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ABSTRACT

Popular techniques for data cleaning use integrity constraints to
identify errors in the data and to automatically resolve them, e.g.
by using predefined priorities among possible updates and finding
a minimal repair that will resolve violations. Such automatic solu-
tions however cannot ensure precision of the repairs since they do
not have enough evidence about the actual errors and may in fact
lead to wrong results with respect to the ground truth. It has thus
been suggested to use domain experts to examine the potential
updates and choose which should be applied to the database.

However, the sheer volume of the databases and the large num-
ber of possible updates that may resolve a given constraint viola-
tion, may make such a manual examination prohibitory expensive.
The goal of the DANCE system presented here is to help to opti-
mize the experts work and reduce as much as possible the number
of questions (updates verification) they need to address. Given
a constraint violation, our algorithm identifies the suspicious tu-
ples whose update may contribute (directly or indirectly) to the
constraint resolution, as well as the possible dependencies among
them. Using this information it builds a graph whose nodes are the
suspicious tuples and whose weighted edges capture the likelihood
of an error in one tuple to occur and affect the other. PageRank-
style algorithm then allows us to identify the most beneficial tuples
to ask about first. Incremental graph maintenance is used to assure
interactive response time. We implemented our solution in the
DANCE system and show its effectiveness and efficiency through
a comprehensive suite of experiments.

1 INTRODUCTION

Data cleaning is a long-standing problem that has attracted much
research interest in the past years in the databases community.

Many key business decisions are made based on underlying databases.

Yet, real-life databases sometimes contain incomplete, wrong or
inconsistent data, that may lead to incorrect output and bad deci-
sion making. Consequently, much effort has been targeted to the
development of techniques to clean the underlying data.

Popular techniques for data cleaning use data-integrity and con-
sistency rules to identify errors in the data and to automatically
resolve them, e.g. by finding a minimal repair that will resolve
the constraints violation [23], or by using predefined priorities
among possible resolutions [15]. Such automatic solutions, how-
ever, cannot ensure the precision of the repairs since they do not
have enough evidence about the actual errors and thus may, in fact,
lead to wrong results with respect to the ground truth. In order
to overcome the limitations of such automatic techniques it has
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been suggested to use domain experts that have extensive knowl-
edge about the ground truth, to examine the potential updates
and choose which should be applied to the database [9, 15, 20].
However, the sheer volume of the databases and the large number
of possible updates that may resolve a given constraint violation,
may make such a manual examination prohibitory expensive. The
goal of the DANCE system presented here is to help to optimize
the experts work and reduce as much as possible the number
of questions (updates verification) they need to address. As we
will describe, our algorithms effectively prune the search space
to minimize the amount of interaction with the experts while, at
the same time, try to maximize the potential “cleaning benefit”
derived from the expert answers. DANCE can be used to opti-
mize the initial cleaning of a database as well as to assist in its
ongoing maintenance - whenever a constraint violation is reported,
DANCE can take over to efficiently clean the underlying database
by interacting with the experts.

Given a constraint violation, our algorithm first identifies the
tuples in the database whose update may contribute (directly or
indirectly) to the constraint resolution. We call those suspicious
tuples. Database constraints may be inter-related and thus when
analyzing a constraint violation, these relationships must be taken
into consideration. To determine which tuples should be consid-
ered first, we examine for each suspicious tuple ¢ (1) the potential
effects of updates to t, namely what tuples may potentially become
non-suspicious if ¢ is found to be incorrect and correspondingly
updated/removed, (2) the number of potential updates (attribute
errors) to ¢ that may lead to such an effect, and (3) the uncertainty,
if known, for the values in the database relation to which ¢ belongs.
Using this information we build a graph whose nodes are the sus-
picious tuples and whose weighted edges capture the likelihood of
an error in one tuple to occur and affect the other. PageRank-style
algorithm is then used to identify the most beneficial tuples to ask

about first.
Example 1.1. To illustrate let us consider the following sim-

ple example. The database in Figure 1 shows a portion of UEFA
Champions League 2016/17 statistics database. The dark gray
rows represent wrong tuples and lightgray rows represent miss-
ing tuples. The Games relation describes the results of a match
between two teams, it stores the team’s name, goals score and the
stage. The Teams relation describes a football team, it stores the
team name and country. The Countries relation describes the name
of the country and number of teams that advanced to the group
stage. We consider in our work integrity constraints described by
standard tuple-generating and condition-generating dependencies
[14]. The following two integrity constraints are relevant to this
database: (i) two teams from the same country cannot play against
each other on a group stage, and (ii) if a country has at least one
representative, its team must appear in the teams table. These are
captured by the following constraints.

