
Algorithms and Applications in
Social Networks

2023/2024, Semester A

Slava Novgorodov 1

Lesson #11

• Dealing with Large Scale Networks

• The Map/Reduce Approach

• Social Network Analysis Examples

2

Dealing with Large Scale Networks

3

Large Scale Networks

• The real online social networks are huge

• Other “constructed” social networks that
involve people are also very big

• Need a scalable solution for analysis

4

Statistics

5Top social networks – number of active users (in millions) – April 2018

Statistics

6Facebook – number of active users (in millions) per quarter

Statistics

7Facebook – number of active users (in millions) per country – April 2018

Statistics

8

9May 2011 – size of major social services (in active users)

10

Social Network Analysis Tools

• Small scale network analysis and visualization:

• Pros: has implementation of many of the
known algorithms

• Cons: Not so good for large-scale data

11

Tools for Large-Scale analysis

• Apache Giraph

•GraphLab

• Pegasus

•MapReduce
12

Tools for Large-Scale analysis

• Apache Giraph

•GraphLab

• Pegasus

•MapReduce
13

The Map/Reduce Approach

14

Map Reduce

• A programming model for large-scale, parallel
and distributed data processing

15

Map Reduce

• Publicly presented by Google in 2004

16

OSDI'04: Sixth Symposium on Operating System Design and Implementation, San Francisco, CA (2004), pp. 137-150
https://research.google.com/archive/mapreduce-osdi04-slides/

https://research.google.com/archive/mapreduce-osdi04-slides/

Map Reduce

• MapReduce is useful for a wide range of
applications:
– Distributed Sorting

– Web-graph analysis (PageRank, …)

– Documents clustering

– Inverted index construction

– …

17

When to use Map Reduce?

• Problems that are huge, but not hard

• Problems that easy to parallelize (easily
partitionable and combinable)

• You should only implement Map and Reduce!

18

Hadoop

• A collection of open-source implementations
of parallel, distributed computation

• Started in 2006

• HDFS – open source implementation of GFS
(Google File Syste)

19

(Few words about) HDFS

• Great for huge files (TBs…)

• Each file is partitioned to chunks (64MB+)

• Each file is replicated several times

20

M/R Approach

• Read the data

• Map: Extract information from each row

• Shuffle

• Reduce: Aggregate, filter, transform…
• Write the results

21

M/R Model

• Input: Files

• Each line in file: (key, value)

• M/R program:
– Input: Bag of (input_key, value) pairs

– Output: Bag of (output_key, value) pairs

22

Map Phase

• Input: Bag of (input_key, value) pairs

• Output: Bag of (intermidiate_key, value) pairs

• The system applies the map phase in parallel
to all (input_key, value) pairs in the input file

23

Reduce Phase

• Input: Bag of (interm_key, bag of values) pairs

• Output: Bag of (output_key, values)

• The system groups all pairs with the same
intermediate key, and passes the bag of
values to the REDUCE function

24

Example

• The “Hello, World!” of Map Reduce –
WordCout

• Given a file with many rows, find how many
times each word appears in the whole file

25

Input:
this is first line
and this is second line
and another line

Output:
this, 2
is, 2
first, 1
line, 3
and, 2
second, 1
another, 1

Example – solution

• The “Hello, World!” of Map Reduce -
WordCout

26

Example – solution

• Map:
def mapfn(k, v):

for w in v.split():
yield w, 1

• Reduce:
def reducefn(k, vs):

result = sum(vs)
return result

This particular implementation is in Python (as the rest of the
lecture).
Java, Scala and other languages are also supported.
It’s not important to remember the syntax, remember the pseudo-code!

27

28

29

WordCount Flow in M/R

30

WordCount Flow in M/R

31

WordCount Flow in M/R

32

Another WordCount

33

Summary

• Map Reduce is a programming model for
scalable data processing

• The input is a file, each line is processed
separately

• User needs to implement Map and Reduce

• Technical details left for other courses:
– Workers vs Tasks, HDFS, fault tolerance,

translation other languages to MapReduce, …
34

Social Network Analysis Examples

35

Social Networks

• Social network may be huge…
• Need an efficient way to perform computation

• Solution: MapReduce

36

Social Networks

• Representation:
– Adjacency Matrix vs Neighbors list?

