

Algorithms and Applications in Social Networks

2023/2024, Semester A Slava Novgorodov

Lesson #4

- Similarity in networks
- Network structure
- Communities
- Detection of communities

Similarity in Networks

Properties of Network

- Global (per network):
 - Average clustering coefficient
 - Degree distribution
 - Diameter
 - ...
- Local (per node):
 - Degree
 - Node centrality
 - ...
- Pairwise:
 - Similarity

- ...

• Jaccard Similarity: [N (v) = Neighbors(v)]

 $J(2, 4) = |\{3, 5, 6\} \cap \{1, 3, 5\}| / \\ |\{3, 5, 6\} \cup \{1, 3, 5\}| = 2/4 = 0.5$

• Cosine Similarity:

$$(2) = (1, 0, 1, 0, 1, 0)$$
$$(4) = (0, 0, 1, 0, 1, 1)$$

cos((2), (4)) = 2 / 3

Network Structure

Network Structure

- Clique is a complete subgraph.
- Cliques can overlap

- Maximal clique a clique that cannot be extended by adding more nodes
- Maximum clique a clique of a maximum size

- Maximal clique a clique that cannot be extended by adding more nodes
- Maximum clique a clique of a maximum size

Maximal cliques:

- Size: 2 3 4 5
- #: 11 21 2 2

(13)

(18)

Computation of cliques:

- Finding a clique of size k: O(n^k k²)
- Finding maximum clique: O(3^{n/3})
- Easier in sparse graphs...

Graph Core

• A **k-core** is the largest subgraph S such as each node is connected to at least k nodes in S

- Every node in k-core has degree >= k
- (k+1)-core is always a subgraph of k-core
- Core number of node is the highest "k" of the k-core that contains this node

Graph Core - Example

k-core decomposition

Input: Graph G(V, E)

Output: core[v] – core number for each node

- 1: Store degree of v in degree[v]
- 2: Sort V by degree[v] (ascending)
- 3: For each v in V:
- 4: core[v] = degree[v]
- 5: **For each** u **in** neighbors(v):
- 6: **If** degree[u] > degree[v]:
- 7: degree[u] -= 1
- 8: Sort V by degree[v]

k-core decomposition

Recursively delete all nodes with degree less then k, the remaining graph is k-core

k-core decomposition

Zachary karate club k-core decomposition:

Network Communities

Community

Network Communities are group of vertices such that vertices inside the group connected with many more edges than between groups

Community Types

Communities can be either:

- Non-Overlapping
 - Country of residence
 - Working place
 - Favorite football club
- Overlapping
 - Types of friends (friends from school, army, work)
 - Groups of interest

Example – Soccer teams

Example – Non-overlapping

Example – Non-overlapping

Example – Overlapping

Example

Example

What makes community?

- Mutuality of edges.
 - Almost everyone in the group has edge to one another
- Compactness.
 - Closeness or reachability of group members in small number of steps, not necessarily adjacency
- Density of edges.
 - High frequency of edges within the group
- Separation.
 - Higher frequency of ties among group members compared to non-members

Community density

- Network density: $\rho = \frac{m}{n(n-1)/2}$
- Inter-community density: $\delta_{int}(C) = \frac{m_s}{n_s(n_s-1)/2}$
- External edges density: $\delta_{ext}(C) = \frac{m_{ext}}{n_c(n-n_c)}$

Community has: $\delta_{int} > \rho$, $\delta_{ext} < \rho$

 $\rm n_{_{S}}-nodes$ in S , $\rm m_{_{S}}-edges$ in S, $\rm \,m_{_{ext}}-edges$ from S outside

Modularity

Modularity:

$$Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j), = \sum_u (e_{uu} - a_u^2)$$

$$\stackrel{e_{uu}}{=} \sum_u e_{uv} \text{ - fraction of edges within community } u$$

$$a_u = \sum_u e_{uv} \text{ - fraction of ends of edges attached to nodes in } u$$

$$\delta_{ij} = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$$
 - Kronecker Delta

Higher modularity score – better community Single community – Q = 0

Detection of Communities

Similarity Based Clustering

- Define similarity between every two nodes:
 - Jaccard
 - Cosine
 - . . .
- Build similarity matrix (compute all-pairs similarity)
- Group together nodes with high similarity

Agglomerative clustering

- Assign each vertex to a group of its own
- Find two groups with the highest similarity and join them in a single group
- Calculate similarity between groups:
 - single-linkage clustering (most similar in the group)
 - complete-linkage clustering (least similar in the group)
 - average-linkage clustering (mean similarity between groups)
- Repeat until all joined into single group

Dist hclust (*, "average")

Dist hclust (*, "average")

Graph Partitioning

Combinatorial problem:

 Number of ways to divide n nodes into n1, n2 nodes (n1+n2 = n), bi-partitioning

of combinations = n! / (n1! * n2!)

Community Detection

- Setup:
 - Undirected sparse graph (m << n^2)
 - Non-overlapping communities
 - Each community should be connected
 - Exact solution NP-hard, hence we are using heuristics / approximate algorithms

Edge Betweenness

• Number of shortest paths going via edge e

$$C_B(e) = \sum_{s \neq t} \frac{\sigma_{st}(e)}{\sigma_{st}}$$

Newman-Girvan algorithm

Algorithm: Newman-Girvan, 2004

```
Input: graph G(V,E)
```

Output: Dendrogram

repeat

```
For all e \in E compute edge betweenness C_B(e);
```

```
remove edge e_i with largest C_B(e_i);
```

until edges left;

Step-by-step

Step 2:

Hierarchical network decomposition:

Overlapping Communities

 Next lesson we will extend the community detection task to find overlapping communities

Thank you! Questions?