o Games(x1, x2, X3, X4, x5) A x5 = “GroupStage” A
Teams(x1,y1) A Teams(xz2,y2) = y1 # Y2
o Countries(x1,x2) A x3 > 0 — Teams(y1,x1)
We assume that all the given constraints are correct and reflect the
ground truth. In our running example, the constraints are derived
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Figure 1: Sample of UEFA Champions League DB

from UEFA official regulation. Since the database is aggregated
from multiple sources it contains mistakes and violates some of
the constraints. One can notice for instance that the database mis-
takenly associates both the Celtic and the Manchester City football
clubs to the United Kingdom. However, despite the fact that Celtic
and Manchester City are actually located in the United Kingdom
they belong to distinct federations (that represent Scotland and
England separately), hence can play against each other.

When applying the integrity constraints to the database, we
discover several inconsistencies. Each such inconsistency involves
several tuples that when assigned together to the atoms in the
body of the constraint yielded a constraint violation. For exam-
ple, a violation of the first constraint involves a set of three tuples:

Games(Celtic, Manchester City, 3, 3, Group Stage), Teams(Manchester

City, UK), Teams(Celtic, UK), whose existence in the database
lead to the violation. Intuitively, each of the tuples is suspicious
and at least one is wrong and needs to be updated/deleted (other-
wise the constraint is incorrect which we assume is not the case).
Also note that since the two constraints are inter-related, when a
given tuple is suspicious other tuples become suspicious as well.
Consider for example the second constraint, that requires that for
each country in the Countries relation with a positive number of
teams, there must be at least one team in Teams relation from
this country. Relation Countries contains the tuple (UK, 5), which
enforces the existence of teams from United Kingdom. Since the
Teams(Celtic, UK) and Teams(Manchester City, UK) tuples are
suspicious (and may generally both be wrong), we may suspect
also the tuple Countries(UK, 5).

Which of these four suspicious tuples is more beneficial to
consult about first with the expert? To determine this we build a
directed graph whose nodes are the suspicious tuples and whose
(weighted) edges capture the dependency between the suspicious
tuples. Let § be the uncertainty of the values in the relation R to
which a tuple ¢ belongs to where f is between 0 (all the values are
valid) and 1 (all the values are wrong). Intuitively, there is an edge
from tuple s to ¢ with a weight n X f if there are n attributes in
t that one can change in order to eliminate at least one violating
assignment that involves s. For example, data from official UEFA
website will get § close to 0 while user-generated content in the
other relations should get much more. We use 0.5 as a default
value. The graph for the four tuples that we obtain is depicted in
Figure 2 (ignore for now the number labels on the nodes).

Intuitively, to minimize the number of questions, we would like
to catch early errors whose correction may have the largest effect.
To decide which tuple to verify first, we process the graph using
a PageRank-style [10] algorithm, to rank the nodes, and ask the
experts about the nodes with the highest rank. When answers are
gathered, the database is updated accordingly, and incremental
computation is applied to update the graph and identify the next
candidates. The resulting ranks for our running examples are
depicted on the nodes, and so we will ask about C (which is
indeed incorrect and will be removed, instead (England, 4) and
(Scotland, 1) will be inserted by the expert), T'1 (incorrect, updated
to (Celtic, Scotland)) and T2 (incorrect, updated to (Manchester

Breams= 0:5 B cames= 0:9, B countries™ 0.5
T1 = Teams(Celtic, UK)
T2 = Teams(Manchester City, UK)
G = Games(Celtic, M. City, 3, 3, Gr. St.)
C = Countries(UK, 5)
Number of attributes for fix:
Rule #1: T1=2(all), T2=2(all),

G=3 (Celtic, M.City, Gr. St.)
Rule #2: T1=1(UK), T2=1(UK), C=2(all)

Figure 2: Suspicious tuples graph

City, England)). G is then no longer suspicious and no constraint
is violated.

Our contributions can be summarized as follows.

(1) We formulate and present a constraints based framework
for data cleaning with experts. Under this framework, the
database is updated by (minimally) interacting with domain
experts in order to fix the violations of the constraints.

