000

TEL AVIV UNIVERSITY

Algorithms and Applications in
Social Networks

% %% %%,
e000ce® ‘...::::.

L
,.‘. e
0 a%0
- b2l o
0 ° ® e

© Tt

% &w
-0 ¢ ©

@ ®

> § x| 2 ®e ©
) .‘ @ '

® @

¢ ® 0 @

[} @

...

2023/2024, Semester A
Slava Novgorodov

Lesson #11

* Dealing with Large Scale Networks
 The Map/Reduce Approach
* Social Network Analysis Examples

Dealing with Large Scale Networks

Large Scale Networks

* The real online social networks are huge

e Other “constructed” social networks that
involve people are also very big

* Need a scalable solution for analysis

Facebook

YouTube

WhatsApp

Facebook Messenger

WeChat

Instagram

Tumblr**

QQ

QZone

Sina Weibo

Reddit

Twitter

Top social networks — number of active users (in millions) — April 2018

Statistics

1500
1500
1300
980
813
794
783

2234

5

Statistics

2 500
2 000
1500

1 000

Number of users in millions

500

Q3 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4 Q2 Q4
‘08 '09 '09 "10 10 "1 I 12 12 13 13 '14 14 15 15 16 16 "17 "17

Facebook — number of active users (in millions) per quarter

Statistics

270

India

United States

Indonesia

Brazil

Mexico

Philippines

Vietham

Thailand

Turkey

United Kingdom

0 50 100 150 200 250 300

Facebook — number of active users (in millions) per country — April 2018 7

Statistics

How Many People
Use Facebook?

&) Oberlo

Facebook monthly active
users (MAUs) — MAUs were e

2.60 billion *::: :

Facebook daily active
users (DAUs) — DAUs were

1.73 billion .

(Facebook, 2020)

the geosocial
universe

Brought to you by JESS3

Windows Live

Hotmalil

Qzone

facebook

S'WPe 5.36n

Cell Phones

foursquare 10

¥ W\\‘\ OpenTable 22
7 brightklte & g M/

10 Google Lati mixi yelp.’k myspace.

AMOUNT = ACTIVE USERS

SlOJORVESS3)

May 2011 — size of major social services (in active users) 9

Social Network Analysis Tools

* Small scale network analysis and visualization:

NetworkX
* Pros: has implementation of many of the
known algorithms

* Cons: Not so good for large-scale data

Tools for Large-Scale analysis

‘::. 7Y "'“.
Ne%. ® ¢==.'..

e Apache Giraph % %

&
o0 1%
» a 8
- (1N

GIRAPH

* Graphlab GraphlLab

T — ——
NS

¢ PegaSUS l’l{U_IE(?T” PEGASUS

* MapReduce

12

Tools for Large-ScaIe analysis

* Apache Giraph ‘z‘

-

GIRAPH

* Graphlab GraphlLab

= F

¢ PegaSUS PROJEC T” PEGASUS

13

The Map/Reduce Approach

Map Reduce

* A programming model for large-scale, parallel
and distributed data processing

15

Map Reduce

* Publicly presented by Google in 2004

MapReduce:
Simplified Data Processing on Large Clusters

Jeff Dean, Sanjay Ghemawat
Google, Inc.

0OSDI'04: Sixth Symposium on Operating System Design and Implementation, San Francisco, CA (2004), pp. 137-150
https://research.google.com/archive/mapreduce-osdi04-slides/

16

https://research.google.com/archive/mapreduce-osdi04-slides/

Map Reduce

 MapReduce is useful for a wide range of
applications:
— Distributed Sorting
— Web-graph analysis (PageRank, ...)
— Documents clustering
— Inverted index construction

When to use Map Reduce?

* Problems that are huge, but not hard

* Problems that easy to parallelize (easily
partitionable and combinable)

* You should only implement Map and Reduce!