• As Map/Reduce takes text files and works line
by line, better to have each line as a separate
node:

37

Example #1

• Task: Find all incoming links

• Input:
A -> B C

B -> D E

C -> A E

D -> A E

E -> D

• Output:
A -> [‘C', ‘D']

B -> [‘A’]

C -> [‘A’]

E -> [‘B', ‘C', ‘D’]

D -> [‘B', ‘E']

Example #1 - solution

Map:
def mapfn(k, v):

d = v.split("->")
pages = set(d[1].strip().split(" "))
for w in pages:

yield w, d[0].strip()

Reduce:
def reducefn(k, vs):

return vs

Example #2

• Task: Find all mutual friends of all pairs of users
• Input:

A -> B C D
B -> A C D E
C -> A B D E
D -> A B C E
E -> B C D

• Output:
('A', 'B') -> {'C', 'D'}
('A', 'C') -> {'D', 'B'}
('A', 'D') -> {'B', 'C'}
('A', 'E') -> {'B', 'C', 'D'}
('B', 'C') -> {'A', 'D', 'E'}
('B', 'D') -> {'A', 'C', 'E'}
('B', 'E') -> {'C', 'D'}
('C', 'D') -> {'A', 'B', 'E'}
('C', 'E') -> {'B', 'D'}
('D', 'E') -> {'B', 'C'}

40

Example #2 - solution

Map:
def mapfn(k, v):

d = v.split("->")
friends = set(d[1].strip().split(" "))
for f1 in friends:
 for f2 in friends:
 if f1 < f2:

key = d[0].strip()
yield (f1, f2), key

Reduce:
def reducefn(k, vs):

return vs

Example #3

• Task: Find all mutual friends of all current friends
• Input:

A -> B C D
B -> A C D E
C -> A B D E
D -> A B C E
E -> B C D

• Output:
('A', 'D') -> {'B', 'C'}
('A', 'C') -> {'D', 'B'}
('A', 'B') -> {'D', 'C'}
('B', 'C') -> {'D', 'A', 'E'}
('B', 'E') -> {'D', 'C'}
('B', 'D') -> {'A', 'C', 'E'}
('C', 'D') -> {'A', 'B', 'E'}
('C', 'E') -> {'D', 'B'}
('D', 'E') -> {'B', 'C'}

42

Example #3 - solution

Map:
def mapfn(k, v):

d = v.split("->")
friends = set(d[1].strip().split(" "))
for w in friends:

first = d[0].strip()
second = w
if first > second:

temp = first
first = second
second = temp

yield (first, second), friends

Reduce:
def reducefn(k, vs):

ret = vs[0]
for s in vs:

ret = ret.intersection(s)
return ret

Example #4

• Task: Find all unique triangles in the network

• Input:
A -> B C F

B -> A

C -> A D

D -> C E F

E -> D F

F -> A D E

• Output:
(D, E, F)

44

Example #4 - solution

• Task: Find all unique triangles in the network

• Input:
A -> B C F

B -> A

C -> A D

D -> C E F

E -> D F

F -> A D E

• Output:
(D, E, F)

45

Formalize at home

Idea: Generate triangles
and count (if equals to 3)

More Riddles

46

Riddle #1

There are 101 cities, every city connected to
other 100 cities, 50 with in-bound connection
and 50 with outbound connection

Prove that from every city to another you can
go using maximum 2 edges

47

Riddle #1 - hint

There are 101 cities, every city connected to
other 100 cities, 50 with in-bound connection
and 50 with outbound connection

Prove that from every city to another you can
go using maximum 2 edges

48

Hint: go in the negative
direction…

Riddle #1 - solution

There are 101 cities, every city connected to
other 100 cities, 50 with in-bound connection
and 50 with outbound connection

Prove that from every city to another you can
go using maximum 2 edges

49

Solution - In class

Thank you!
Questions?

50