(2) To address this problem we focus on a suspicious tuples
group of tuples, that are the potential cause of the con-
straints violation, which we infer by analyzing the available
data and constraints.

(3) We present an effective algorithm that, using the suspicious
tuples and the inferred dependencies among them, builds
and incrementally maintains a weighted graph that captures
the potential “cleaning benefit” that a correction/verification
to one suspicious tuple may yield to its neighbors. PageRank-
style ranking, applied to the graph, determines the order of
questions issued to the experts.

(4) We have implemented our solution in the DANCE proto-
type system and applied it to real use cases, demonstrating
the efficiency of our constraints-based approach using do-
main experts, showing how our algorithms consistently
outperform alternative baseline algorithms, and effectively
clean the data while asking fewer questions.

A first prototype of DANCE was demonstrated in [8]. The short
paper accompanying the demonstration gave only a high level
overview of the system’s capabilities and user interface whereas
the present paper details the model and algorithms underlying our
solution as well their experimental evaluation.

Outline of paper. Section 2 provides the basic definition and
formalisms. The graph construction and maintenance is explained
in Section 3. The experimental results are described in Section 4.
Related work is in Section 5, and we conclude in Section 6.

2 PRELIMINARIES

We will briefly present our preliminaries for the underlying model.
For space constraints the presentation is rather intuitive and infor-
mal. Full definitions can be found in the technical report [7].

Database Let D be a relational database instance. To model
real-world data, we adopt the truly open world assumption where
a fact that is in D can also be true or false, in addition to the
assumption that a fact that is not in D can be true or false. In other
words, we assume that a given database can contain mistakes, in
addition to being incomplete. The truth of a tuple is given by the
ground truth database D¢ that contains all true tuples and only
them. Hence, a database D is dirty w.r.t. Dg if D # Dg.

Questions to the Expert For simplicity of presentation, we
assume that there is an expert that has an extensive knowledge
about the domain. Otherwise standard techniques [17] may be
applied to aggregate multiple answers. There are two types of
questions:

o Update question: the expert is asked to examine a database
tuple t. The answer can be: (1) ¢ is correct as is, i.e. t € Dg,
(2) t is wrong and should be deleted, i.e. ¢t ¢ Dg or (3)
Update the tuple ¢ to tuple ¢/, i.e. t ¢ Dg At’ € Dg.



o Fill question: the system decides (e.g. based on a constraint)
to add new tuple to the database. Some of the fields are
filled automatically and the expert is asked to complete the
rest.

Constraints The integrity constraints are database assertions
that are similar to the standard tuple-generating and equality-
generating dependencies [5].

Tuple-Generating Constraints (tgcs) are in the spirit of the
tuple-generating dependencies with arithmetic comparisons from
[5]. The tgcs are a first order logic formulas of the form:

VX150 Xn@(X1, ey X)) = 21, oy 2 R(X1, ooy X5 215 oes Zm)
The left hand side (LHS) of the implication, ¢, is a conjunction of
relational atoms and conditions (boolean expression of the form
v op w where v, w are variables or constants and op is a boolean
operation defined on the variables’ domain).

The right hand side (RHS) contains only one relational atom R.
Intuitively, given tuples satisfying the constraint of the LHS, tgcs
asserts existence of a tuple in the RHS.

Condition-Generating Constraints (cgcs) have the same form as
tgcs, but the RHS is a conjunction of conditions, and are defined
as the arithmetic-comparison-generating dependencies in [5].

The constraints from Example 1.1 are cgc and tgc respectively.

Assignments and constraints satisfaction An assignment v
for a constraint ¢ is a mapping from the constraint variables to
constants. An assignment v satisfies a relational atom R iff R(v) €
D, denoted by v Fp R. In a similar way an assignment v satisfies
a constraint ¢ — ¥ iff v ¥p ¢ or v Fp ¢ and v Fp ¥, denoted
by v Ep ¢ — . Database D satisfies a constraint ¢ iff for any
assignment v it holds that v Fp ¢.

Violations, proofs and suspicious tuples

The cleaning process is triggered when the given set of constraints
is not satisfied. To clean D, we identify the suspicious tuples that
may be (directly or indirectly) the cause of the problem. We first
define the violation set - a set of tuples that is a direct cause of a
constraint violation. Next, we define the different types of proof
tuples - the tuples that (through the same or other constraints) as-
sert the existence of some violating sets members. The suspicious
tuples are then the union of the violation and proof tuples. We
give here intuitive description and the formal definition appear in
the technical report [7].