Hadoop

* A collection of open-source implementations
of parallel, distributed computation

e Started in 2006

* HDFS — open source implementation of GFS
(Google File Syste)

(Few words about) HDFS

e Great for huge files (TBs...)
e Each file is partitioned to chunks (64MB+)

* Each file is replicated several times

s

M/R Approach

* Read the data
* Map: Extract information from each row

e Shuffle
* Reduce: Aggregate, filter, transform...
* Write the results

M/R Model

* Input: Files
e Each line in file: (key, value)

* M/R program:
— Input: Bag of (input_key, value) pairs
— Output: Bag of (output key, value) pairs

22

Map Phase

* Input: Bag of (input_key, value) pairs
e Output: Bag of (intermidiate key, value) pairs

* The system applies the map phase in parallel
to all (input key, value) pairs in the input file

23

Reduce Phase

* Input: Bag of (interm_key, bag of values) pairs
e Output: Bag of (output key, values)

* The system groups all pairs with the same
intermediate key, and passes the bag of
values to the REDUCE function

24

Example

* The “Hello, World!” of Map Reduce —
WordCout

* Given a file with many rows, find how many
times each word appears in the whole file

Output:
this, 2
Input: is, 2
this is first line first, 1
and this is second line > line, 3
and another line and, 2
second, 1

another, 1

Example — solution

* The “Hello, World!” of Map Reduce -

WordCout

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emitintermediate(w, “17);

reduce(String key, Iterator values):

/l key: a word

// values: a list of counts

int result = 0;

for each v in values:
result += Parselnt(v);

Emit(AsString(result));

26

Example — solution

* Map:
def mapfn(k, v):
for win v.split():
vieldw, 1
* Reduce:
def reducefn(k, vs):

result = sum(vs)
return result

This particular implementation is in Python (as the rest of the
lecture).

Java, Scala and other languages are also supported.
It’s not important to remember the syntax, remember the pseudo-code!

Input

Intermediate

© G

'

T

© © ¢

kl:vkl:vk2:yv k3:v k4 U k4:v k5:v kd:v | kl:vk3:v
[[Gn oup by Key]]
Grouped [kl:v,v,v,v k3 v,v | kd:v,vv | kS:v

Output

560 6

Map Task |

kl:v kl:v k2:v

Partitioning Function

KNI

Sort and Group
kd:v,v,v

§¢

Reduce Task 1

b e e o o e e - o—

©

@

k3:v kd:v

kd:v k5:v

Partitioning Function

———————— —
Map Task 3 [

|

|

|

|

|

|

kd:v kl:wv k3w |
Partitioning Function I
________ o

Sort and Group
klvvvy | k3vy

L]

29

WordCount Flow in M/R

Input

Bus Car Train
Train Plane Car
Bus Bus Plane

{ Bus Car Train I

[{ Train Plane Car I

Bus1
Carl
Train 1

Train 1
1 Plane 1
Carl

{ Bus Bus Plane l

Splitting

Bus 2
Plane 1

Mapping

BUS 2
BUS 1

BUS 3

| CAR 1

CAR 1

‘| TRAIN 1
TRAIN 1

PLANE 1
PLANE 1

CAR 2

TRAIN 2

— PLANE 2

Intermediate Reducing

Splitting

Output

N

BUS 3
CAR 2
TRAIN 2
PLANE 2

Combining

30

WordCount Flow in M/R

Input i Map i Shuffle i Reduce i Output
| | | i
| | | I
| ! | |
Filel g (Hello,1) i i i
| (Big,1) I | !
HelloBig Data /gﬂ (Data,1) \f‘u i E
| | (Hello,1) : (Hello,1) il (Hello,1)
, i | Gigf{L1) L) (Big2) | (Big,2)
File2 E ' | (Data,{1,1}) || (Data,2) E (Data,2)
Big Data i (Big,1) i (Everywhere,1) i (Everywhere,1) E (Everywhere,1)
Everywhere '\:'\., (Data,1) /r' i E
| | (Everywhere,1) | | i |
] |] I
i I | |
I | I I
| I | |
| | | I
3 i | |

31

WordCount Flow in M/R

The Overall MapReduce Word Count Process

Input Splitting Mapping Shuffling Reducing Final Result
List(K2,V2) K2,List(V2)
Kivi ‘ :
Bear, (1,1) —| Bear,2
‘_ Deer Bear Rver P List(K3, V3)
/ - e,
“ | a1 | Gg3 | Bear2
Dear Bear River : s — - Car, 3
Car Car River Gar Gar Rver —» Deer, 2
Deer Car Bear River, 2
_omeuia) —(ez} \ U2

DeerCarBear %

1 -
Bear, 1 1 Reer, (L) —*| River 2

32

Another WordCount

This is a line
Also this

Map Reduce

map(“This is a line”) = reduce(a, {1}) =

a, 1
;h:lsi 1 ' reduce(also, {1}) =
as,1 LLE also, 1
line, 1 my e
map(alAlso this”) = reduce(line, {1}) =
so, 1 ‘ line, 1
this, 1 . reduce(this, {1, 1}) =
this, 2
a1 - E
also, 1
- is, 1
Result: Yika, 4
this, 2

33

Summary

 Map Reduce is a programming model for
scalable data processing

* The input is a file, each line is processed
separately

e User needs to implement Map and Reduce

e Technical details left for other courses:

— Workers vs Tasks, HDFS, fault tolerance,
translation other languages to MapReduce, ...

