with each.

2.3 Research Agenda
Next, we present several directions for implementation and
further research of different modules of our visionary system.

Targeted values enrichment: Since not all samples or cate-
gories within a dataset contribute equally to the performance,
and since the effectiveness of one enrichment step depends
on the others,Query Selector needs to determine which of the
samples and categories are most beneficial as a group. An ex-
ample for similar approach is presented in [6]. The described
system identifies groups of information gaps whose closure
significantly uplifts outcome quality. Adapting this strategy,
allows to dynamically recognize data segments whose mu-
tual enhancement could boost the model accuracy.

Enrichment based on task difficulty: Query Selector seg-
ment the dataset into groups based on their difficulty. For
example, such segmentation may be based on the countries
that are “hard to classify” vs “easy to classify”, which allows
for applying a resource-conserving approach for enrichment.

Specifically, for countries that are considered easy to clas-
sify, we can afford a more economical approach. By aggregat-
ing samples on the country level, Query Selector can pose a
single, broader query to the LLM for each country, extracting
features or even likelihoods. This method reduces the cost by
minimizing the number of required LLM queries. For exam-
ple Query Selector can issue a query “What is the likelihood
that an athlete from Jamaica is a marathon runner?” and add
the returned value as a feature to the dataset.

For the “hard to classify” categories, Query Selector adopts
a more granular strategy. Here, the queries are not only
country-specific but may also incorporate additional dimen-
sions, e.g., athlete’s height. Such specificity aims to capture
nuanced details, albeit at a higher query cost. This strategy
is flexible, for instance, rather than querying for a single
height, it might query for a range, balancing specificity with
cost efficiency. For example “What is the likelihood that an
athlete from USA, whose height is 180 to 185 cm, is a 100 meters
runner?”.

Iterative vs batch querying approach: Since the cost of
each query includes the 𝑐𝑞 part, querying for more features
in one query may reduce the overall cost. However, some
of the retrieved features may not be needed, and moreover,
the iterative approach allows to evaluate the relative gain of
each retrieved feature and change the strategy based on the
improved ML model performance. Hence, a hybrid approach
that interleaves both iterative approach (were the features
are retrieved one-by-one) and batch approach (were one
query retrieves many features) is needed.

3 RELATEDWORK
Transformer-based LLMs, such as BERT [5] and GPT [12],
have revolutionized NLP. Recent efforts like the TabLLM
study [8] have explored the application of fine-tuned LLMs
to tabular data classification, through prompt-serialization
techniques. However, the approaches fall short in terms of
resource efficiency.

Previous works [9, 11] have utilized LLMs for tabular fea-
ture engineering, leveraging the original features to develop
auto-ML frameworks. While these methods are explainable
and computationally efficient, their resulting features are
just a product of the original ones, as in traditional feature
engineering. Consequently, their effectiveness is limited to
datasets that are inherently rich in relevant information.
Moreover, [7] explored data enrichment by using unstruc-
tured text from a knowledge-base (KB), to create tabular
features, utilizing LLMs to create these features. However,
the reliance on named entities, to match to entities in the
KB, limits the applicability of this method. Concurrently, [1]
and [3] have demonstrated the utility of LLMs in generating
feature embeddings and producing realistic tabular data, re-
spectively, showcasing the potential of LLMs to transcend
the traditional contextual limitations of classic ML.

Finally, as previously mentioned, research on crowdsourc-
ing (e.g., [2, 4]) examines settings similar to our, where one
aims to determine the optimal questions to pose to a crowd
and the most suitable individuals within the crowd to ap-
proach for specific tasks. However, there are several practical
differences, most notably the latency, hence an adaptation is
required for our setting.
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