Violation sets A violation set of a constraint ¢ in a database
D is a minimal set of tuples in D that implies existence of an
assignment v (from the tuples values) that is not satisfying the
given constraint ¢. Intuitively, each violation set is a set of tuples
that caused the database D to violate the constraint ¢.

For a set of constraints, the violation set is the union of the
violation sets of each individual constraints.

Example 2.1. Consider the database and the first constraint
from Example 1.1: two teams from the same country cannot play
against each other on a group stage. Therefore, the set of tuples
{Games(Celtic, M.City, 3, 3, Group Stage), Teams(Celtic, UK),
Teams(M.City, UK)} is a violation.

Tuple Values Proof Let ¢ = (v1, ..., v,) be a tuple in D and let
f be a subset of elements of ¢. Let ¢ be a tgc. Intuitively, a set of
tuples {t1, ..., t } “proves” the validity of the values of f in ¢ if,
by using only ¢ and the assumption that the tuples {¢1, ..., t; } are
valid, we can conclude that the values of £ in ¢ are also valid.

Recall Example 1.1, let { = (UK) and t= Teams(Celtic, UK).
The set of tuples { Countries(UK, 5)} is part of tuple value proof

of f since the tuple Countries(UK, 5) implies the existence of the
value UK in ¢.

Relevant proofs Note that not all attribute values (and their
proofs) are suspicious. As we interact with the expert, some at-
tribute values may be validated, either by verifying tuple as correct,
or during the fill-up question. We will not exclude them (and their
proofs) from the suspicious set.

Moreover, not all the attributes of the violation tuples contribute
to the violation. For a constraint ¢, we call the variables that appear
in a conditional atom as conditional variables. The values assigned
to the conditional variables are conditional values.

As a result, in order to resolve the violation T, the expert must
perform one of the three following actions: (i) remove at least one
of the tuples in T that is responsible for the satisfaction of the con-
straint’s body, (ii) insert a tuple which completes the incomplete
tuple of T (if ¢ is a tgc) or (iii) update the conditional values of T.

To summarize, for a tuple ¢ and a constraint ¢, we are interested
only in tuple value proofs of its conditional attributes whose value
has not been verified yet. Note that when all the conditional values
of a tuple t are validated means that ¢ is no longer be responsible
for the violation of ¢.

Suspicious tuples For a database D and a set f of constraints,
the set of suspicious tuples includes all the tuples in the proofs,
excluding those that have already been validated by the expert
(through update questions). Note that the violation sets are in-
cluded in the suspicious tuples as they are part of the proofs.

3 BUILDING THE TUPLES GRAPH

As mentioned in the Introduction, to determine which tuples
should be considered first (the next question that will be posed
to the expert), we build a directed graph with nodes that are the
suspicious tuples and weighted edges that capture the likelihood
of an error in one tuple to affect the other. We call this graph
the ruples graph. PageRank style algorithm is then applied to the
graph to identify the most beneficial tuples to ask about first.

Vertices and edges The graph vertices V are the set of sus-
picious tuples. The graph edges capture the potential effect of
updates to ¢, namely what tuples may potentially become non-
suspicious if ¢ is found to be incorrect and correspondingly up-
dated/removed.

Consider two suspicious tuples ts,, 45, and their correspond-
ing vertices vy, vt,,,. We include in E an edge e = (vy,.,
vt,,,) if and only if the tuple tg5, could cancel at least one
proof/violation set T that contains tg,.. Intuitively, it happens
when both tuples participate in T.

In particular all edges are bidirectional, and the tuples graph is
a union of a collection of cliques where each clique is defined by
some violation/proof set.

Recall Example 2.1, the set of tuples { Games(Celtic, M. City,
3, 3, Group Stage), Teams(Celtic, UK), Teams(M. City, UK)}
is a violation and the tuple Countries(UK, 5) is a proof of the
tuples Teams(Celtic, UK) and Teams(M. City, UK) by the sec-
ond constraint. Therefore, the four tuples Teams(M. City, UK),
Teams(Celtic, UK), Countries(UK, 5) and Games(Celtic, M. City,
3, 3, Group Stage) are suspicious. Figure 2 depicts the Tuples
Graph of these four suspicious tuples. The tuples 71, 72 and G
are connected to each other because of the violation {G, T1, T2}.
Since 71 and T2 may have been generated from C by second
constraint, C is a proof of T/ and 72, implying the connection
between 71, T2 and C. The graph weights explained below.