Social Network Analysis Examples

Social Networks

* Social network may be huge...
* Need an efficient way to perform computation

e Solution: MapReduce

Social Networks

* Representation:
— Adjacency Matrix vs Neighbors list?

* As Map/Reduce takes text files and works line

by line, better to have each line as a separate

node: E Rin

B->ACDE
C->ABDE
D->ABCE
E->BCD

Example #1

* Task: Find all incoming links
* Input:

A->B C
B->D E
C>A E
D->A E
E->D

* Output:
A->[C, ‘D]
B->[A]
C->[A]
E->[B', ‘C', ‘D’]
D->[‘B', ‘E']

Example #1 - solution

Map:
def mapfn(k, v):
d = v.split("->"
pages = set(d[1].strip().split(" "))
for w in pages:
vield w, d[0].strip()

Reduce:
def reducefn(k, vs):
return vs

Example #2

e Task: Find all mutual friends of all pairs of users

* |Input:
A->BCD
B->ACDE
C>ABDE
D->ABCE
E->BCD
* Output:

('A','B") -> {'C’, 'D'}
('A','C') -> {'D', 'B'}
('A','D')-> {'B','C'}
('A','E') -> {'B','C', 'D'}
('B','C') -> {'A','D', 'E'}
('B','D') -> {'A’,'C’, 'E'}
('B','E') ->{'C’, 'D'}
(‘'c’,'D") -> {'A', 'B', 'E'}
(‘'c’,'E') -> {'B', 'D'}
('D', 'E') ->{'B", 'C'}

Example #2 - solution

Map: Reduce:
def mapfn(k, v): def reducefn(k, vs):
d = v.split("->") return vs

friends = set(d[1].strip().split(" "))
for f1 in friends:
for f2 in friends:
if f1 < f2:
key = d[0].strip()
yield (f1, f2), key

Example #3

e Task: Find all mutual friends of all current friends

* |Input:
A->BCD
B->ACDE
C>ABDE
D->ABCE
E->BCD
* Output:

('A','D') > {'B', 'C'}
('A','C') -> {'D', 'B'}
('A', 'B') ->{'D', 'C'}
('B','C") -> {'D', 'A', 'E'}
('B','E') ->{'D', 'C’}
('B','D') -> {'A’,'C’, 'E'}
(‘'c’,'D") -> {'A', 'B', 'E'}
(‘'c’,'e') -> {'D', 'B'}
('D', 'E') ->{'B', 'C'}

Example #3 - solution

Map:
def mapfn(k, v):
d = v.split("->")
friends = set(d[1].strip().split(" "))
for win friends:
first = d[0].strip()
second =w
if first > second:
temp = first
first = second
second =temp
yield (first, second), friends

Reduce:
def reducefn(k, vs):
ret = vs[0]
forsinvs:
ret = ret.intersection(s)
return ret

Example #4

e Task: Find all unique triangles in the network
* Input:

A->BCF
B->A
C->AD
D->CEF
E->DF
F->ADE

* Output:

(D, E, F)

Example #4 - solution

e Task: Find all unique triangles in the network
* Input:

;":ECF Idea: Generate triangles

C->AD and count (if equals to 3)
D->CEF

E->DF
F->ADE

* Output:

(D, E, F)

Formalize at home

45

More Riddles

Riddle #1

There are 101 cities, every city connected to
other 100 cities, 50 with in-bound connection
and 50 with outbound connection

Prove that from every city to another you can
go using maximum 2 edges

Riddle #1 - hint

There are 101 cities, every city connected to
other 100 cities, 50 with in-bound connection
and 50 with outbound connection

Prove that from every city to another you can
go using maximum 2 edges

Hint: go in the negative
direction...

Riddle #1 - solution

There are 101 cities, every city connected to
other 100 cities, 50 with in-bound connection
and 50 with outbound connection

Prove that from every city to another you can
go using maximum 2 edges

Solution - In class

Thank you!

Questions?

