
Automated Category Tree Construction in E-Commerce
Uri Avron

Tel Aviv University

uriavron@mail.tau.ac.il

Shay Gershtein

Tel Aviv University

shayg1@mail.tau.ac.il

Ido Guy

Ben-Gurion University of the Negev

idoguy@acm.org

Tova Milo

Tel Aviv University

milo@post.tau.ac.il

Slava Novgorodov

eBay Research

snovgorodov@ebay.com

ABSTRACT
Category trees play a central role in many web applications, en-

abling browsing-style information access. Building trees that reflect

users’ dynamic interests is, however, a challenging task, carried out

by taxonomists. This manual construction leads to outdated trees

as it is hard to keep track of market trends. While taxonomists can

identify candidate categories, i.e. sets of items with a shared label,

most such categories cannot simultaneously exist in the tree, as plat-

forms set a bound on the number of categories an item may belong

to. To address this setting, we formalize the problem of construct-

ing a tree where the categories are maximally similar to desirable

candidate categories while satisfying combinatorial requirements

and provide a model that captures practical considerations.

In previous work, we proved inapproximability bounds for this

model. Nevertheless, in this work we provide two heuristic algo-

rithms, and demonstrate their effectiveness over datasets from real-

life e-commerce platforms, far exceeding the worst-case bounds.

We also identify a natural special case, for which we devise a solu-

tion with tight approximation guarantees. Moreover, we explain

how our approach facilitates continual updates, maintaining con-

sistency with an existing tree. Finally, we propose to include in the

input candidate categories derived from result sets to recent search

queries to reflect dynamic user interests and trends.

CCS CONCEPTS
• Applied computing → Electronic commerce; • Information
systems→ Clustering and classification.

KEYWORDS
Category tree construction; E-Commerce;

ACM Reference Format:
Uri Avron, Shay Gershtein, Ido Guy, Tova Milo, and Slava Novgorodov. 2022.

Automated Category Tree Construction in E-Commerce. In Proceedings of
the 2022 International Conference on Management of Data (SIGMOD ’22),
June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3514221.3526124

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3526124

1 INTRODUCTION
Category trees enable browsing-style information access and play a

central role in document directories, news sites, question-answering

services, and e-commerce platforms. The construction and main-

tenance of category trees are infamously challenging [34, 35], typ-

ically carried out manually by taxonomists, which is expensive

and time-consuming. The latter is particularly problematic when

the item repository is massive and evolves rapidly along with user

interests. To address this, many works devised effective automated

construction and maintenance algorithms of tree-based categoriza-

tions. These, however, mostly focus on term taxonomies [30], where
each tree node is associated with a single term, or topic taxonomies
[19], where each node is associated with a set of topic-indicative

terms. In contrast, e-commerce product trees, which are the focus

of this paper, have rarely been addressed in a non-generic manner.

The distinct nature of the e-commerce setting stems from the

conjunction of two characteristics. First, there are considerations

guiding the construction of the tree that are not semantic, and

cannot be derived strictly from the product metadata. Namely, plat-

forms employ large teams of taxonomists, who are domain experts

that derive the categorization based on domain knowledge and var-

ious commercial requirements and measures, such as consistency

with user search patterns. The second characteristic relates to com-

binatorial restrictions imposed by all large e-commerce platforms,

includingWalmart, Amazon, and eBay. Concretely, to ensure a com-

pact categorization of a massive repository, each product must be

assigned to categories on only one (and in some cases two) path(s)

from a root to a leaf (e.g., eBay lists an item in a single lowermost

category for free, or two categories for an extra fee [1]).

To illustrate, consider categorizing shirts. These can be classified

by various criteria, even at the same level of granularity, such

as brand, price, gender, season, fabric, and so on. However, it is

unclear from semantic information by which of these criteria and

in what order should the shirts be recursively partitioned into

tree subcategories. Since the categorization must be a tree where

each item belongs to one or two branches, items cannot be listed

in categories corresponding to all possible combinations of their

properties. Given these restrictions, it is challenging to minimize

the occurrence of the scenario where items matching a commonly

searched criteria are either placed in a lowermost category with

too many other items or, conversely, scattered across multiple tree

categories, which hinders the utility of a tree-based search session.

While taxonomists can manually and algorithmically [23] iden-

tify numerous candidate categories, i.e. item subsets with a shared

https://doi.org/10.1145/3514221.3526124
https://doi.org/10.1145/3514221.3526124

label, most such categories cannot simultaneously exist in a cate-

gory tree, due to the aforementioned combinatorial restrictions. To

address this, we devise a quantitative model to capture how well

a category tree reflects the complete combinatorially-unrestricted

representation of an item repository by candidate categories. More

generally, we aim to offer an automatic construction tool to op-

timize the tree w.r.t. this objective and complement, rather than

supersede, taxonomists, by enabling domain knowledge integration

and offering customization for explicit tweaking of the solution.

To this end, we separate in this work the problem of identify-

ing candidate categories from that of constructing a category tree

that maximally reflects these item sets. Focusing first on the latter,

we propose a rigorous approach for tree construction and quality

evaluation, based on a score function that measures how well a

category tree matches the candidate categories. Concretely, we

measure how well each input set is captured by the similarity score

of the most similar category in the tree to this set. Our problem

has many variants, as the model schematically applies to numerous

similarity functions (with additional parameters to control more

granular requirements). Specifically, we examine variations of the

Jaccard index and 𝐹1 score, a variant where a category must con-

tain the entire input set it matches, and the Exact variant, where
the category must be identical to the matched input set. As each

candidate category represents the items that match some criteria

a user may have in mind when searching the tree, some item sets

may be considered more important than others. Thus, input sets

are weighted to reflect how valuable it is for a solution to contain

a category that closely matches each set. While we proved in [13]

strong inapproximability results for this model, in the present work

we provide theoretical algorithms for practical special cases and ex-

tend these to general algorithms that we empirically demonstrate to

significantly exceed these bounds. Our best-performing algorithm

is based on a novel approach of harnessing practical solvers for

the well-known Maximum Independent Set problem, with various

improvements for special cases, whereas our second algorithm is

based on the traditional approach of clustering.

As for deriving candidate categories, standard methods include

crowd-sourcing [31] and clustering based on shared properties (e.g.,

shared keywords [26]). However, two challenges are identifying cat-

egories that reflect user demand and weighting them to predict how

likely these will match users’ search criteria. This is particularly

important for low-level categorization, which, unlike standardized

high-level categories (e.g., “Electronics” or “Fashion”), is dynamic

and ambiguous [18]. To this end, we propose integrating into the

input high-quality result sets for frequent search queries submitted

to the search engine, derived from datasets maintained by every

large platform. We advocate a data-driven approach, using the re-

sult sets either as part of the input or to set the weights of input

sets based on the relative frequency of the queries that target them.

The following toy example illustrates how search queries can

guide the tree construction to better serve users.

Example 1.1. Consider an online electronics store that sells cam-

eras, phones, and various accessories for these products, such as

memory cards. The existing tree, depicted on the left side of Figure 1,

has two separate categories formemory cards: “Cameras”→“Memory

Cards” and “Phones”→“Memory Cards”. However, all memory

Cameras

Electronics

Memory
Cards

Memory
Cards

Electronics

Original Category Tree Suggested Category Tree

Phones Cameras PhonesMemory
Cards

Figure 1: Sample category trees for the Electronics domain

cards are suitable for both product types. Assume that the most

searched query is “memory cards”, and that complete sets of all

accessories for a given product type are rarely searched. The tree

depicted on the right side of Figure 1 would then better serve the

consumer needs, as it has a separate category containing all mem-

ory cards. The fact that these items no longer appear under the

general categories has little effect, as the memory cards are rarely

searched as part of more general item sets.

Apart from the model’s evaluation metric, additional practical

considerations must be addressed. Namely, the construction tool

should be customizable, to allow tweaking the solution; the existing

tree should be updated without radical modifications; the result-

ing categories should be semantically cohesive to allow labeling;

and the tree structure should facilitate navigation. We outline in

Section 2 how our approach captures the above considerations, as

corroborated by both quantitative and qualitative evaluations.

The present paper builds on and extends two complementary

works [8, 13]. Concretely, [13] is a theoretical paper that studies the

approximation hardness of various categorization problems, includ-

ing tree-based categorizations, that also capture as special cases

the problem variants studied in the present paper. In particular,

we showed that the problem of constructing an optimal category

tree does not admit an efficient algorithm with good worst-case

approximation guarantees (this is formalized in Section 2.4). Mo-

tivated by these theoretical results, we, therefore, in the current

paper, devise heuristic algorithms that perform well in practice, and

provide improved approximation guarantees for practical special

cases. An early demonstration of a prototype of our system was

accompanied by the short paper [8]. There we presented a brief

overview of the system architecture, whereas the present work

provides a comprehensive description of the model, algorithms

and empirical analyses. Lastly, we note that our solution has been

evaluated by XYZ
1
taxonomists, and we report their conclusions.

2 MODEL
We now present the formal model, discuss how it captures practical

considerations, and provide inapproximability bounds.

2.1 Formal Setting
Input. The Optimal Category Tree problem (𝑂𝐶𝑇) takes as input

⟨𝑄,𝑊 ⟩, where 𝑄 ⊆ 2
𝑈

is a set of 𝑛 sets over a finite universe of

items 𝑈 , and each set in 𝑄 is assigned a non-negative weight by

𝑊 :𝑄 ↦→ R. As mentioned in the introduction, each set in the input

corresponds to a candidate category (e.g., a search query result set)

that it is desired for the solution to contain.

1
Company name omitted due to privacy considerations.

Problem variants. The𝑂𝐶𝑇 problem has multiple variants that

differ based on the similarity function, S:[2𝑈] × [2𝑈] ↦→ [0, 1],
used for the objective function, to be defined formally momentarily.

The variant with similarity function S is denoted by 𝑂𝐶𝑇 (S).
Solution space. A solution to an 𝑂𝐶𝑇 instance is a category

tree, which is a rooted tree, where every node contains a subset

of 𝑈 and represents a category. A valid tree satisfies the follow-

ing two requirements. First, every non-leaf category contains the

union of the item sets in its child categories (and possibly other

items). The root of the tree, thus, contains all the items, with the

categories becoming more specific (smaller), as one moves down

the tree towards the leaves. Second, each item in the tree belongs

to exactly one most-specific category, along with all its ancestors.

Thus, every item appears only in categories that are consecutively

placed on some branch in the category tree, where a branch is a

simple path from the root to a leaf. This requirement is ubiquitous

in e-commerce platforms (e.g., [1]), as associating every item with a

single branch ensures a compact categorization. Nevertheless, our

algorithms are implemented to support a separate constant upper

bound (that may exceed 1) for each item.