Edge weights The edge weights capture the likelihood of an
error in one tuple to occur and to affect the other. Intuitively, the
weight we assigned to an edge e = (vy,,., vt,,,) is nX f where f is
the uncertainty measure of the relation of the tuple, and n is overall
number of attributes in ¢4, that one can update in order to resolve
the violation. n is calculated using function that checks for each
conditional attribute attr, whether there is an update to the tuple
t, yielding a tuple ¢’ that differs from ¢ at the attribute attr, s.t.
the violation set without {¢} U {¢’} is no longer a violation/proof
set. The full details are omitted here for space constraints and
provided in [7].

Node Weights Finally, to decide which tuple to verify first, we
process the graph using a PageRank-style algorithm [10], to rank
the nodes, and ask the experts about the nodes with the highest
rank. Intuitively, the higher rank for a tuple captures the potential
for higher influence in terms errors (violations) elimination.

To complete our running example, Figure 2 depicts the tuples
graph. The edge weights are calculated with f = 0.5 for all re-
lations. For instance, the weight of the edge from G to T1is 1.5
because there are 3 values in G that can be updated in order to
cancel the violation (the values are "ManCity", "Celtic", "Group
Stage") and f = 0.5. The node weights are their ranks after run-
ning our PageRank algorithm on the graph. The node C has the
highest rank (7.7). Therefore we ask the experts about tuple C.

Incremental maintenance and optimizations As more an-
swers obtained, the graph is updated to reflect the current database
state and the (remaining) violations. Inferring validated values,
parallel computation and other technique are used. Details in [7]

4 EXPERIMENTS

We have implemented the DANCE prototype system, using Java
and SQLite as the DBMS. All experiments were executed on an
Intel i7 2.4Ghz with 16GB RAM. We run experiments over real-
life data sets and examined the system performance both in terms
of the number of questions posed to the experts and the running
time, measuring contribution of each component of our solution.

Algorithms: The main algorithm in DANCE builds the tuples
graphs and ranks the nodes so that their rank reflects their po-
tential importance for the database cleaning. This is achieved by
assigning to the edges weights that not only reflect the potential
influence tuple updates but also the uncertainty of the values in the
corresponding relations. To assess the importance of this ranking,
we compare DANCE to three alternatives alternative algorithms.

e Random: a naive algorithm that randomly picks tuples in
the graph to ask about

e DANCE vl1: a simplified version of DANCE where all
edges are assigned an equal weight (equals to 1)

e DANCE v2: a simplified version of DANCE where the
uncertainty of the values of all the relations are the same
(by setting = 0.5 for all relation).

We will see that the full fledged algorithm yields fewer questions
than its restricted variants.

We have also compared DANCE to a related previous work,
described next. We note that data cleaning with the help of experts
has been previously considered in [9] by a subset of the authors,
where the goal was to update the database for eliminating incorrect
query answers. The problem studied there was simpler because it
does not consider transitive dependencies as the ones entailed by
constraints. It is easy to show that an assertion that a given tuple
should not be included in the query result can be expressed as sim-
ple constraint violation in our formalism (we omit the translation

algorithm for space constraints). We are thus able to compare the
performance of DANCE to that of QOCO for solving the same
problem. Since QOCO allows users only to add and delete tuples,
whereas DANCE allows also tuple update, we also examine here
a restricted variant of DANCE :

e DANCE v3: a simplified version of DANCE that does not
include tuple updates

Datasets, Constraints and Queries: We consider three datasets.
The first dataset is a soccer-related. It contains information about
World Cup games, goals, players, teams, etc. and consists of
around 5000 tuples. The teams and players relations are derived
from the FIFA official data [1] and are thus assigned f = 0.
The games relation is derived using automatic website scraping
tools from sites such as [4] and other similar sources. We first
cleaned the database by comparing the games data with refer-
ence data from FIFA official data and used the cleaned database
as our ground truth database, with the expert answers following
this ground truth. Sampling the games data and comparing to
the ground truth we derived an uncertainty measure /5 of 30%.
We have experimented with various integrity constraints based on
FIFA competition rules and show here the results for the following
representative constraints, informally described below.

