Algorithms and Applications in Social Networks

2023/2024, Semester A
Slava Novgorodov

Lesson \#9

- Link Prediction
- Prediction Heuristics
- Evaluation Methods
- Experimental Results
- (Bonus) More Riddles

Link Prediction

Link Prediction

- The task of link prediction is to compute the chance of each two non-connected nodes to form a connection
- Another point of view - rank all pairs by the chance and take the top-k
- Static mode - taking a snapshot of the graph

Three formulations of the problem

- Link prediction: A network is changing over time. Given a snapshot of a network at time t0, predict edges added in the next time interval
- Link completion (missing links identification): Given a network, infer links that are consistent with the structure, but missing
- Link reliability: Estimate the reliability of given links in the graph.

Outcome of the Prediction

While working on Link Prediction problem, possible outcomes can be:

- link existence
- link weight
- link type
- link sign

Use cases

- Crime/terrorists networks, who are going to interact with whom?

Use cases

- Facebook's suggested friends

\square People You May Know
See all friend recommendations

Angie Swartz
63 mutual friends
4. Add Friend

Carlos Gil
124 mutual friends
4. Add Friend

Dan Franks
62 mutual friends

Drew Griffin
60 mutual friends
Add Friend

Dorie Clark \odot 94 mutual friends
4. Add Friend

Use cases

- Facebook's suggested friends

Use cases

facebook

Find friends from different parts of your life
Use the checkboxes below to discover people you know from your hometown，school，employer and more．

Hometown
\square Indianapolis，Indiana
Enter another city
Current City
\square Indianapolis，Indiana
Enter another city

\square North Central High School
Enter another high school

Mutual Friend

Enter a name

College or University

\square Martin University
Enter another college

Employer

ARIES GRAPHIC DESIGN
Enter another employer

Judy Pyles 36 mutual friends纲 Add Friend

David Corbitt 90 mutual friends组 Add Friend

LouieBaur Digg 39 mutual friends组 Add Friend

Landon Montel

Rocky Campbell 41 mutual friends约 Add Friend

Eric Bettis 15 mutual friends组 Add Friend

LaTonya Mayberry Bynum
51 mutual friends组 Add Friend

Kevin Brown

Laura White 12 mutual friends纪 Add Friend

Eric Hughes 110 mutual friends组 Add Friend

Durece Johnson 2 mutual friends纪 Add Friend

Stanley F．Henry

King Ro Conley 59 mutual friends臼 Add Friend

Marki Ann 26 mutual friends组 Add Friend

Kendale Adams 64 mutual friends约 Add Friend

Dillon Rhodes
43 mutual friends纲 Add Friend

Michael Pugh 21 mutual friends Et Add Friend

Bruce T．Caldwell 143 mutual friends组 Add Friend

Rhonda Landrum 54 mutual friends ¢ Add Friend

Lisa Williams 22 mutual friends \＆Add Friend

Angela Blackwell Miller 61 mutual friends \＆Add Friend

Use cases

- LinkedIn - similar, indicating the distance, not just the number of common friends

Use cases

- Twitter - suggestions whom to follow (indicates who also follows it)

Summary

Does network structure contain enough information to predict what new links will form in the future?

Prediction Heuristics

The Link-Prediction Problem

1. Formalize the problem
2. Propose link prediction heuristics based on measures for analyzing the "proximity" of
3. Evaluate different heuristics on different datasets
"The Link-Prediction Problem for Social Networks" by Liben-Nowel and Kleinberg https://www.cs.cornell.edu/home/kleinber/link-pred.pdf

Intuition

- In many networks, people who are "close" belong to the same social circles and will inevitably encounter one another and become linked themselves.
- Link prediction heuristics measure how "close" people are

Red nodes are close to each other

Red nodes are more distant

Types of heuristics

- Local
- (negated) Shortest path (SP)
- Common neighbors (CN)
- Jaccard (JC)
- Adamic-Adar (AA)
- Preferential attachment (PA)
- Global
- Katz score
- Hitting time
- PageRank

Notation: Neighbors of x :

$$
\mathrm{N}(\mathrm{x})=\Gamma(x)
$$

$$
\text { Degree of } \mathrm{x}: \quad \mathrm{d}_{\mathrm{x}}=|\mathrm{N}(\mathrm{x})|=|\Gamma(x)|
$$

(negated) Shortest Path (SP)
negated

$$
\text { Score }(x, y)=\text { Lenght of Shortest Path }
$$

Between x and Y

$$
\begin{aligned}
& \text { Score }(A, E)=-2 J \\
& \text { Score }(A, D)=-3
\end{aligned}
$$

Common Neighbors (CN)

Number of
common neighbors between x and y

$C N=3$

Common Neighbors (CN)

$\left.S_{\text {nen }}(x, y)=\frac{\mid \Gamma(x)}{\overline{7}} \cap \Gamma(y) \right\rvert\,$