Objective. The goal is to have, for as many input sets as pos-

sible, a similar category in the solution, with the similarity eval-

uated by S. Formally, given a set, 𝑞 ∈ 𝑄 , and a category tree, 𝑇 ,

the similarity score of a category 𝐶 ∈ 𝑇 over 𝑞 is S(𝑞,𝐶). The
score of 𝑇 over 𝑞 is 𝑆 (𝑞,𝑇) = max𝐶∈𝑇 S(𝑞,𝐶). This definition

captures the fact that a user seeks the category that most closely

matches her (implicit) query. The overall score of 𝑇 is defined as

𝑆 (𝑄,𝑊 ,𝑇) = ∑
𝑞∈𝑄𝑊 (𝑞) · 𝑆 (𝑞,𝑇). The weights are reflected in the

score function, such that it is preferable to have matching cate-

gories for input sets of higher weight. The objective is to produce a

category tree of the maximum score: arg max𝑇 𝑆 (𝑄,𝑊 ,𝑇).

2.2 Similarity Functions
Jaccard and 𝐹1 variants. We consider variations of two prevalent

set-similarity functions - the Jaccard index and the 𝐹1 score. For

completeness, we provide the definitions of these functions, w.r.t. a

given input set,𝑞, and a category,𝐶 . The Jaccard similarity is defined

as 𝐽 (𝑞,𝐶) = |𝑞∩𝐶 ||𝑞∪𝐶 | . As for the 𝐹1 score, it is the harmonicmean of the

two more granular similarity measures: precision, 𝑝 (𝑞,𝐶) = |𝐶∩𝑞 ||𝐶 | ,

and recall, 𝑟 (𝑞,𝐶) = |𝐶∩𝑞 ||𝑞 | . Thus, 𝐹1 (𝑞,𝐶) = 2
𝑝 (𝑞,𝐶) ·𝑟 (𝑞,𝐶)
𝑝 (𝑞,𝐶)+𝑟 (𝑞,𝐶) .

We extend these functions with a threshold parameter, 𝛿 ∈ (0, 1],
such that a similarity score below 𝛿 is rounded down to 0. This

captures the fact that when the category is too dissimilar to the

targeted item set, it is not identified as relevant by the user.

Correspondingly, we consider two variations of the above func-

tions, referred to as cutoff and threshold. When 𝐽 (𝑞,𝐶) ≥ 𝛿 , the

cutoff Jaccard similarity equals 𝐽𝛿 (𝑞,𝐶) = 𝐽 (𝑞,𝐶), whereas the
threshold Jaccard similarity equals 𝐽𝛿 (𝑞,𝐶) = 1. When 𝐽 (𝑞,𝐶) < 𝛿 ,

both functions equal 0. The cutoff and threshold variations of the 𝐹1

score are defined analogously. Binary (threshold) functions serve to

mollify possible inaccuracies in the input sets, by removing the in-

centive to overfit the categorization to match the input sets exactly,

incentivizing instead the covering of more sets.

Perfect-Recall variant.We also study the binary Perfect-Recall

function, PR𝛿 , that outputs 1 when the recall is 1 and the precision

is at least 𝛿 . This variant is particularly relevant for supporting

faceted search, where users reach a category, and then refine the item
set via a filtering interface. For this search method, it is encouraged

to include in the category complete input sets, as the side-effect of

low precision, w.r.t. each user search that aims at a subset of this

category, can be mitigated by the filtering mechanism.

Exact variant. Lastly, for 𝛿 = 1, all similarity functions converge

into the special case we call the Exact variant, where the score is 1

when the category is identical to the input set, and 0 otherwise.

Non-uniform thresholds. To simplify the presentation we

focus on a uniform threshold. However, our algorithms support a

separate threshold per each input set.

Cover terminology. We say that a category covers an input set

if their similarity score exceeds the threshold. A set is covered if

any category in the tree covers it. Thus, for threshold variants, the

goal is to maximize the weight of the covered input sets.

Examples.We illustrate the𝑂𝐶𝑇 setting with the following toy

examples, depicted in Figure 2. The figure presents two optimal

solutions corresponding to two 𝑂𝐶𝑇 variants, over the same input,

provided on the left side. As the overall weight of all four sets is 5,

this is also a bound on the score of any tree over this input.

For brevity and consistency, we will denote the items throughout

the paper by short literal notation. Nevertheless, to provide a practi-

cal context, we show in Figure 3 a possible real-world instantiation

of the items in both examples. Concretely, the 9 items depicted

in the figure, that correspond to the items {𝑎, 𝑏, ..., 𝑖} in Figure 2

(the corresponding item appears under each photo), are a sample

of the shirts available in a company’s catalog. These shirts have

different brands ({𝑎, 𝑏} are Adidas, {𝑐, 𝑑, 𝑒, 𝑓 } are Nike, {𝑔} is Puma,

{ℎ} is Reebok and {𝑖} is Umbro), colors ({𝑎, 𝑏, 𝑐, 𝑑, 𝑒} are black, {𝑓 }
is red, {𝑔} is blue, {ℎ} is grey and {𝑖} is white) and sleeve lengths

({𝑎, 𝑏, 𝑓 , 𝑔, ℎ, 𝑖} have long sleeves and the rest have short sleeves).

Then the sets 𝑞1, 𝑞2, 𝑞3 and 𝑞4 may correspond, respectively, to the

result sets of the following 4 queries: “black shirt”, “black adidas

shirt”, “nike shirt” and “long sleeve shirt”.

Example 2.1. The tree 𝑇1, depicted in the middle of the figure,

is the optimal solution for the Perfect-Recall variant with 𝛿 = 0.8.

The categories 𝐶3 and 𝐶4 cover the sets 𝑞2 and 𝑞3, respectively, as

they are identical to these sets. The category 𝐶1 covers 𝑞1 as its

recall score is 1, and 5 out of the 6 items in 𝐶1 are in 𝑞1, hence

the precision is
5

6
> 𝛿 . Note that, we must include 𝑓 in 𝐶1 since it

appears in𝐶4, and removing 𝑓 from both categories would result in

𝐶4 no longer covering 𝑞3. Moreover, there is no incentive to place

𝑓 elsewhere, since the score, when using a binary function, is not

penalized for precision errors if the threshold is exceeded.

As for the category𝐶2, its addition to the tree is optional, since it

does not cover any set, despite all its items belonging to the uncov-

ered set, 𝑞4, as we can no longer achieve perfect recall, without the

items {𝑎, 𝑏, 𝑓 }. It is easy to verify that there is no way to cover 𝑞4 by

adding a matching category above or below𝐶1, such that the items

{𝑎, 𝑏, 𝑓 } would be shared by all categories, without decreasing the

precision of other sets to values below the threshold. This logic,

where certain subsets of the input are mathematically impossible

to cover entirely either on the same tree branch or on separate

branches, forcing the solution to give up on some input set in each

subset, is formalized by the algorithm in Section 3.

Input:
Q = { q1, q2, q3, q4 }
q1 = { a, b, c, d, e}
q2 = { a, b }
q3 = { c, d, e, f }
q4 = { a, b, f, g, h, i }

W(q1) = 2
W(q2) = 1
W(q3) = 1
W(q4) = 1

a b c d e f

a b c d e fC3

C1

C4

a b c d e f g h i

g h i

Root

C2

a b c d e f g h i

a b c d e f g h i

a b c d e

Root

C1 C2

C3 C4

T1 - optimal solution for
S(Q, W, T1) = 4

T2 - optimal solution for
S(Q, W, T2) = 4 ⁵⁄₁₂

Figure 2: Optimal solutions for two 𝑂𝐶𝑇 variants over the same input, depicted on the left side. The category tree, 𝑇1, is an
optimal solution for the Perfect-Recall variant with threshold parameter 𝛿 = 0.8, where 𝐶1 covers 𝑞1, 𝐶3 covers 𝑞2, and 𝐶4 covers
𝑞3, with the overall score of𝑊 (𝑞1) +𝑊 (𝑞2) +𝑊 (𝑞3) = 4. The rightmost tree, 𝑇2, is the optimal solution for the cutoff Jaccard
variant with 𝛿 = 0.6, where 𝐶1 covers 𝑞1 with the score of 1, 𝐶2 covers 𝑞4 with the score of 2

3
, 𝐶3 covers 𝑞2 with the score of 1, and

𝐶4 covers 𝑞3 with the score of 3

4
, resulting in the overall score of𝑊 (𝑞1) · 1 +𝑊 (𝑞2) · 1 +𝑊 (𝑞3) · 3

4
+𝑊 (𝑞4) · 2

3
= 4

5

12
.

a b c d e

f g h i
Figure 3: A sample of products from the shirts category.

Example 2.2. We next discuss, 𝑇2, the optimal solution for the

cutoff Jaccard variant with 𝛿 = 0.65, depicted on the right side of

Figure 2. It overlaps with 𝑇1, except for the item 𝑓 , which is placed

in𝐶2 instead of𝐶4 and𝐶1. In this case, compared to the previously

examined variant, since Jaccard variants allow for errors in both

precision and recall, and since we use a lower threshold, it is now

possible to cover all sets, albeit with imperfect scores. Indeed, every

non-root category in 𝑇2 covers an input set, as explained in the

figure. Moreover, 𝑞1 is the heaviest set, hence it is not surprising

that the optimal tree covers it with a perfect score, at the expense

of errors in the covers of less significant input sets. We note that, in

practice, the same category often covers multiple sets. For instance,

if we decrease the threshold from 0.65 to 0.4, then 𝐶1 would also

cover 𝑞2, as its precision w.r.t. 𝑞2 is exactly 0.4.

2.3 Practical Applicability
We now explain how our approach captures important practical

considerations and contributes to complementary tasks. These con-

siderations were also empirically verified by taxonomists during

an extensive user study (the detailed results appear in Section 5.4).

Customization.Our solution is customizable to allow taxonomists

to adjust the categorization. First, taxonomistsmay raise theweights

of underrepresented candidate categories. Second, our algorithms

schematically apply for numerous similarity functions, parameter-

ized to provide granular control of how precisely each input set is

matched. Finally, our algorithms also support a more general model

with varying upper bounds on the number of same-level categories

each item may belong to, as explained in Section 3.

Continual conservative updates. Our approach is suited for

both generation and maintenance of category trees, which are often

tackled separately [35, 36]. An important concern is ensuring that

the new tree would not be radically different, to maintain consis-

tency. One solution consists of adding the categories of the existing

tree as additional input sets, adjusting their weights and thresh-

olds to modulate the extent to which the current categorization is

preserved. A complementary solution is running the algorithms

separately on selected subtrees, where changes are desirable. The

effectiveness of this approach is verified in our user study.

Labeling. The problem of meaningfully naming categories has

been studied in various settings [9] and is outside the scope of this

work. Nevertheless, we demonstrate that our solution produces

semantically cohesive categories, which naturally lend themselves

to succinct labeling. This stems from preprocessing the input such

that each set corresponds to an explicit property or a coherent

query. The accuracy requirements ensure that the categories are

sufficiently similar to these sets, preserving cohesiveness. Lastly,

we mark each category with the sets it matches, and their labels (a

shared property or a search query) naturally hint at a name (if a

category matches multiple sets, the precision ensures a large over-

lap, indicating a similar label). We demonstrate this cohesiveness

and naming compatibility via quantitative metrics and a user study.