. (p}’vc: If teams scores are not equal, then penalties are 0.
. (p;" C: If penalties are not equal, then the scores are equal.

. q)gv C: If the winning and losing teams penalties are equal,
then the winning team score is bigger than the losing team.

For the comparison with QOCO we examine the following two
queries and what it takes to remove wrong tuples from the result.

. Q}’V C. All games between a Asian and any other country.
. QZW C: All games of ‘Round of 16’ without penalties.

Since QOCO does not exploit constraints, to make the comparison
as “fair" as possible, we assume in this experiment no constraints
(other than the assertions on the erroneous query answers).

Our second dataset is a flights database from [3]. This database
records information about flights all around the world, and was
last updated on 2012. It contains data about flights (68K tuples is
a routes relation), airports (8.2K tuples in an airports relation) and
airlines (6.1K tuples in an airlines relation). We first cleaned the
flights database by comparing the data with current reference data
from Google flights website [2] and used it as our ground truth
database, again, with the expert answers corresponding to this
ground truth. By sampling the data and comparing to the ground
truth we derived the uncertainty measures f for routes, airlines and
airports to be 10%, 5% and 0% respectively. For our experiments
we used the following three real-life constraints that follow from
the fact that after 2012 there was a political conflict between
Russia and each of Ukraine, Egypt and Turkey that caused the
cancellation of the direct flights between that countries.

. <pf ! There are no direct flights between Russia and Ukraine.

. <p§ !: There are no direct flights between Russia and Egypt.

. <p§ !: There are no direct flights between Russia and Turkey.
For the comparison with QOCO we examine here the following
two representative queries (again, assuming no constraints).

. QIF I All direct flights to China or to Greenland.

. QZF I All direct flights from Russia or from USA.

To test scalability of performance, we used a third dataset
which was synthetically constructed by taking the flights databse
mentioned above and replicating data (with variations) to achieve
a 400K tuples dataset. Each tuple was replicated between 3 to 6
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Figure 3: Experimental results

times, while generating new unique primary keys (airport ID for
airports, pair of source and destination airport IDs for the flight,
etc), by padding a number between 1-6 to the original key. The
constraints used for the third dataset experiments are similar to
the second dataset, with the addition of an extra constraint:

. qof I: There are no 2 different airlines with same code.

This constraint is added especially to stress-test the system, since
it has many violations in the dataset.

Results: Our first experiment compares the performance of
DANCE, in terms on the number of questions posed to the experts,
to that of Random and the restricted variants DANCE v1 and v2.
The results for the two datasets are depicted in Figures 3a and
3b. In both figures, each vertical bar corresponds to one of the
algorithms. The height of each bar shows the maximal number
of possible questions (the number of suspicious tuples at the
beginning of the experiment). The lower part of the bar (in red)
denotes the number of questions asked by the algorithm to fix
all violations. The horizontal (black) line indicates the number
of questions the would have been asked by an optimal algorithm
that knows the underlying ground truth and asks only about the
actual erroneous tuples. In both cases Random shows the worst
performance, then come DANCE v1, v2 and finally DANCE. This
demonstrates the importance of the ingredients in our solution.

To better understand the results we examined the effect of
choosing appropriate § values on the performance of our algo-
rithms. The results of varying § values are depicted in Figures
3c and 3d. We can see that while the use of § values that reflect
the uncertainty measure is useful, rough estimation suffices for
obtaining good results.

Our second experiment compares the performance of DANCE,
with and without tuples updates, to that of QOCO, for the queries
listed above. To get a clearer perspective on the performance of
the algorithm, we also add the results of Random for the same
problems. The results are depicted in Figures 3e-3h. The bars

for each of the algorithm have the same structure as in the first
experiment and the horizontal black line indicates again the op-
timum. We can see that both variants of DANCE perform better
than QOCO. This is interesting since the improved performance
is achieved even without this use of additional constraints. (In the
presence of constraints the gap grows. We omit the results here).
We can also see that allowing users to update tuples, rather than
only add and delete, results in fewer needed updates.

