TEL AUIU UNIVERSITY אוניברסיטת תל-אביב

Query-Oriented Data Cleaning with Oracles

Moria Bergman

Tova Milo

Slava Novgorodov

Wang-Chiew Tan*

Motivation

- Key decisions are made based on information in databases
- Ideal: complete and correct databases
- Goal: Find wrong and missing information and correct it lacksquare
- In practice: Impossible to manually examine each piece of data
- Existing data cleaning tools: - provide best effort

Model & problem definition

Database D:

Truly open-world assumption.

- A fact not in D can be true or false.
- A fact in D can be true or false.

Truth is determined w.r.t. the *conceptual ground truth database* D_G (known to oracles) which contains true tuples and only them.

- do not usually address data completeness
- **Our solution: Query-directed data cleaning with the** help of a crowd of domain experts (oracles)

Removing a wrong answer

Theorem (informally): The edit generation problem is NP-hard even for only removing one wrong query answer **Proof**: Reducing from the Hitting-Set Problem

Solution outline: A greedy approach that asks oracles Boolean questions about tuples that appear in many ``witness sets".

* Performs well in practice.

Example for the greedy approach

Wrong tuples in D Missing tuples in D D D_G True tuples in D **Edit Generation Problem** Given D, D_G , and Q, interact with the crowd at most k times to derive a sequence e_1, \ldots, e_k of edits such that $Q(D \oplus e_1 \oplus e_2 \oplus ... \oplus e_k) = Q(D_G)$

Example

Year	Winner	Runner-up	Result	Country	Cont
Database	e: G	ames		Team	S
Result: [(Germany], [Spain]	N	lissing: [Italy]	
	Ga Teo	mes(d ₂ , x, z, " ams(x, "EU")	Final", u_2), , $d_1 \neq d_2$		
Result((x):-Ga	$mes(d_1, x, y, ')$	<i>'Final</i> ", u ₁),		
Query: F	ind Europea	an teams who	won the Wo	orld-Cup at leas	st twice

Result(x) : - Games($d_1, x, y,$ "Final", u_1), $Games(d_2, x, z, "Final", u_2),$ $Teams(x, "EU"), d_1 \neq d_2$

Result	
GER	Wrong
ULN	answer
ESP	

2014	GER	ARG	1:0
2010	ESP	NED	1:0
2006	ITA	FRA	5:3
2002	BRA	GER	2:0
1998	ESP	NED	4:2
1994	ESP	NED	3:1
1990	GER	ARG	1:0
1982	ITA	GER	4:1

GER	EU
ESP	EU
BRA	EU
ITA	EU

* Wrong

* Missing

Algorithm:

- *ESP* has six witnesses
- No singleton witness
- t_3 occurs most frequently
- Ask: "Is t_3 true?" YES \bullet
- Remove from consideration \bullet
- Each tuple occurs equally often
- Pick t_5 . (randomly), ask NO
- Delete t_5 from D
- W_1, W_2, W_3 , are left
- Ask: "Is t_1 true?" YES \bullet
- Remove from consideration
- Singleton sets: $\{t_2\}, \{t_4\}$
- No questions needed remove t_2 and t_4 from D

	Tuples of the witness	
	$t_1 = \text{Games}(11.7.10, ESP, NED, Final, 1:0)$	
1	$t_2 = \text{Games}(12.7.98, ESP, NED, Final, 4:2)$	
	$t_3 = \text{Teams}(ESP, EU)$	
	$t_2 = \text{Games}(12.7.98, ESP, NED, Final, 4:2)$	
2	$t_4 = \text{Games}(11.7.94, ESP, NED, Final, 3:1)$	
	$t_3 = \text{Teams}(ESP, EU)$	
	$t_4 = \text{Games}(11.7.94, ESP, NED, Final, 3:1)$	
₃	$t_1 = \text{Games}(11.7.10, ESP, NED, Final, 1.0)$	
	$t_3 = \text{Teams}(ESP, EU)$	
	$t_1 = \text{Games}(11.7.10, ESP, NED, Final, 1.0)$	
,4	$t_5 = \text{Games}(25.06.78, ESP, NED, Final, 1.0)$	
	$t_3 = \text{Teams}(ESP, EU)$	
	$t_2 = \text{Games}(12.7.98, ESP, NED, Final, 4:2)$	
₂₅	$t_5 = \text{Games}(25.06.78, ESP, NED, Final, 1.0)$	
	$t_3 = \text{Teams}(ESP, EU)$	
	$t_4 = \text{Games}(11.7.94, ESP, NED, Final, 3:1)$	
₆	$t_5 = \text{Games}(25.06.78, ESP, NED, Final, 1.0)$	
-	$t_3 = \text{Teams}(ESP, EU)$	
	· · · · ·	

Adding a missing answer

Theorem (informally): The edit generation problem is NP-hard even for only adding one missing query answer **Proof:** Reducing from ONE-3SAT Problem

Solution outline:

- Split the query into smaller subqueries
- Exploit to data in database examine subqueries results
- Ask the crowd to complete subqueries results into a result of Q

The general algorithm

- Iteratively treats wrong and missing \bullet answers until convergence
- Employs multiple experts to prune \bullet errors
- Employs parallelism between components treating wrong and missing answers and whenever possible inside each component

Continue recursively