Navigation. Taxonomists may aim for trees with various struc-

tural properties to ensure ease of navigation. To this end, our al-

gorithms produce a tree consisting of the minimal number of cat-

egories necessary to achieve its score. Taxonomists are then free

to add intermediate categories to aid navigation (our model allows

introducing intermediate nodes without affecting the score).

2.4 Hardness Bounds
To conclude this section, we present hardness bounds, derived in

[13], where the Θ̃(·) notation hides negligible factors.

Theorem 2.3. The cutoff and threshold Jaccard and 𝐹1 variants are
𝑁𝑃-hard to approximate below a Ω̃(

√
𝑛) factor (𝑛 = |𝑄 |), whereas the

Perfect-Recall variant is 𝑁𝑃-hard to approximate below a Θ̃(𝑛) factor,
even when input sets may intersect by at most one item. Moreover,
the Exact variant is 𝑁𝑃-hard, even for input sets of size 3. All bounds
also hold for the unweighted case with a single uniform threshold.

We also proved similar bounds in [13] for a much more general

and relaxed model, and, therefore, cannot hope to provide practical

worst-case guarantees, even by a reasonable relaxation.

3 MIS-BASED ALGORITHM
Despite the inapproximability bounds presented in Section 2, we

devise two𝑂𝐶𝑇 algorithms, that empirically produce trees of scores

well above these bounds. In this section, we describe the Category

q1

q3q4

W(q1) = 2 q2
W(q2) = 1

W(q3) = 1W(q4) = 1

S = { q1, q2 }

a b c d e

a b

C(q1)

C(q2)

a b c d e f g h i

f g h i

Root

Cmisc

G

S(Q, W, T) = 3

TInput:
Q = { q1, q2, q3, q4 }
q1 = { a, b, c, d, e }
q2 = { a, b }
q3 = { c, d, e, f }
q4 = { a, b, f, g, h, i }

W(q1) = 2
W(q2) = 1
W(q3) = 1
W(q4) = 1

Figure 4: Execution of 𝐶𝑇𝐶𝑅 for the Exact variant, 𝑂𝐶𝑇 (PR1), over the input from Figure 2. The conflict graph, 𝐺 , is depicted
next to the input, where the shaded vertices form the optimal solution, 𝑆 , for the𝑀𝐼𝑆 problem over𝐺 . The tree,𝑇 , which covers
𝑆 (due to the optimality of 𝑆 , 𝑇 is also optimal), is depicted on the right side. Note that, it differs from the trees of Figure 2 as it
is constructed w.r.t. the Exact variant (𝛿 = 1).

Tree Conflict Resolver (𝐶𝑇𝐶𝑅) algorithm, based on the novel ap-

proach of leveraging algorithms for the Maximum Independent

Set problem (𝑀𝐼𝑆). It takes the following approach: we identify

pairs and triplets of input sets, referred to as conflicts, such that, for

each conflict, it is mathematically impossible for any tree to cover

all its sets simultaneously. We then leverage 𝑀𝐼𝑆 algorithms to

compute a conflict-free subset of input sets, which we aim to cover

entirely. While𝑀𝐼𝑆 is also hard to approximate, there are known

𝑀𝐼𝑆 algorithms shown to perform well in practice. Moreover, in

all examined datasets, the derived𝑀𝐼𝑆 instances are sparse, which

allows for improved performance and theoretical guarantees.

𝐶𝑇𝐶𝑅 applies schematically to all considered similarity functions.

Moreover, for the Perfect-Recall variant, it reduces to a simpler form,

and, for the special case of the Exact variant, we derive an even

simpler algorithm, that comes with tight approximation guarantees,

w.r.t. the number of conflicts. We, thus, present the𝐶𝑇𝐶𝑅 algorithm

gradually. We first describe the simplest algorithm for the Exact

variant, followed by its extension for the Perfect-Recall variant,

and, finally, present the algorithm in its most general form, which

applies to the Jaccard and 𝐹1 variants. The algorithm is depicted

at high-level in Algorithm 1, where we also mark which steps are

unnecessary for the Perfect-Recall and Exact variants.

Algorithm 1: 𝐶𝑇𝐶𝑅
1 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑠 ← sort𝑄 ; // only for 𝛿 < 1

2 𝐶𝑜𝑣𝑇 ← set pairs that can be covered together

3 𝐶𝑜𝑣𝑆 ← set pairs that can be covered separately

4 2𝐶𝑜𝑛 ← 2Conflicts(𝑄,𝐶𝑜𝑣𝑇 ,𝐶𝑜𝑣𝑆)
5 𝐶𝑜𝑣𝑇 ← 𝐶𝑜𝑣𝑇 \𝐶𝑜𝑣𝑆 ; // only for 𝛿 < 1

6 3𝐶𝑜𝑛 ← 3Conflicts(𝐶𝑜𝑣𝑇) ; // only for 𝛿 < 1

7 𝐶𝑜𝑛 ← 2𝐶𝑜𝑛
⋃

3𝐶𝑜𝑛 ; // only for 𝛿 < 1

8 𝐺 ← ConflictHypergraph(𝑄,𝐶𝑜𝑛) ; // only for 𝛿 < 1

9 𝐺 ← ConflictGraph(𝑄, 2𝐶𝑜𝑛) ; // only for 𝛿 = 1

10 𝑆 ← SolveMIS(𝐺)
11 𝑇 ← empty category tree

12 foreach 𝑞 ∈ 𝑆 do
13 𝑇 .AddCategory(𝐶 (𝑞))
14 foreach 𝑞 ∈ 𝑆 do
15 𝑇 .AssignParentCategory(𝐶 (𝑞), 𝑆,𝐶𝑜𝑣𝑇 , 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑠)
16 foreach 𝑞 ∈ 𝑆 do
17 𝐶 (𝑞) .items← ItemsCoveredTogether(𝑞, 𝑆,𝑇)

// only for 𝛿 < 1

18 foreach 𝑞 ∈ 𝑆 do
19 𝐶 (𝑞) .items← 𝐶 (𝑞) .items

⋃
DescendantsItems(𝐶 (𝑞),𝑇)

20 AssignItems(𝑆,𝑇) ; // Call Algorithm 2; not for PR𝛿
// not for PR𝛿

21 foreach𝐶 ∈ NonLeafCategories(𝑇) do
22 while |Children(𝐶) | > 2 and HasInteresectingChildSets(𝐶) do
23 AddIntermediateCategories(𝐶) ;

24 𝑇 .RemoveNoncoveredItems(𝑆) ; // only for 𝛿 < 1

25 𝑇 .RemoveNoncoveringCategories(𝑆) ; // only for 𝛿 < 1

26 𝑇 .AddCategoryWithUnassignedItems(𝑄)
27 return𝑇

3.1 Exact Variant
The𝐶𝑇𝐶𝑅 algorithm for the Exact variant consists of three stages. In

the first stage (lines 2− 4 in Algorithm 1), we identify all 2-conflicts,
where a 2-conflict is a pair of input sets that cannot be covered

simultaneously by any tree. It follows that the optimal tree score is

upper-bounded by the weight of the maximum-weight conflict-free

subset of input sets. For the Exact variant, this bound is tight, and

computing this subset is equivalent to the 𝑀𝐼𝑆 problem. To that

end, in the second stage (lines 9 − 10), we cast the problem as an

𝑀𝐼𝑆 instance. While, in the general case,𝑀𝐼𝑆 is as inapproximable

as 𝑂𝐶𝑇 , the problem can, nevertheless, in practice, be reasonably

approximated and often solved exactly [7, 20, 22]. Let 𝑆 denote the

produced independent set (𝐼𝑆), we then, in the third stage (lines

11 − 17), construct a tree 𝑇 , where, besides the root, there is, for

each 𝑞 ∈ 𝑆 , a category 𝐶 (𝑞), identical to 𝑞. Then, we assign all

unused items to a separate category (line 26). Note that the lines of

Algorithm 1 that have not been mentioned so far are not relevant

for the Exact Variant and will be discussed in the sequel.

We show that 𝑇 is a valid solution covering 𝑆 and that the per-

formance ratio of 𝐶𝑇𝐶𝑅 equals the performance ratio of the𝑀𝐼𝑆

algorithm. By using the𝑀𝐼𝑆 algorithm in [7], we derive the follow-

ing guarantee, whose tightness follows from the hardness proofs

in [13]. We note that, in our experiments, 𝐶𝑇𝐶𝑅, using the 𝑀𝐼𝑆

algorithm from [22], solved all instances optimally and efficiently.

Theorem 3.1. For each 𝑞 ∈ 𝑄 , let 𝐶2(𝑞) denote the number of

2-conflicts containing 𝑞, and let𝐶2(𝑄,𝑊) =
∑

𝑞∈𝑄𝑊 (𝑞) ·𝐶2(𝑞)∑
𝑞∈𝑞𝑊 (𝑞)

denote

the weighted average number of conflicts per input set. Then, 𝐶𝑇𝐶𝑅
for the Exact variant has a tight performance ratio of 𝑂 (𝐶2(𝑄,𝑊)).

Algorithm 2: 𝐴𝑠𝑠𝑖𝑔𝑛𝐼𝑡𝑒𝑚𝑠

1 𝐷𝑢𝑝𝑠 ← UnassignedItems(𝑆,𝑇) ;
2 𝑈𝐶 ← Uncovered(𝑆,𝑇) ∩ CanBeCovered(𝑆,𝑇 , 𝐷𝑢𝑝𝑠) ;
3 while𝑈𝐶 ≠ ∅ do
4 𝑞 ← arg max𝑞∈𝑈𝐶 Gain(𝑞) ;
5 𝑘 ← CoverGap(𝑞) ;
6 𝐼 ← TopKItemsByBranchGain(𝑘,𝑞,𝑇) ;
7 AssignToBranch(𝐼 ,𝐶 (𝑞)) ;
8 𝐷𝑢𝑝𝑠 ← UnassignedDuplicateItems(𝑆,𝑇) ;
9 𝑈𝐶 ← Uncovered(𝑆,𝑇) ∩ CanBeCovered(𝑆,𝑇 , 𝐷𝑢𝑝𝑠) ;

10 foreach 𝑖 ∈ 𝐷𝑢𝑝𝑠 do
11 𝐶 ← arg max𝐶∈Categories(𝑇) MarginalGain(𝑖,𝐶) ;
12 AssignItemToCategory(𝑖,𝐶) ;

We next discuss each stage of the algorithm in more detail.

Identifying 2-conflicts (lines 2-4). We say that input sets are

covered together if they are covered by categories (or one category)

on the same branch, whereas sets are covered separately if they are

covered on different branches. Two sets that can be covered neither

together nor separately are said to form a 2-conflict. Intuitively,
for any 𝑂𝐶𝑇 variant, the more items two sets have in common,

the less likely it becomes for them to be covered separately, as

the shared items must be partitioned. Conversely, the fewer items

two sets have in common, the less likely it becomes for the sets

to be covered together, as the higher-placed category must also

contain the irrelevant items of the lower category. Therefore, two

sets form a 2-conflict, when they are neither sufficiently similar nor

sufficiently dissimilar. In the Exact variant, two sets can be covered

separately when they are disjoint and can be covered together when

one contains the other. Therefore, two sets form a 2-conflict if and

only if they are neither disjoint nor one contains the other.

