

GOLDRUSH: RULE SHARING SYSTEM FOR FRAUD DETECTION Ariel Jarovsky, Tova Milo, Slava Novgorodov

Tel Aviv University

Wang-Chiew Tan

Megagon Labs

Motivation

- Writing rules to capture precisely fraudulent transactions is a challenging task where domain experts spend significant effort and time.
- Typically, such experts work as "lone rangers".
- In fact, there is a lot of commonality in what experts are trying to achieve.

Example

Expert A (USA) Transactions:

Finding the Best Rule Adaptation

Given a specific rule φ :

- Compute for each attribute its set of semantic mapping candidates: V_1,\ldots,V_m
- Compute the set of candidate rule adaptations:

 $\Psi(\varphi) = \{ \varphi[v'_1/v_1, \dots, v'_m/v_m] \mid v'_1 \in V_1, \dots, v'_m \in V_m \}$

- Find the rule $\varphi' \in \Psi$ which best improves the current expert's rules set using a linear cost and benefit model:

Time	Amount	Type	Country	Label
15:58	107K	Stock Trade	Dinotopia	L
16:01	104K	Stock Trade	Dinotopia	F
16:02	111K	Stock Trade	Jamonia	F
16:04	102K	Stock Trade	Dinotopia	F
16:15	96K	Stock Trade	Dinotopia	L
•	•	•	•	•

 φ^A : Type = "Stock Trade" \land Amount $\geq 100K \land$ Time $\geq 16:00 \land Country \in \{Dinotopia, Jamonia\}$

Expert B (France) Transactions:

Time	Amount	Type	Country	Label	
19:53	140K	Stock Trade	Orsinia	L	
20:02	97K	Stock Trade	Orsinia	F	
20:03	230K	Stock Trade	Orsinia	F	
20:05	92K	Stock Trade	Orsinia	L	
20:07	206K	Stock Trade	Orsinia	F	
•	•	:	•	•	

Mapping of $\{Amount \ge 100K\}$ from context A to B:

Semantics	Abstraction	Concretization		
Identity	100K	100K		
Currency Conversion	97K (CHF)	95K		
Ammounts Distribution	upper 5%	200K		
Local Regulation Limits	after hours	120K		

Example of resulting rule adaptation for expert B:

 φ^B : Type = "Stock Trade" \land Amount $\geq 95K \land$

 $w(\varphi') = (\alpha \cdot |\varphi'(F_C)| + \beta \cdot |\varphi'(F_U)|) - (\gamma \cdot |\varphi'(L_C)| + \delta \cdot |\varphi'(L_U)|)$

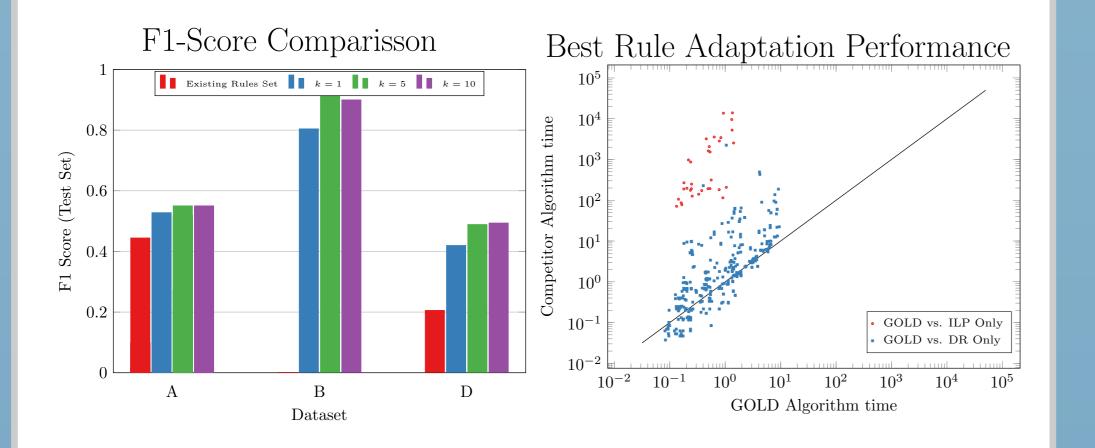
- Evaluation is exponential on the number of attributes (NP-Hard!)
- We build an ILP model of the problem and solve using an ILP Solver

Data Reduction

- The ILP model size is linear on the number of transactions.
- In order to turn it practically efficient even for millions of transactions we developed a Data Reduction technique.
- For example, assume that:

 $-V_{Amount} = \{95K, 100K, 120K, 200K\}$ $-V_{Time} = \{16:00, 20:00\}$

• Then the third and the fifth tupples of Expert B will be "indistinguishable" no matter which rule will be chosen, and so we can cluster them into a single tuple with a counter:


Time	Amount	Type	Country	Label	Count
20:00	200K	Stock Trade	Orsinia	F	2

• By this way, we can cluster all the "indistinguishable" tuples in the transactions relation, storing a counter for each label:

Tim	e Amount	Type	Country	F_C	F_U	L_C	L_U
16:00) 120K	Stock Trade	Orsinia	0	0	0	1
20:00)	Stock Trade	Orsinia	0	0	0	1

Time $\geq 20:00 \land \text{Country} \in \{Orsinia\}$

Experimental Evaluation

20:00	95K	Stock Trade	Orsinia	0	1	0	0
20:00	200K	Stock Trade	Orsinia	0	2	0	0

• Finally, we can solve an adapted ILP model with a smaller transaction relation and with the counters inside the target function.

k-Rules Adaptation

- Generalization of the Best Rule Adaptation Problem for recommending k rule adaptations
- The goal: improve the expert's rule set Fraud Detection accuracy
- Our algorithm uses a prunning technique which, in practice, cuts 66%to 75% of the Best Rule Adaptation algorithm executions.