To conclude this section we examine running time of DANCE
as a function of the number of suspicious tuples. We consider
here the extended flights database which contains around 400K
tuples. The results are shown in Figure 3i. To vary the number of
suspicious tuple have run four experiments each with a different
set of constraints ((pf !'in the 1st bar of figure, (pf ! and (sz Uin

the 2nd bar, <pf L <p3F !in the 3rd, and all the four constraints
in the last bar). For each experiment we have measured the run
time of the main algorithm in seconds from its start until finding
the first question that will be posed to the expert. The number of
suspicious tuples in each experiment (column) are depicted on the
X axis. In each case we also detail the time spent on each part of
the algorithm. As expected the time grows with the number of
suspicious tuples, but in all our experiments was below 30 seconds.
The iterations took just 1 to 4 seconds in all cases, due to our
incremental graph maintenance, thus sufficiently fast to maintain
an interactive experience and work as a real time cleaning system.

S RELATED WORK

Data cleaning has attracted much attention in recent years. A large
set of work focuses on fully-automated cleaning, using dedicated
object similarity measures, probabilistic and statistical methods,
and machine learning techniques [11, 16, 19, 23]. The problem
with automatic solutions is that they cannot ensure precision of the
repairs since they do not have enough evidence about the ground



truth and may lead to wrong results [9]. Hence it suggested to use
experts to examine the data and choose which updates to apply.

Multiple data cleaning tools leverage the crowd to assist in data
cleaning (e.g. [6, 9, 13, 15, 18, 20]), typically using the crowd to
identify problematic spots in the data, e.g. by running queries and
validating the results or by iteratively generating cleaning task for
the crowd. [20] introduces the idea of cleaning only a sample of
data to obtain unbiased query results with confidence intervals. [9]
uses experts to identify errors in query answers and attempts to
minimize the number of posed questions. However, as mentioned
in Section 4, ignores the databases constraints and its performance
is inferior than ours even in the absence of constraints. Our work
complements these previous efforts by using the set of integrity
constraints to identify data errors and to effectively use the experts.

Several data cleaning tools employ integrity constraints in the
cleaning process (e.g. [6, 12, 15, 18, 19]). Some of the papers (e.g.
[21]) rely on high quality reference data. Others are fully auto-
matics (hence suffer from the problems mentioned above) and use
predefined preferences among updates and/or minimal-repair strat-
egy. When no unique update may be inferred from the available
preferences, systems like [15] turn to experts to assist in the con-
straint resolution. But they not optimize the experts exploration
of the possible updates space. Our work may be integrated into
such systems to optimize the experts work in such scenarios. The
authors of recent related research [18] propose a framework for
detecting functional dependencies (FDs) violations. Their main
focus is finding the (subset of) FDs that can detect the errors and
studying different types of questions that can be asked from the
experts under a limited budget (e.g. verifying if the proposed FD
is correct) in order to detect the errors in the data. Our efforts are
complimentary, since we are not focusing on identifying FDs and
only detecting the data errors, but given a set of FDs we are trying
to find and also fix underlying violations.

The very recent [6] is the most related to our work. They study
user-guided cleaning of Knowledge Bases w.r.t violations of tgds
and a subset of denial constraints, called contradiction detecting
dependencies. While they too handle tgds these include only equal-
ities and they do not support cgds. This, together with the different
data model, make the works incomparable but complementary.

Crowdsourcing, using ordinary users and domain experts, has
been an active field of research in recent years, being employed for
a variety of cleaning-related tasks such as entity resolution [22]
and schema matching [24]. Our system may be used to resolve
violations generated by these methods.

6 CONCLUSIONS

We presented DANCE, a system that assists in the efficient res-
olution of integrity constraints violation. DANCE identifies the
suspicious tuples whose update may contribute to the violation
resolution, and builds a graph that captures the likelihood of an
error in one tuple to occur and affect the other. PageRank-style
algorithm identifies the most beneficial tuples to ask about first. In-
cremental graph maintenance is used to assure interactive response
time. Our experimental results on several different real-world
datasets demonstrate the promise that DANCE is an effective and
efficient tool for data cleaning.

There are several directions for future research. Supporting a
richer constraint language, and in particular constraints on ag-
gregations (i.e. a team cannot have more then 23 players in the
World Cup) is challenging. Violations of such constraints may
be corrected in multiple ways, hence it is interesting to find the
most efficient way. Also, we plan to integrate our approach with

mechanisms that infer additional constraints or corrections to ex-
isting constraints, possibly with the help of the experts. Parallel
processing for speeding up the computation is another intriguing
future direction.
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