Reduction to MIS (lines 9-10). Once we have identified all 2-

conflicts, we construct an𝑀𝐼𝑆 instance,𝐺 , called the conflict graph.
The vertices of𝐺 are𝑄 (vertex weights are the set weights), and the

edges are the 2-conflicts: {(𝑞𝑖 , 𝑞 𝑗) | 𝑞𝑖 ∩ 𝑞 𝑗 ≠ ∅, 𝑞𝑖 ⊈ 𝑞 𝑗 , 𝑞 𝑗 ⊈ 𝑞𝑖 }.
Over𝐺 we run the exact𝑀𝐼𝑆 algorithm in [22] that has been shown

to solve the problem optimally and efficiently on massive instances.

Tree construction (lines 11-17). Given a conflict-free set of

input sets, 𝑆 , produced over𝐺 , the tree𝑇 contains, for each 𝑞 ∈ 𝑆 , a
category,𝐶 (𝑞), identical to 𝑞. If a set, 𝑞 ∈ 𝑆 , is not contained in any

other set in 𝑆 , then the parent of 𝐶 (𝑞) is the root. Otherwise, the
parent of 𝐶 (𝑞) is 𝐶 (𝑞′), where 𝑞′ is the smallest set that contains 𝑞.

This is well defined, since if two distinct sets of the same size had

both contained 𝑞, then they would form a 2-conflict.

It follows that any two categories on the same branch pertain to

two input sets where one contains the other. Moreover, every item

appears in at most one branch, otherwise, it would appear in two

categories for sets that form a 2-conflict. Thus,𝑇 is a valid tree that

covers 𝑆 , the entire 𝐼𝑆 . Conversely, let 𝑆 ′ denote the set of input
sets covered by a given tree𝑇 ′, then 𝑆 ′ is an 𝐼𝑆 in the conflict graph,

since, by definition, it contains no conflicts. Hence, the performance

ratio of 𝐶𝑇𝐶𝑅 equals that of the𝑀𝐼𝑆 algorithm.

Finally, as the last step of the algorithm (line 26), we add, under

the root, a new category, denoted by 𝐶𝑚𝑖𝑠𝑐 , with all unassigned

items. In the case of the Exact variant, the unassigned items are all

the items that do not appear in any set in 𝑆 . This step does not affect

the score, hence from a mathematical perspective, we can always

generically assign all such elements to the same category. However,

a more practical solution, reported in our user study (Section 5), is

reemploying the algorithm with reduced thresholds for uncovered

queries, as explained at the end of this section.

The operation of 𝐶𝑇𝐶𝑅 for the Exact variant is demonstrated in

Figure 4 over the input provided in Figure 2.

3.2 Perfect-Recall Variant
The algorithm presented in the previous subsection applies to the

restricted case where 𝛿 = 1. We now explain what is needed in

order to extend it to apply for 𝑂𝐶𝑇 (𝑃𝑅𝛿) instances, where 𝛿 < 1.

For 𝛿 < 1, it is insufficient to resolve all 2-conflicts to ensure that

every two categories on the same branch cover sets that can indeed

be covered together. To overcome this, we, in addition to 2-conflicts,

also identify 3-conflicts (lines 5 − 6), which are triplets of sets such

that no tree can cover a triplet simultaneously. Consequently, the

conflict graph becomes the conflict hypergraph (lines 7 − 8), as it

contains hyperedges of sizes 2 (regular graph edges - vertex sets of

size 2) and 3 (vertex sets of size 3). Over the conflict hypergraph

we employ the partitioning-based𝑀𝐼𝑆 algorithm in [15], suited for

sparse hypergraphs (line 10).

In principle, one could also consider conflicts of a higher order,

however, these cannot be listed exhaustively in sub-exponential

time. Moreover, not considering conflicts beyond triplets is not an

arbitrary stopping point, rather resolving 3-conflicts ensures that

every two categories on the same branch cover sets that must be

covered together, as was the case, by definition, in the Exact variant.

To that end, before identifying the conflicts, we sort the sets, to help

determine in advance all ancestor-descendant relations. Knowing

which categories will be placed on the same branch, and in what

order, allows to identify more conflicts w.r.t. the designated tree.

Lastly, the algorithm concludes with a procedure that condenses

the tree (lines 24-25). This is unnecessary in the Exact variant,

where all non-root categories cover an input set, and no items are

redundant since all precision scores are optimal.

We next explain in more detail each of the stages of the algorithm

that differ from the Exact variant version.

Sorting the input sets (line 1). The first step is to sort the

sets from largest to smallest, and as a secondary criterion to sort

by weight, from lightest to heaviest, breaking ties arbitrarily. We

denote by 𝑟𝑎𝑛𝑘 (𝑞) ∈ [𝑛] the ranking of the set 𝑞 in this sorted order
(the ranking of the largest set is 1). When checking whether two

sets can be covered together, we may restrict ourselves to the case

where the sets are covered by two separate categories, such that

the higher category corresponds to the set of the lower ranking.

To optimize the score, providing a separate category for each set

is preferable. To see this, consider a category 𝐶 that aims to cover

two sets, 𝑞1 and 𝑞2, where 𝑟𝑎𝑛𝑘 (𝑞1) < 𝑟𝑎𝑛𝑘 (𝑞2). One can only

increase the score by adding to 𝐶 a child category, 𝐶 ′, containing
the same items as𝐶 , except those only relevant for 𝑞1. This provides

a second, improved opportunity to cover 𝑞2. For this reason, among

same-size sets, we assign a higher ranking to the heavier ones.

Identifying 2-conflicts (lines 2-4). In the case of the Perfect-

Recall variant, two sets form a conflict when they are not disjoint

(thus, cannot be covered separately), and also the size of the lower-

ranking set is below a 𝛿-fraction of the size of the union of the two

sets (thus, they cannot be covered together, as the precision of the

higher-placed category will be too low).

Identifying 3-conflicts (lines 5-6).We want every two cate-

gories on the same branch to correspond to sets that can be covered

together, as is the case, by definition, for 𝛿 = 1. However, we first

need to determine which sets will be covered together, as some pairs

can be covered both together and separately. In the Perfect-Recall

variant, this only happens when two sets are disjoint and one is

much larger than the other, such that it can be covered above it

with sufficient precision. Our solution is to cover together only sets

thatmust be covered together (i.e. can only be covered together), as

computed in line 5. Correspondingly, for any 𝑞1, 𝑞2 and 𝑞3, where

{𝑞1, 𝑞2} and {𝑞2, 𝑞3} must be covered together and also 𝑞2 is not

the set of the lowest ranking of the three: if it is not the case that
{𝑞1, 𝑞3} must also be covered together, then we, in line 6, add this

triplet as a 3-conflict (unless {𝑞1, 𝑞3} is already a 2-conflict).

S = { q1, q2, q4 }

a b c d e f

a b

C(q1)

C(q2)

a b c d e f g h i

g h i

Root

C(q4)

S(Q, W, T) = 5

TInput:
Q = { q1, q2, q3, q4 }
q1 = { a, c, d, e, f }
q2 = { a, b }
q3 = { b, g, h }
q4 = { g, h, i }

W(q1) = 1
W(q2) = 2
W(q3) = 1
W(q4) = 2

q1

q2

G

q3

q4

Rankings = { q1, q3, q4, q2 }

CovT \ CovS =
{ {q1,q2}, {q2,q3}, {q3,q4} }

CovS =
{ {q1,q3}, {q1,q4}, {q2,q4} }

W(q1) = 1

W(q3) = 1

W(q4) = 2

W(q2) = 2

Figure 5: Example of an execution of 𝐶𝑇𝐶𝑅 for the Perfect-Recall variant, 𝑂𝐶𝑇 (PR0.61). The input sets and their weights are
depicted on the left side. Next to the input, from top to bottom, the figure shows the ranking of the input sets (Rankings), the
pairs of input sets that must be covered together (𝐶𝑜𝑣𝑇 \𝐶𝑜𝑣𝑆), and the input sets that can be covered separately (𝐶𝑜𝑣𝑆). Then,
one column to the right depicts the conflict hypergraph, 𝐺 , where the two ovals outline the two hyperedges and the shaded
vertices form the optimal solution, 𝑆 , for the𝑀𝐼𝑆 problem over 𝐺 . The tree, 𝑇 , which covers 𝑆 , is depicted on the right side.

The following example illustrates why such a triplet is declared

as a conflict, even when 𝑞1 and 𝑞3 can be covered together.

Example 3.2. Consider the sets 𝑞1 = {𝑎, 𝑐, 𝑑, 𝑒, 𝑓 }, 𝑞2 = {𝑎, 𝑏},
𝑞3 = {𝑏,𝑔, ℎ} in the Perfect-Recall variant with 𝛿 = 0.61 (also

depicted in Figure 5). Each of the two pairs {𝑞1, 𝑞2} and {𝑞2, 𝑞3}
are intersecting and must be covered together, whereas 𝑞1 and 𝑞3

can be covered both together (the higher-placed category, 𝐶 (𝑞1),
would contain 𝑞1 ∪ 𝑞3, with precision 5/8 > 𝛿) and separately. If

the conflict-free set of input sets, 𝑆 , extracted from the conflict

hypergraph, contains only 𝑞1 and 𝑞3, without 𝑞2, then these would

be covered separately, as they are disjoint. However, if all three sets

appear in 𝑆 , then all threemust be covered together, and themerging

of two otherwise separate branches may introduce conflicts.

Thus, to anticipate all conflicts in advance, we use the stronger

condition above, which also improves the pairwise similarities

within branches. Finally, we explain why we have included the

condition that 𝑞2 must not be the lowest-ranking set of the three.

If this were the case, then its category would be the ancestor of

the categories for the other two sets, and there is no contradiction

when two descendants of the same category are covered separately.

Tree construction (lines 11-19). As in the Exact variant, given

a conflict-free set of input sets, 𝑆 , extracted from the conflict hy-

pergraph (line 10), the tree 𝑇 contains, for each 𝑞 ∈ 𝑆 , a category,
𝐶 (𝑞) (lines 11-13). However, since, for 𝛿 < 1, a covered set does

not necessarily entirely contain a set covered below it, two steps in

the tree construction are generalized. First, 𝐶 (𝑞) is assigned (lines

14-15) the parent𝐶 (𝑞′), where 𝑞′ is the highest-ranking set of rank
below 𝑟𝑎𝑛𝑘 (𝑞) that also satisfies the more general condition that it

must be covered on the same branch as 𝑞, instead of the analogous

condition for the Exact variant where 𝑞′ must contain 𝑞. If no set

satisfies this condition, then the parent is the root. Second, some

items in sets covered below 𝑞 may not be in 𝑞. Nevertheless, to

produce a valid tree we must include them in 𝐶 (𝑞) (lines 18-19),
along with all the items of 𝑞 (lines 16-17).