Neighloors of x

$$
S=2 \sqrt{S} \quad S=1
$$

Jaccard (JC)

The fraction of common nodes

$$
\frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}
$$

$$
J C=\frac{C N}{d_{x}+d_{y}-C N}
$$

Jaccard (JC)

Adamic/Adar (AA)

Number of common neighbors normalized by neighbors degrees

$$
\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}
$$

$$
A A=\sum_{z \in C N} \frac{1}{\log d_{z}}
$$

Adamic/Adar (AA)

$$
\operatorname{Score}(x, y)=\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}
$$

$$
\begin{array}{ll}
\Gamma(A) \cap \Gamma(C)=B & \Gamma(A) \cap \Gamma(E)=D \\
\frac{1}{\log (\Gamma(B))}=\frac{1}{\log 3}=2.09 & \frac{1}{\log (\Gamma(D))}=\frac{1}{\log 6}=1.2
\end{array}
$$

Preferential Attachment (PA)

Better connected nodes are most likely to connect
("Rich get richer")

$$
|\Gamma(x)| \cdot|\Gamma(y)|
$$

$$
P A=d_{x} d_{y}
$$

Preferential Attachment (PA)

$$
\operatorname{Score}(x, y)=|\Gamma(x)| \cdot|\Gamma(y)|
$$

Katz score

- Sum of number of paths of length I

$$
\sum_{\ell=1}^{\infty} \beta^{\ell} \cdot \mid \text { paths }_{x, y}^{\langle\ell\rangle} \mid
$$

Where paths ${ }_{x, y}^{\langle\ell\rangle}:=\{$ paths of length exactly ℓ from x to $y\}$
Betta - dumping factor

Katz score

$$
\operatorname{Score}(x, y)=\sum_{l=1}^{\infty} \frac{\beta^{\prime}}{\operatorname{\beta }^{\prime}} \cdot \frac{\left|\operatorname{Pa}_{a}+h_{x, y}^{\prime}\right|}{\downarrow}
$$

by lenght

$$
\begin{array}{l|ll}
P_{\text {ath }}^{2}=2 & P_{A, D}^{3}=2 & P_{a+h_{A, E}^{2}}^{2}=1 \\
S=\frac{1}{2} \cdot 2+\frac{1}{4} \cdot 2+\cdots & S=\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 1+\cdots
\end{array}
$$

Other scoring functions

- Hitting time - expected number of steps from x to y
- SimRank - state of the art similarity measure

$$
\operatorname{score}(x, y)= \begin{cases}1 & \text { if } x=y \\ \gamma \cdot \frac{\sum_{a \in \Gamma(x)} \sum_{b \in \Gamma(y)} \operatorname{score}(a, b)}{|\Gamma(x)| \cdot|\Gamma(y)|} & \text { otherwise }\end{cases}
$$

- Clustering coefficient:

$$
\mathrm{CC}(\mathrm{x})^{*} \mathrm{CC}(\mathrm{y}) \text { or } \mathrm{CC}(\mathrm{x})+\mathrm{CC}(\mathrm{y})
$$

Summary

- Pick a favorite heuristic method
- Compute over all pairs of nodes
- Sort
- Take the top-k
- How to chose best heuristics?
- Need to evaluate!

Evaluation Methods

Evaluation

Undirected network $G=(V, E)$, universal set $|U|=|V|(|V|-1) / 2$
Task: Find out missing links in $U-E$.

Evaluation:
Randomly split E into two sets: training set E^{\top}, validation set E^{\vee}
k-fold cross validation

- Randomly partition into k subsets
- Each time one subset is selected as probe set, the others as training set
- Repeat k times, each with a different probe set

Metrics

- False positive - we predicted, but doesn't exists in the ground truth (full network)
- False negative - we missed the prediction

$$
\begin{aligned}
\text { Precision } & =\frac{T P}{T P+F P}, \quad \text { Recall }=\frac{T P}{T P+F N} \\
F & =\frac{2 \cdot \text { Precision } \cdot \text { Recall }}{\text { Precision }+ \text { Recall }}
\end{aligned}
$$

ACTUAL VALUES

		Postitive	negative
		TP	FP
		FN	TN

Experimental Results

Datasets

Real-world networks

- PPI: protein-protein interaction
- NS: co-authorship
- Grid: electrical power-grid
- PB: US political blogs
- INT: router-level Internet
- USAir: US air transportation

Results

Indices	PPI	NS	Grid	PB	INT	USAir
CN	0.889	$\mathbf{0 . 9 3 3}$	$\mathbf{0 . 5 9 0}$	0.925	$\mathbf{0 . 5 5 9}$	0.937
Jaccard	0.888	$\mathbf{0 . 9 3 3}$	$\mathbf{0 . 5 9 0}$	0.882	$\mathbf{0 . 5 5 9}$	0.901
PA	0.828	0.623	0.446	0.907	0.464	0.886
AA	0.888	0.932	$\mathbf{0 . 5 9 0}$	0.922	$\mathbf{0 . 5 5 9}$	0.925

