Algorithms and Applications in Social Networks

2023/2024, Semester A
Slava Novgorodov

Lesson \#4

- Similarity in networks
- Network structure
- Communities
- Detection of communities

Similarity in Networks

Properties of Network

- Global (per network):
- Average clustering coefficient
- Degree distribution
- Diameter
- ...
- Local (per node):
- Degree
- Node centrality
- Pairwise:
- Similarity
- ...

Similarity

- Jaccard Similarity:
$[\mathrm{N}(\mathrm{v})=\operatorname{Neighbors}(\mathrm{v})]$

$$
J(a, b)=\frac{|N(a) \cap N(b)|}{|N(a) \cup N(b)|}
$$

$$
\begin{aligned}
& J(2,4)=|\{3,5,6\} \cap\{1,3,5\}| / \\
& \quad|\{3,5,6\} \cup\{1,3,5\}|=2 / 4=0.5
\end{aligned}
$$

Similarity

- Cosine Similarity:

$$
\cos (a, b)=(a * b) /\left(|a|^{*}|b|\right)
$$

$(2)=(1,0,1,0,1,0)$
$(4)=(0,0,1,0,1,1)$
$\cos ((2),(4))=2 / 3$

Similarity

Network Structure

Network Structure

Graph cliques

- Clique is a complete subgraph.
- Cliques can overlap

Graph cliques

- Maximal clique - a clique that cannot be extended by adding more nodes
- Maximum clique - a clique of a maximum size

Graph cliques

- Maximal clique - a clique that cannot be extended by adding more nodes
- Maximum clique - a clique of a maximum size

Maximal

Maximal \& Maximum

Not maximal

Not clique

Graph cliques

Maximal cliques:
Size: 2345
\#: 112122

Graph cliques

Computation of cliques:

- Finding a clique of size $k: O\left(n^{k} k^{2}\right)$
- Finding maximum clique: $\mathrm{O}\left(3^{\mathrm{n} / 3}\right)$
- Easier in sparse graphs...

Graph Core

- A k-core is the largest subgraph S such as each node is connected to at least k nodes in S

- Every node in k-core has degree $>=k$
- $(k+1)$-core is always a subgraph of k-core
- Core number of node is the highest " k " of the k-core that contains this node

Graph Core - Example

\square

k-core decomposition

Input: Graph G(V, E)
Output: core[v] - core number for each node

1: Store degree of v in degree[v]
2: Sort V by degree[v] (ascending)
3: For each v in V :
4: core[v] = degree[v]
5: For each u in neighbors(v):
6: If degree[u] > degree[v]:
7: \quad degree[u]-= 1
8: Sort V by degree[v]

k-core decomposition

Recursively delete all nodes with degree less then k, the remaining graph is k-core

k-core decomposition

Zachary karate club k-core decomposition:
Red - 1
Yellow-2
Green - 3
Blue-4

Network Communities

Community

Network Communities are group of vertices such that vertices inside the group connected with many more edges than between groups

Community Types

Communities can be either:

- Non-Overlapping
- Country of residence
- Working place
- Favorite football club
- Overlapping
- Types of friends (friends from school, army, work)
- Groups of interest

Example - Soccer teams

Example - Non-overlapping

Example - Non-overlapping

Example - Overlapping

Example

Example

What makes community?

- Mutuality of edges.
- Almost everyone in the group has edge to one another
- Compactness.
- Closeness or reachability of group members in small number of steps, not necessarily adjacency
- Density of edges.
- High frequency of edges within the group
- Separation.
- Higher frequency of ties among group members compared to non-members

Community density

- Network density:

$$
\rho=\frac{m}{n(n-1) / 2}
$$

- Inter-community density: $\quad \delta_{i n t}(C)=\frac{m_{s}}{n_{s}\left(n_{s}-1\right) / 2}$
- External edges density: $\quad \delta_{e x t}(C)=\frac{m_{\text {ext }}}{n_{c}\left(n-n_{c}\right)}$

Community has: $\quad \delta_{\text {int }}>\rho, \delta_{\text {ext }}<\rho$
n_{s} - nodes in $\mathrm{S}, \mathrm{m}_{\mathrm{s}}$ - edges in $\mathrm{S}, \mathrm{m}_{\text {ext }}$ - edges from S outside

Modularity

Modularity:

$$
\begin{aligned}
& Q= \frac{1}{2 m} \sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \delta\left(c_{i}, c_{j}\right),=\sum_{u}\left(e_{u u}-a_{u}^{2}\right) \\
& e_{u u} \text { - fraction of edges within community } u \\
& a_{u}=\sum_{u} e_{u v}-\text { fraction of ends of edges attached to nodes in } u \\
& \delta_{i j}=\left\{\begin{array}{ll}
0 & \text { if } i \neq j, \\
1 & \text { if } i=j .
\end{array} \quad\right. \text { - Kronecker Delta }
\end{aligned}
$$

Higher modularity score - better community
Single community $-\mathrm{Q}=0$

Detection of Communities

Similarity Based Clustering

- Define similarity between every two nodes:
- Jaccard
- Cosine
- Build similarity matrix (compute all-pairs similarity)
- Group together nodes with high similarity

Agglomerative clustering

- Assign each vertex to a group of its own
- Find two groups with the highest similarity and join them in a single group
- Calculate similarity between groups:
- single-linkage clustering (most similar in the group)
- complete-linkage clustering (least similar in the group)
- average-linkage clustering (mean similarity between groups)
- Repeat until all joined into single group

Similarity

Karate club example

Karate club example

hclust (*, "average")

Karate club example

Karate club example

Karate club example

Graph Partitioning

Combinatorial problem:

- Number of ways to divide n nodes into n1, n2 nodes ($\mathrm{n} 1+\mathrm{n} 2=\mathrm{n}$), bi-partitioning
\# of combinations $=\mathrm{n}!/(\mathrm{n} 1!$ * $\mathrm{n} 2!)$

Community Detection

- Setup:
- Undirected sparse graph (m<< $\mathrm{n}^{\wedge} 2$)
- Non-overlapping communities
- Each community should be connected
- Exact solution NP-hard, hence we are using heuristics / approximate algorithms

Edge Betweenness

- Number of shortest paths going via edge e

$$
C_{B}(e)=\sum_{s \neq t} \frac{\sigma_{s t}(e)}{\sigma_{s t}}
$$

Newman-Girvan algorithm

Algorithm: Newman-Girvan, 2004
Input: graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$
Output: Dendrogram
repeat
For all $e \in E$ compute edge betweenness $C_{B}(e)$; remove edge e_{i} with largest $C_{B}\left(e_{i}\right)$;
until edges left;

Step-by-step

Step 1:

Step 3:

(5)

Step 2:

(7)

Hierarchical network decomposition:

Karate club example

Karate club example

goodness of split

Overlapping Communities

- Next lesson we will extend the community detection task to find overlapping communities

Thank you! Questions?