It follows that, for 𝛿 < 1, a non-leaf category,𝐶 (𝑞), may not cover

𝑞, due to its descendants containing too many items irrelevant for

𝑞. While we ensured that 𝐶 (𝑄) can cover 𝑞 when placed above

each of its descendants individually, since we did not account for

higher-order conflicts, the aggregate precision error may be too

high. Nevertheless, we demonstrate empirically, in Section 5, that

for the vast majority of the input sets, this is not the case. Moreover,

our formulation of 3-conflicts is beneficial in this regard, increasing

the similarities of the corresponding sets within each branch.

Condensing the tree (lines 24-25). In the final stage, we re-

move redundant items and categories, which is unnecessary for

the Exact variant, since all categories covered the sets with perfect

scores. First, we remove all items that only appear in uncovered

sets (line 24, and later reassigned in line 26). Second, we remove

(line 25) any non-covering category (if a set is covered by multiple

categories, we retain the one with the highest precision). These

operations may only increase the score, by improving precision.

The operation of 𝐶𝑇𝐶𝑅 for the 𝑂𝐶𝑇 (PR0.61) variant is demon-

strated in Figure 5. Note that there are only 3-conflicts. The reason

why {𝑞1, 𝑞2, 𝑞3} is a 3-conflict was explained above in Example 3.2,

and an analogous explanation also applies to the other 3-conflict,

{𝑞2, 𝑞3, 𝑞4}. These two conflicts correspond to the two hyperedges

of size 3 in the hypergraph 𝐺 . In this example, as all non-root cate-

gories cover an input set, there is no need to condense the tree. It

is easy to verify that the final solution is optimal, as only one set of

the lowest weight is not covered, which is the minimum possible

uncovered weight when at least one conflict exists. Also note that,

due to 𝐶 (𝑞1) containing the item 𝑏, the precision of the cover of 𝑞1

is less than 1, which was impossible in the Exact variant.

3.3 General Algorithm
We are now ready to present the𝐶𝑇𝐶𝑅 algorithm in its most general

form. To enable a generic approach, the algorithm handles any

threshold function as its cutoff counterpart, but never improves

scores beyond the threshold at the expense of uncovering input sets.

The algorithm differs from its simplified Perfect-Recall version by

two additional consecutive stages, and the specifics of computing

2-conflicts are different for each variant. Both extensions are a

consequence of allowing recall errors. The first new stage (line 20 in

Algorithm 1, which calls Algorithm 2) generalizes the assignment of

items to categories, as now items may belong to separately covered

sets and if so, must be partitioned. Correspondingly, we, in the

second new stage (lines 21-23 in Algorithm 1), add intermediate

categories, that recombine some of the partitioned item sets.

Next, we describe the modifications in more detail.

Identifying 2-conflicts (lines 1-4).We provide here the spe-

cific computations for identifying conflicts in Jaccard variants. The

formulas for 𝐹1 variants are derived analogously.

To check whether 𝑞1 and 𝑞2 can be covered separately, let 𝐼 =

𝑞1 ∩ 𝑞2, and let 𝑥1 and 𝑥2 denote the maximum number of items

from 𝐼 we can exclude from their covering categories, respectively.

A simple computation yields for 𝑖 ∈ {1, 2}, that 𝑥𝑖 = min{⌊|𝑞𝑖 | ·

S = { q1, q2, q3 }

f
C(q1)

d e fRoot

C(q2)

Input:
Q = { q1, q2, q3 }
q1 = { c, f }
q2 = { a, b, c, d, e }
q3 = { a, b, c }

W(q1) = 2
W(q2) = 1
W(q3) = 3

q1

q2

G

q3

Rankings =
{ q2, q3, q1 }

CovT \ CovS =
{ }

CovS =
Q x Q

W(q1) = 1

W(q3) = 1

W(q2) = 2

d e
C(q3)

c f
C(q1)

a b c d eRoot

C(q2)
d e a b

C(q3)

f c
C(q1)

a b d e

Root a b c d e

C(q2)
d e a b

C(q3)
f c

C(q1)

a b d e

Root a b c d e

C(q3)
a b

C2,3 C2,3

S(Q, W, T) = 5T(2)(1) (3) (4) (5) (6)

Figure 6: Example of an execution of 𝐶𝑇𝐶𝑅 for the threshold Jaccard variant with 𝛿 = 0.6, 𝑂𝐶𝑇 (𝐽0.6). The input is depicted on
the left side, and next to it 6 consecutive stages of the algorithm are depicted from left to right, marked (1) - (6). The first stage
indicates that there are no conflicts, hence the hypergraph in stage (2) has no hyperedges. In stage (3) only non-duplicates are
assigned, whereas in stage (4) the duplicates are also assigned. Stage (5) adds an intermediate category 𝐶2,3, and in stage (6) the
tree is condensed by removing the non-covering category.

(1−𝛿)⌋, |𝐼 |}. Thus, sets can be covered separately when (|𝐼 | −𝑥1) +
(|𝐼 | − 𝑥2) ≤ |𝐼 |, simplifying into |𝐼 | ≤ 𝑥1 + 𝑥2.

When checking whether these two sets, assuming 𝑟𝑎𝑛𝑘 (𝑞1) <
𝑟𝑎𝑛𝑘 (𝑞2), can be covered together, since the category for 𝑞1 also

contains the items of the category for 𝑞2, we need to make sure

that, in the cover of 𝑞2, we use as few items as possible from 𝑞2 \𝑞1.

Specifically, the minimum number of items outside of 𝐼 , that must

remain in the cover of 𝑞2, is 𝑦2 = max{0, ⌈𝛿 · |𝑞2 | − |𝐼 |⌉}. Thus, the
two sets can be covered together when 𝑦2 ≤ |𝑞1 | 1−𝛿𝛿 .

Item assignment (line 20 in Algorithm 1, which calls Al-
gorithm 2). We first, as is the case in the simplified algorithms,

assign to each category, 𝐶 (𝑞), all the items in 𝑞 that only appear in

sets that are covered together (lines 16-17 in Algorithm 1), and the

items assigned to its descendants (lines 18-19 in Algorithm 1).

Unlike the Perfect-Recall variant, as it is possible to cover sep-

arately intersecting sets, some items in the conflict-free sets, we

call duplicates, may be unassigned. To assign duplicates, we use

an iterative greedy procedure, prioritizing covering sets of higher

weight that are also closer to being covered, as captured by the

following metrics. For each uncovered 𝑞 ∈ 𝑆 , its cover gap is the

number of duplicates from 𝑞 that, if added to 𝐶 (𝑞), will suffice to

reach the threshold. Correspondingly, the gain factor of 𝑞 is the

ratio of its weight to its cover gap.

In each iteration, we select the set 𝑞 with the highest gain factor

of the sets that can be covered by the remaining duplicates (line 4 in

Algorithm 2). We then select a set, 𝐼 , of duplicates from 𝑞 of the size

of its cover gap (lines 5-6)), as follows. For each relevant duplicate,

we compute the sum of the gain factors of the sets that contain

it on each branch that 𝐶 (𝑞) is placed on (non-leaf categories are

placed on several different branches, each ending in a different leaf),

matching it with the branch where this sum is maximized. We then

select the top duplicates, in terms of total gain, and assign each

duplicate to the lowest relevant category on its matched branch

(line 7). The set of unassigned duplicates is updated before each

iteration (lines 1 and 8), as is the set of uncovered sets in 𝑆 , which

can still be covered by the remaining duplicates (lines 2 and 9).

Finally, once we cannot cover more sets, we assign the remaining

duplicates iteratively, choosing the assignment with the highest

marginal gain to the cutoff score (lines 10 − 12).

Adding intermediate categories (lines 21-23 in Algorithm
1).When recall errors are allowed, intersecting sets may be covered

separately. However, if two categories share a parent, we can add a

category that recombines the partitioned shared items. Specifically,

for each category with more than two children, we add as a new

child an intermediate parent to any pair of child categories, that

correspond to intersecting sets, containing their union. Each new

intermediate category is considered to correspond to the union of

the sets its child categories correspond to (and can itself, in a future

iteration, be subject to a new intermediate parent). We iteratively

add a parent for the two sets that share the largest fraction of items

out of the smaller set, until there are either two child categories

left, or no two categories correspond to sets that intersect.

Extensions. To avoid a convoluted presentation, we have omit-

ted from the above description various extensions implemented in

𝐶𝑇𝐶𝑅, which we briefly outline below.

First, to handle input sets with varying thresholds, note that

when computing conflicts, pairs are examined separately and can be

evaluated with different thresholds. Similarly, the item assignment

targets sets separately and may each time use a different threshold.

𝐶𝑇𝐶𝑅 also supports varying bounds on the number of same-level

categories each item may be assigned to. Namely, when testing

whether two sets can be covered separately, we allow in the compu-

tation for both categories to include any item whose bound exceeds

1. When assigning the items, each item is duplicated according

to its bound. Moreover, if many item bounds exceed 1, we also

accordingly test for conflicts of a higher order.

The operation of𝐶𝑇𝐶𝑅 for the threshold Jaccard variant with 𝛿 =

0.6,𝑂𝐶𝑇 (𝐽0.6) is demonstrated in Figure 6, where the 6 consecutive

stages of the algorithm are marked (1) - (6). The first stage concludes

that all 6 pairs of input sets can be covered separately, hence there

are no conflicts. Consequently, the conflict hypergraph𝐺 in stage

(2) contains no hyperedges, and the optimal solution 𝑆 is the entire

vertex set. The tree in stage (3), thus, has 3 categories on separate

branches that correspond to the 3 input sets, and the items {𝑓 , 𝑑, 𝑒}
that only appear in sets covered on the same branch are assigned.

In stage (4) the duplicates are also assigned. A simple computation

shows that 𝑞1 has the highest gain factor of 2/1 = 2 (as its weight is

2 and the addition of only one item is sufficient for𝐶 (𝑞1) to cover it).
The only relevant duplicate item is 𝑐 . Then, 𝑞3 has the next highest

gain factor of 3/2, and we must add to it the only two relevant

remaining duplicates {𝑎, 𝑏}. At this point only 𝑞2 is not covered.

However, in stage (5) we add the intermediate category 𝐶2,3 that

is the parent of 𝐶𝑞2
and 𝐶𝑞3

(this is the chosen pair since 𝑞2 ⊆ 𝑞3),

and now covers 𝑞2. The score of the tree is now optimal, however,

it still has one non-covering category, 𝐶𝑞2
, that is removed when

the tree is condensed in the final stage.