* AUC results

Results

Results

Results

predictor			首	吕 0 0 9 9	
probability that a random prediction is correct	0.475\%	0.147\%	0.341\%	0.207\%	0.153\%
graph distance (all distance-two pairs)	9.6	25.3	21.4	12.2	29.2
common neighbors	18.0	41.1	27.2	27.0	47.2
preferential attachment	4.7	6.1	7.6	15.9	7.5
Adamic/Adar	16.8	54.8	30.1	39.9	50.5
Jaceard	16.4	42.3	19.9	27.7	41.7
SimRank $\quad \gamma=0.8$	14.6	99.3	92.8	26.1	41.7
hitting time	6.5	23.8	25.0	3.8	13.4
hitting time, stationary-distribution normed	5.3	23.8	11.0	11.3	21.3
commute time	5.2	15.5	39.1	17.1	23.4
commute time, stationary-distribution normed	5.3	16.1	11.0	11.3	16.3
rooted PageRank $\quad \alpha=0.01$	10.8	28.0	33.1	18.7	29.2
$\alpha=0.05$	13.8	39.9	35.3	24.6	41.3
$\alpha=0.15$	16.6	41.1	27.2	27.6	42.6
$\alpha=0.30$	17.1	42.8	25.0	29.9	46.8
$\alpha=0.50$	16.8	41.1	24.3	30.7	46.8
Katz (weighted) $\quad \beta=0.05$	3.0	21.4	19.9	2.4	12.9
$\beta=0.005$	13.4	54.8	30.1	24.0	52.2
$\beta=0.0005$	14.5	54.2	30.1	32.6	51.8
Katz (unweighted) $\quad \beta=0.05$	10.9	41.7	37.5	18.7	48.0
$\beta=0.005$	16.8	41.7	37.5	24.2	49.7
$\beta=0.0005$	16.8	41.7	37.5	24.9	49.7

Figure 3-3: Performance of the basic predictors on the link-prediction task defined in Section 3.2. See Sections 3.3.1, 3.3.2, and 3.3 .3 for definitions of these predictors. For each predictor and each arXiv section, the displayed number specifies the factor improvement over random prediction. Two predictors in particular are used as baselines for comparison: graph distance and common neighbors. Italicized entries have performance at least as good as the graph-distance predictor; bold entries are at least as good as the common-neighbors predictor. See also Figure 3-4.

Related reading

http://be.amazd.com/link-prediction/ https://www.cs.cornell.edu/home/kleinber/link-pred.pdf

The Link Prediction Problem for Social Networks*

David Liben-Nowell ${ }^{\dagger}$
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139 USA
dln@theory.lcs.mit.edu

Jon Kleinberg ${ }^{\ddagger}$
Department of Computer Science
Cornell University
Ithaca, NY 14853 USA
kleinber@cs.cornell.edu

January 8, 2004

Abstract

Given a snapshot of a social network, can we infer which new interactions among its members are likely to occur in the near future? We formalize this question as the link prediction problem, and develop approaches to link prediction based on measures for analyzing the "proximity" of nodes in a network. Experiments on large co-authorship networks suggest that information about future interactions can be extracted from network topology alone, and that fairly subtle measures for detecting node proximity can outperform more direct measures.

More Riddles

Riddle \#1

In group of N people, every two know each other and communicate in one-way direction.

Prove that there is a node (called "main node") that can reach any other node in 2 steps

Riddle \#1 - hint

In group of N people, every two know each other and communicate in one-way direction.

Prove that there is a node (called "main node") that can reach any other node in 2 steps

Hint: look at the node with highest degree!

Riddle \#1 - solution

In group of N people, every two know each other and communicate in one-way direction.

Prove that there is a node (called "main node") that can reach any other node in 2 steps

Riddle \#2

In a group of 20 people, each knows exactly 14 others.
Prove that there is a group of 4 people that know each other

Riddle \#2 - hint

In a group of 20 people, each knows exactly 14 others. Prove that there is a group of 4 people that know each other

Hint: go in the negative direction, removing all people that doesn't know X

Riddle \#2 - solution

In a group of 20 people, each knows exactly 14 others.
Prove that there is a group of 4 people that know each other

Riddle \#3

In group of 100 people that all know each other, we removed 98 connection.

Prove that the graph is still connected!

Riddle \#3 - solution

In group of 100 people that all know each other, we removed 98 connection.

Prove that the graph is still connected!

Solution:
Number of removed edges - n * (100-n)
$n(100-n)=50^{2}-(n-50)^{2} \geq 50^{2}-49^{2}=1 \cdot 99>98$.

Thank you! Questions?