4 CLUSTERING-BASED ALGORITHM
While we have demonstrated empirically, in Section 5, the effec-

tiveness of𝐶𝑇𝐶𝑅, nevertheless, as its performance is dependent on

Embeddings:

E(q1) = (1, ²⁄₅, ¹⁄₂, ²⁄₉)
E(q2) = (²⁄₅, 1, 0, ¹⁄₃)
E(q3) = (¹⁄₂, 0, 1, ¹⁄₉)
E(q4) = (²⁄₉, ¹⁄₃, ¹⁄₉, 1)

Dendrogram:

q1 q3 q2 q4 c d e f

c d e fC(q1)

C1,3

C(q3)

a b c d e f g h i

a b g h i

Root

C2,4

a b g h iC(q2) C(q4)

c d e fC1,3

a b c d e f g h i

a b g h i

Root

C2,4

T
S(Q, W, T) = 5

a bC(q2)c d eC(q1)

Condensing Item
Assignment

Clustering

Figure 7: Execution of 𝐶𝐶𝑇 for the threshold Jaccard variant with 𝛿 = 0.6, 𝑂𝐶𝑇 (𝐽0.6), over the input from Figure 2. The
embeddings are depicted on the left side. The dendrogram extracted from the agglomerative clustering is depicted to the right
of the embeddings. To its right, we have the tree, 𝑇 , based on this dendrogram, along with the item assignment. The tree is
optimal as it covers𝑄 entirely. The final condensed tree with two non-covering categories removed is depicted on the right side.

the underlying 𝑀𝐼𝑆 algorithm, it may be desirable to provide an

alternative algorithm, which avoids resolving conflicts directly. To

this end, we present in this section the Clustering-Based Category

Tree (𝐶𝐶𝑇) algorithm. Unlike existing clustering-based categoriza-

tion methods, which cluster the items directly (see Section 6), 𝐶𝐶𝑇

clusters the input sets. It does so to derive the tree structure, and

not to determine the item assignments. Concretely, we first employ

a hierarchical clustering algorithm over 𝑄 , to derive the structure

of the tree. This tree would have a leaf category for each set in 𝑄 ,

and the finer is the finest cluster two sets are assigned to, the lower

their lowest common ancestor is placed in the tree. The items are

then partitioned across the leaf categories using the same iterative

greedy item assignment procedure as in the 𝐶𝑇𝐶𝑅 algorithm.

Unlike 𝐶𝑇𝐶𝑅, instead of resolving conflicts in advance, 𝐶𝐶𝑇

aims to do so implicitly. Specifically, for a conflict (𝑞𝑖 , 𝑞 𝑗), if we
first assign items to cover 𝑞𝑖 , then 𝑞 𝑗 can no longer be covered, and

the greedy assignment algorithm will prioritize other sets over 𝑞 𝑗 ,

such that 𝐶𝐶𝑇 avoids wasting items on covering 𝑞 𝑗 .

𝐶𝐶𝑇 applies schematically to all 𝑂𝐶𝑇 variants, as we explain

momentarily. The algorithm is depicted at high-level in Algorithm

3. Moreover, its operation, over the input from Figure 2, for the

threshold Jaccard variant with 𝛿 = 0.6, is demonstrated in Figure 7.

Next, we describe each stage of the algorithm in more detail.

Input sets embedding (line 1 in Algorithm 3). Applying a

clustering algorithm requires computing pairwise distances. The

main novelty of our clustering approach is, instead of relying on

pairwise similarities, to take into account the entire “global context”.

Namely, for Jaccard and 𝐹1 variants, we embed every set 𝑞 ∈ 𝑄 as

a vector 𝐸 (𝑞) ∈ {[0, 1]}𝑛 in Euclidean space, where the 𝑖-th entry

is 𝐸 (𝑞)𝑖 = S(𝑞, 𝑞𝑖), the similarity of 𝑞 and the 𝑖-th input set, w.r.t.

some ordering of the sets, as evaluated by similarity function.

The left side of Figure 7 depicts the embeddings of the input sets

from Figure 2. As mentioned, the 𝑖-th entry in the vector 𝐸 (𝑞 𝑗), is
the Jaccard similarity of 𝑞𝑖 and 𝑞 𝑗 .

Deriving a clustering-based tree structure (lines 2-3). In the

second step of 𝐶𝐶𝑇 , we run an agglomerative clustering algorithm

(line 2), which continually merges subsets of vectors (starting from

singletons, and ending in a single set containing all the vectors),

according to the euclidean distance (we have also examined other

metrics, with inferior results) merging each time the two closest

subsets. The distance of two subsets is the average of all the pairwise

distances of the Cartesian product of the sets.

The execution of an agglomerative algorithm is represented

using a dendrogram, a diagram shaped as a binary rooted tree de-

picting the order of the merges, with the earliest merges presented

Algorithm 3: 𝐶𝐶𝑇
1 𝐸 ← ResolveEmbeddings(𝑄)
2 𝐷𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚 ← AgglomerativeClustering(𝐸)
3 𝑇 ← ConstructTreeFromDendrogram(𝐷𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚)
4 AssignItems(𝑄,𝑇) ; // Call Algorithm 2

5 𝑇 .RemoveNoncoveredItems(𝑄)
6 𝑇 .RemoveNoncoveringCategories(𝑄)
7 𝑇 .AddCategoryWithUnassignedItems(𝑄)
8 return𝑇

at the bottom. This dendrogram is then used as the template for the

tree structure (line 3), determining completely all the categories.

Item assignment (line 4 in Algorithm 3, which calls Algo-
rithm 2) and Condensing the tree (lines 5-7). Once the tree
structure is determined based on the dendrogram, we assign the

items to the categories using the same procedure, depicted in Algo-

rithm 2, as in the 𝐶𝑇𝐶𝑅 algorithm (in the case of 𝐶𝐶𝑇 , the items

will only be assigned to leaf-categories, as the dedicated category

for each input set is a leaf category), and we also condense the tree

exactly as in 𝐶𝑇𝐶𝑅. This is demonstrated in 7, following similar

reasoning as the example in Figure 7.

For the Perfect-Recall variant, we use different embeddings, as

the similarity function is based separately on precision and recall.

Concretely, to combine both measures, we use their average, such

that the 𝑖-th entry of the embedding of 𝑞 is 𝐸 (𝑞)𝑖 = (𝑟 (𝑞, 𝑞𝑖) +
𝑝 (𝑞, 𝑞𝑖))/2 (note that 𝑟 (𝑞, 𝑞𝑖) = 𝑝 (𝑞𝑖 , 𝑞)).

5 IMPLEMENTATION AND EXPERIMENTS
We open this section by explaining how we derived and prepro-

cessed the input sets, in particular, the result sets to search queries,

to best exploit our algorithms. We then describe, in the experimen-

tal setup, the real-life datasets (both private and public) we used for

the experiments, the algorithms we compared, and the quantitative

evaluation methods, followed by the evaluation results. Lastly, we

describe the setup, methodology and findings of a user study, focus-

ing on qualitative metrics and the scope of the manual intervention

required for implementing our human-in-the-loop approach.

5.1 Data Preparation
As discussed in the introduction, we advocate using result sets to

frequent search queries to facilitate a data-driven approach for de-

riving candidate categories. Thus, our analysis of the score achieved

by each algorithm uses real-world datasets of raw search queries, as

described below. We examined four public datasets and four private

datasets provided by XYZ. We next explain how we preprocessed

these raw search queries into the inputs used for our experiments.

Concretely, we describe how we (1) removed noisy/incoherent

queries, (2) cleaned query result sets, (3) assigned weights that re-

flect the relative importance of covering each query, and (4) heuris-

tically merged queries to improve solution quality and scalability.

When devising our preprocessing scheme, we relied on objective

arguments for improving the quality or efficiency of the solution,

according to the experience of the taxonomists. In the description of

the user study (Section 5.4), we also report conclusions of ablation

tests, that highlight the preprocessing effectiveness.

Cleaning the query set. To omit incoherent, outdated, or rare

queries not indicative of user demand, we take the following ap-

proach. First, as infrequent queries are less reflective of demand,

we consider only queries that were submitted at least 𝑋 (the exact

number is confidential as consumer data can be derived from rare

queries) times a day, consecutively over the last 90 days (XYZ re-

constructs the tree every 90 days). However, in our user study we

demonstrate that platforms can capitalize on short-lived trends, by

applying the algorithms over data skewed towards more recent peri-

ods. Second, to remove nonsensical queries we omit queries whose

result sets consist of items from more than 10 different branches

in the existing company tree (fewer than 1% of the queries). This

captures the logic that queries whose result sets are scattered across

many distant categories are not indicative of one unifying category.

Computing result sets. The result sets are computed via the

platform’s search engine. When search engines evaluate queries,

they provide a relevance score in [0, 1] for each returned item.

To reduce noise, we remove items whose score is below a certain

relevance threshold. Taxonomists reported that including too long

of a tail in the final result sets reduced the categorization coherence.

Experimentation with various values led to selecting a 0.8 rele-

vance score for Jaccard and 𝐹1 variants, and 0.9 for the Perfect-Recall

and Exact variants. These thresholds ensured almost in all cases

that each item in the repository appears in at least two sets.

Assigning weights. The weight of each query was set to the

average number of times it was searched per day, over the examined

period. In the public datasets, we assigned a uniform weight of 1 as

all queries are distinct with no frequency data.

Merging similar queries. Lastly, we incorporated an optimiza-

tion that improved the running time and the quality. Namely, we

merged every two very similar result sets into a single set whose

weight is the combined weight of the original sets. This reduced the

number of queries by more than half in all XYZ datasets. Moreover,

the scores were either the same or slightly improved, when evalu-

ated over the original queries. Experiments by the taxonomists led

to merging queries whose similarity, as evaluated by the similarity

function, lies in [𝛿 + 3

4
(1 − 𝛿), 1].

5.2 Experimental Setup
We implemented our algorithms [2] using Python and ran the exper-

iments on a server with 128GB RAM and 32 cores. We compared our

two algorithms to three baselines. These include the existing tree,

which represents the approach taken by e-commerce platforms, as

well as a modern clustering approach from the literature.

Input categories. We ran our experiments with different com-

binations of sources for deriving the input candidate categories.

The three main sources were: (1) categories of the existing tree,

(2) sets derived by taxonomists for each shared property explicitly

recorded in the products database (e.g., size for TV screens), and

(3) result sets of search queries. Unsurprisingly, the scores and the

relative ranking of the algorithms were robust w.r.t. all considered

input sources, and we thus show in the score-based evaluation rep-

resentative results over the fully automated approach of using only

result sets for frequent queries. Note, however, that the evaluation

pertaining to the score function is not indicative of the quality of the

ground truth input itself. Hence, the contribution of incorporating

these queries is evaluated separately in the user study.

Datasets. The four private datasets, provided by XYZ, are named

𝐴, 𝐵, 𝐶 , and 𝐷 , and contain, respectively, 450, 1.2K, 3K, and 20K

queries and their result sets. Note that these are the dataset sizes af-

ter the preprocessing. For example,𝐷 , the largest dataset, contained

originally 100K queries prior to merging the queries.The numbers

of distinct items, in these datasets, are 28K, 94K, 340K, and 1.2M,

respectively. The first three datasets (𝐴, 𝐵,𝐶) are all taken from the

Fashion domain, while 𝐷 is extracted from the Electronics domain.

These datasets are based on search queries submitted in the first

quarter of 2020 and contain only English queries from the US site.

We also examined publicly-available datasets of various e-commerce

platforms: CrowdFlower [3], HomeDepot [4] and Victoria’s Secret

[5], containing search queries and top-𝑘 results. We also examined

the dataset of queries taken from BestBuy [12], and evaluated these

queries over the Electronics subtree of Amazon [17]. Concretely,

we indexed Amazon’s products and computed the result sets using

Elasticsearch [6]. When we report in the sequel our evaluation

results over this dataset, we refer to it as 𝐸.

As the obtained results over all datasets demonstrated very simi-

lar trends, for space limitations, we provide representative results

only for some private and public datasets. Most shown results are

over the XYZ datasets, which are also the largest and most detailed

datasets, containing query frequency information.

Algorithms. We compared our two algorithms, 𝐶𝑇𝐶𝑅 (Section

3) and 𝐶𝐶𝑇 (Section 4), to the following three algorithms.

• IC-S - An adaptation to our context of an e-commerce-specific al-

gorithm [18]. It takes a conventional approach in related settings

(see discussion in Section 6) of embedding product titles, and

employing a hierarchical clustering algorithm over the embed-

dings. It differs from 𝐶𝐶𝑇 in two key aspects. First, IC-S clusters

the items directly, unlike 𝐶𝐶𝑇 , which clusters the input sets and

then performs the item assignment separately. Second, IC-S does

not take the input sets into account, rather it relies on extracting

semantic information from item metadata. IC-S differs from the

implementation of [18], by an optimization (verified to improve

the scores), that uses title embeddings produced by a domain-

specific model, trained by XYZ, instead of word2vec, and by

replacing k-means with hierarchical clustering as in 𝐶𝐶𝑇 , since

[18] add only a single lower layer to an existing tree.

• IC-Q - Another algorithm that clusters the items directly. How-

ever, while IC-S clusters the items based on semantic information,

IC-Q performs the clustering based on the input sets each item

appears in. Thus, IC-Q can be viewed as a hybrid approach that

combines 𝐶𝐶𝑇 with IC-S. Concretely, IC-Q represents each item

as a vector, where the 𝑖-th entry is 1 if the item appears in the

Sc
or
e

0.00
0.25
0.50
0.75
1.00

CTCR CCT IC-S IC-Q ET

(a) Jaccard, 𝛿 = 0.8 [C].

Sc
or
e

0.00
0.25
0.50
0.75
1.00

CTCR CCT IC-S IC-Q ET

(b) PR, 𝛿 = 0.8 [C].

Sc
or
e

0.00
0.25
0.50
0.75
1.00

CTCR CCT IC-S IC-Q ET

(c) Exact variant [C].

Sc
or
e

0.00
0.25
0.50
0.75
1.00

0.5 0.6 0.7 0.8 0.9 0.95

(d) CTCR, Jaccard, various 𝛿 [C].

Sc
or
e

0.00
0.25
0.50
0.75
1.00

CTCR CCT IC-S IC-Q ET

(e) Train/Test; Jaccard, 𝛿 = 0.8 [D].

R
un

ni
ng

 T
im

e
(s

)

1
10

100
1000

A B C D

(f) Scalability [Various].

Sc
or
e

0.00
0.25
0.50
0.75
1.00

CTCR CCT IC-S IC-Q ET

(g) PR, 𝛿 = 0.8 [E].

Sc
or
e

0.00
0.25
0.50
0.75
1.00

0.5 0.6 0.7 0.8 0.9 0.95

(h) CTCR, PR, various 𝛿 [E].
Figure 8: Experimental results. The studied dataset is mentioned in the square brackets.

𝑖-th input set and 0 otherwise. It then employs an agglomerative

clustering algorithm over these vectors, to create the tree.

• ET - The existing company tree (created manually).

EvaluationMethods.We performed four complementary types

of experiments to evaluate our algorithms. First, we compared the

scores of the generated trees by all five algorithms, over inputs taken

from all five datasets, for each of the six variants: Jaccard (both

threshold and cutoff), 𝐹1 (both threshold and cutoff), Perfect-Recall,

and Exact variants, using a wide range of threshold parameters

(except for the Exact variant, where 𝛿 = 1). Specifically, we consid-

ered threshold values in the range [0.5, 1], in incremental steps of

0.01. For the Perfect-Recall variant, where, as explained in Section

2, lower precision may be required in practice, we examined results

for threshold values in the more extensive range of [0.1, 1].
Second, to evaluate the robustness of the algorithms, we adopted

a prevalent evaluation method in machine learning, where we ran-

domly partition the largest dataset, 𝐷 , into two query sets of equal

cardinality: a training set and a test set. The tree was constructed

over the training set and evaluated w.r.t. the test set.

Third, we evaluated the scalability of𝐶𝑇𝐶𝑅, the best-performing

algorithm, demonstrating its efficient parallel implementation.

Finally, we also conducted a user-study with XYZ taxonomists.

5.3 Score-based Evaluation Results
Score comparisons. To normalize the scores into the range [0, 1]
we divided the actual score by the sum of the weights of all the sets

in the input, which is a loose upper bound on the maximum possible

score. As the optimal score cannot even be approximated (Section

2), over some inputs, a score of 0.001 may be optimal, whereas, over

other inputs, a score of 0.5 may be trivial. The score, thus, offers an

objective comparison only between different algorithms over the

same input and problem variant.

In all examined variants and inputs, 𝐶𝑇𝐶𝑅 outperformed all

its competitors, with 𝐶𝐶𝑇 being the second-best algorithm. More-

over, the score gap between 𝐶𝑇𝐶𝑅 and 𝐶𝐶𝑇 is typically significant

(roughly 10% on average). This trend is demonstrated in Figures

8a, 8b, 8c and 8e. Specifically, figures 8a-8c depict representative

results over the 𝐶 dataset for the threshold Jaccard, Perfect-Recall,

and Exact variants, respectively, whereas results over the 𝐸 dataset

for the Perfect-Recall variant are depicted in Figure 8e.

Importantly, the scores of 𝐶𝑇𝐶𝑅 for the Exact variant, including

the score in Figure 8c, are all optimal. By using the𝑀𝐼𝑆 algorithm

from [22], we were able to solve all Exact 𝑂𝐶𝑇 instances optimally.

Consequently, the scores for the Exact variant exceeded the scores

of the Perfect-Recall variant even for much lower threshold values

in the range of [0.7, 1). Thus, an important insight is that due to the

improved performance of 𝐶𝑇𝐶𝑅 for the Exact variant, it is worth

employing this specialized version, even when some similarity error

can be tolerated, particularly in the Perfect-Recall variant.

In general, the score of 𝐶𝑇𝐶𝑅 never dropped below 0.5, which

demonstrates that in practice, the problem can often be reasonably

approximated (for a score of 0.5, the approximation ratio is in the

range [1, 2]), despite the worst-case theoretical bounds. Due to

space constraints, we omitted results for the 𝐹1 variants and the

cutoff Jaccard variant, which demonstrated similar trends. More-

over, the ranking of the algorithms, in terms of the score, is roughly

the same as in the figures, across all examined datasets.

Figures 8g-8h demonstrate the scores achieved by 𝐶𝑇𝐶𝑅 across

a wide range of threshold values for the threshold Jaccard variant

over the C dataset and the Perfect-Recall variant over the 𝐸 dataset,

respectively. As expected, lowering the threshold consistently al-

lows covering more input sets and achieving higher scores.

Train/Test evaluation. The evaluation results where we split

the data into train/test sets are depicted in Figure 8e. We randomly

partitioned the input 50 times, taking the average score over the

test set. The scores are predictably lower than the analogous scores

in Figure 8a, however, 𝐶𝑇𝐶𝑅 still achieved the best performance.

Scalability.We performed the scalability tests over the four XYZ

datasets, whose sizes range from 450 queries (28K items) to 20,000

queries (1.2M items). Note that 𝐶𝑇𝐶𝑅 is highly parallelizable. First,

it computes all the 2-conflicts (as described in Section 3) in parallel.

It also computes in parallel the cover scores for each category, at

any given point in the item assignment phase. Figure 8f depicts

the running times of 𝐶𝑇𝐶𝑅. For the smallest dataset it takes 5

seconds to generate the results, while for the largest dataset it takes

about 37 minutes - a reasonable time for an offline process. Manual

construction by taxonomists typically takes weeks.

5.4 User Study
As mentioned in the introduction, our solutions have been eval-

uated by XYZ taxonomists, as a tool that allows reducing man-

ual work, and reflect user demand as indicated by large rapidly-

changing datasets. Specifically, this user study was performed over

two months by three experienced in-house full-time taxonomists,

employed by XYZ. All three taxonomists are experts in the Elec-

tronics and Fashion domains. The user study was performed over

the XYZ datasets to maximally leverage their expertise, as they

work regularly on categorizing this exact data.

Manual effort. Before detailing the evaluation, we note that

the main reported advantage of our approach was time-saving, as

Table 1: The contribution of covering each subset of the input
sets (result sets to queries in 𝐷 vs. existing categories), in the
threshold Jaccard variant with 𝛿 = 0.8, to the final score of the
𝐶𝑇𝐶𝑅 tree, per the ratio of the total weights of each subset.

Queries/Existing % of Score from Queries % of Score from Existing

90%/10% 93.14% 6.86%

70%/30% 68.22% 31.78%

50%/50% 48.18% 51.82%

30%/70% 29.55% 70.45%

10%/90% 7.13% 92.87%

almost all necessary manual interventions are also required in the

fully-manual approach. The scalability results above show that the

execution time of our solution is negligible compared to manual

construction. Moreover, taxonomists already maintain the tree by

correcting item assignments and assigning new items (automati-

cally by using, e.g., [10]). They also constantly monitor the tree to

assess how well the latest query trends are addressed. Therefore,

the tuning process is almost entirely subsumed by the taxonomists’

daily manual work. Moreover, as the findings below show, it also

simplifies complementary manual tasks, and provides various im-

provements in the categorization itself.

In the first part of the study, all algorithms were compared w.r.t.

qualitative metrics. The second part of the study was dedicated to

an extensive evaluation of the best-performing algorithm, 𝐶𝑇𝐶𝑅.

Comparing all algorithms. The taxonomists were asked to

compare the outputs of the above four automated algorithms, based

on the following criteria. (1) Categorization structure: which struc-

ture makes the most sense and helps identify more problematic

categorization decisions in the existing company tree. (2) Item as-

signment: which assignment makes the most sense. (3) Overall

assessment: which tree is closest to a finished product and pre-

sumed to save taxonomists the most time. In terms of all the above

criteria, the impressions of the taxonomists were highly correlated

with the actual tree scores, and 𝐶𝑇𝐶𝑅 was viewed as by far the

leading algorithm, followed by 𝐶𝐶𝑇 .

Evaluation the 𝐶𝑇𝐶𝑅-based human-in-the-loop workflow.
In the second part of the study the taxonomists examined the real-

world usage of𝐶𝑇𝐶𝑅 over 6weeks. As our solution takes the human-

in-the-loop approach by design, we first report the findings, in terms

of the complementary manual tasks discussed in Section 2.3: (1) en-

suring conservative updates, (2) ensuring navigability, cohesiveness

and labeling categories, and (3) tuning the solution. We conclude

with examples of categorization errors and improvements.

Ensuring conservative updates. To test whether the tree

can reflect user queries without radically changing the categoriza-

tion, taxonomists added as input sets the existing tree categories,

weighted uniformly. Table 1 shows that the weight ratio between

query result sets and existing categories (modulated by adjusting

the queryweights) is roughly translated into the same ratio between

the contribution of covering each of the two subsets to the total

score (computed over the 𝐷 dataset and the existing categories, for

the threshold Jaccard variant with 𝛿 = 0.8). This indicates that mod-

ulating the weights is sufficient to exert control over the extent to

which the existing tree may change. This process of setting weights

to control the extent of the changes was reported as significantly

quicker than manual tuning (hours vs. days).

Ensuring cohesiveness, navigation and correct labeling.
All taxonomists reported that assigning labels to categories of the

CTCR-based tree was straightforward, as each categorywasmarked

by the search query or existing category label of the input sets it

matches. After two taxonomists had assigned category names and

added high-level and intermediate categories to reach a compara-

ble navigation structure to the existing tree, the third taxonomist

reported that in terms of the assessment of navigation and concep-

tual cohesiveness of categories, as seen in user studies in [11, 35],

there were no noticeable quality differences. This equivalence in

cohesiveness is confirmed by computing (over the same trees as

Table 1) the average pairwise tf-idf similarity within each category,

w.r.t. to the product titles. When uniformly averaging across all

categories, the scores were 0.52 for the 𝐶𝑇𝐶𝑅-based tree and 0.49

for the Existing tree. When weighting the average by category sizes,

the both scores were 0.45.

Fine-tuning the preprocessing and algorithm parameters.
After extensive experimentation, the favored reported setting

was using the Jaccard threshold variant with 𝛿 = 0.8. However, as

𝐶𝑇𝐶𝑅 can be reemployed independently over selected subtrees, for

some subtrees with diverse categories where users are presented

with an additional filtering interface the Perfect-Recall variant with

𝛿 = 0.6 was preferred (for reasons discussed in Section 2.2).

Note, however, that the solution is generally robust to small

changes in the threshold parameter. As seen in Figure 8d, the change

to the score is relatively minor when using any threshold in the

range [0.6 − 0.9]. Hence, tuning the threshold parameter was re-

ported to be straightforward.

Ablation tests indicated that all preprocessing steps were signifi-

cant, as removing any step added noise in the form of many small

errors (assessed by taxonomists).

Identifying and correcting errors. In spite of the preprocess-

ing steps, some misclassifications made by the search engine still

propagated into the input sets. While to a large extent this is mit-

igated by our preprocessing procedure, it cannot be resolved en-

tirely These rare occurrences do not pose novel challenges, but are

rather addressed by dedicated tools used for manually-constructed

categories as well. For example, a Nike blazer is a popular shoe, un-

related to the blazer jacket. However, since Nike blazers were also

included in the result set for the “blazers” query, the “Nike Blazer”

category was created under “Blazers”. Taxonomists routinely search

for such suboptimal assignments via a tool that detects high pair-

wise distances between embeddings of items within a category. In

the above example, the problem detected in the “Blazers” category

led to manually repositioning the “Nike Blazer” category. When

only a few items are erroneously assigned to a new category, the

automatic tool [10] reassigns these to an existing category.

Another issue relates to important categories being underrepre-

sented in the search queries. For example, as enough time passes

after theWorld Cup, related merchandise is searched less frequently.

Some of these categories are of collectible items and were deemed

necessary by taxonomists, that easily detected their absence when

presented with the list of non-covered categories from the exist-

ing tree. This was resolved by reemploying the algorithm over the

relevant subtree after increasing the weights of the corresponding

input sets and lowering the threshold for queries where it was not

essential to include all relevant items in the category.

Similar automatic solutions are also applied for underrepresented

items that appear in very few queries. In general, a query containing

many items that do not appear in other queries has a higher chance

of being covered. However, if no query containing a rare item is

covered, it is initially absent from any covering category. These

are automatically detected and assigned to existing categories. The

only exception is when many non-covered items appear in the same

query. This indicates a need for a separate category, and hence the

threshold of the query is reduced when reemploying the algorithm.

All taxonomists reported that reemploying 𝐶𝑇𝐶𝑅 several times

is sufficient to derive a tree with the desired categorization improve-

ments, such that the number of (mostly automatic) daily fixes is not

higher than what is needed for manually constructed categories.

Categorization improvement. In terms of the contribution of

𝐶𝑇𝐶𝑅 to the low-level categorization, a reported advantage was

identifying, via search queries, errors in matching user demand.

One such insight is the example of memory cards provided in the

introduction. Another example relates to the tragic death of the

basketball player, Kobe Bryant, which led to a significant spike

during February 2020 in the demand for memorabilia related to

him.𝐶𝑇𝐶𝑅 identified that there should have been a dedicated “Kobe”

subtree to better serve the many users that sought these products.

To conclude, these evaluations indicate that 𝐶𝑇𝐶𝑅 qualitatively

outperforms other automated algorithms, allows modulating ratios

between covering various input sources, and offers improvements

in the categorization while saving effort and time.

6 RELATEDWORK
The construction and maintenance of hierarchical categorizations

have been the focus of research in e-commerce, document manage-

ment, and question answering [11, 16, 32, 35], with many effective

automated solutions proposed in recent years [19, 28, 30, 36]. The

vast majority of these works, however, categorize terms and con-

cepts based on semantic and lexical relations, often derived from a

given corpus of documents [36]. Concretely, in term taxonomies [23],
each node represents a term or a phrase, and directed edges connect

more general concepts to related more specific terms, whereas in

topic taxonomies [19], each node is associated with a set of terms

that characterize the topic. Common solutions include using lexical

patterns to extract hyponymy (“is-a”) relations [25], crowd-sourcing

[31], training a classifier over term relations in a supervised manner

[24], and using a hierarchical clustering algorithm to cluster word

representations based on similarity [36], which is also a common

method for document classification [26].

Other than the different domains of applicability and input types,

there are several important distinctions in our setting. A first funda-

mental distinction is the different combinatorial settings in many of

these works, e.g., categorizations often having a more general DAG-

based structure [14, 30], or term taxonomies assigning only a single

entity per node [34]. Second, as explained in the introduction, in the

context of an e-commerce product tree, there are important consid-

erations beyond the lexical and semantic relations that determine

which potential category is a sub-type of another and which items

match it. Instead, in our setting, the dominant sets are application-

dependent and can be determined by domain experts, derived from

result sets of query logs, or any relevant means. Our modeling of a

computational problem w.r.t. an input of candidate categories is a

novel approach, tailored for e-commerce deployment. Namely, tax-

onomists can manually and algorithmically curate the sources and

contents of input sets, and adjust weight and threshold parameters

for each set. Correspondingly, the algorithmic problem we model

is not comparable to other works, and we are not aware of any

categorization research that provides a formal model and studies

the approximation complexity of the corresponding algorithms. In-

terestingly, while some works compute analogous similarity scores

of the solution to a labeled ground-truth [11, 26, 27], this metric is

only used for evaluation and does not guide the construction. In

general, the utility of a taxonomy is to a large extent subjective, and

many works evaluate the solution via a user study [33, 36], which

is also part of our experimental evaluation.

Closest to ours is a work that also targeted e-commerce [18]. It

improved the low-level categorization by adding one additional

layer below existing leaf categories. The distinction to our work

is captured by the discussion above, as they also used the com-

mon approach in topic taxonomies of embedding products based

on titles and clustering the embeddings. Nevertheless, to compare

approaches, we have adapted this algorithm to our setting (baseline

IC-S in Section 5) and demonstrated experimentally that our algo-

rithms produce trees with better scores and qualitative evaluations.

A related line of research studies the classification of a new item to a

category of a given tree [10, 21, 29], an objective complementary to

ours. We also note the work of [37], which generates a taxonomy of

products as part of an algorithm for personalized recommendations.

They learn the taxonomy from product descriptions and evaluate it

based on the improvement to the recommendation model.

Lastly, recall that we have proposed two algorithms. The 𝐶𝑇𝐶𝑅

algorithm of Section 3 leverages reductions to the Maximum Inde-

pendent Set problem, which, to our knowledge, is a novel method.

The 𝐶𝐶𝑇 algorithm of Section 4 clusters the sets to derive the tree

structure. Compared to existing clustering solutions [18, 32, 36] it

incorporates higher-order item relations into the input. Namely, it

clusters item sets, instead of the items. Moreover, to accentuate the

“global perspective”, the embeddings used by𝐶𝐶𝑇 allow comparing

input set pairs not only in terms of their direct similarity but also

in terms of their similarities to all other sets.

7 CONCLUSION
In this work, we have put forth a formal model for capturing the

problem of constructing a category tree, tailored specifically to

the e-commerce setting, and provided two algorithms that on real-

world data achieve high scores, far above worst-case bounds. In

particular, our best-performing algorithm,𝐶𝑇𝐶𝑅, which is based on

a novel method of harnessing solvers and algorithms for the Maxi-

mum Independent Set problem to resolve categorization conflicts,

optimally solved all instances of one problem variant. A user study

among taxonomists also indicated the qualitative advantages of

𝐶𝑇𝐶𝑅 over solutions from related settings, and verified the efficacy

of leveraging query logs to capture user demand and trends.

An interesting direction for future research is exploring whether

in other categorization contexts one can also derive an extensive

set of candidate categories, and adapt our model and algorithms to

the specification of the application at hand.

REFERENCES
[1] https://export.ebay.com/en/start-sell/selling-basics/seller-fees/fees-optional-

listing-upgrades/.

[2] Ctcr implementation. https://github.com/shayg1/CategoryTrees.

[3] Crowdflower search relevance. https://data.world/crowdflower/ecommerce-

search-relevance, 2015.

[4] Home depot product search relevance. https://www.kaggle.com/c/home-depot-

product-search-relevance/data, 2016.

[5] Innerwear data from victoria’s secret and others. https://www.kaggle.com/

PromptCloudHQ/innerwear-data-from-victorias-secret-and-others, 2017.

[6] Elasticsearch. https://www.elastic.co/elasticsearch, 2020.

[7] Geir Agnarsson, Magnús M Halldórsson, and Elena Losievskaja. Sdp-based

algorithms for maximum independent set problems on hypergraphs. Theoretical
Computer Science, 470:1–9, 2013.

[8] Uri Avron, Shay Gershtein, Ido Guy, Tova Milo, and Slava Novgorodov. ConCaT:

Construction of Category Trees from Search Queries in E-Commerce. In ICDE,
2021.

[9] Slobodan Beliga, Ana Meštrović, and Sanda Martinčić-Ipšić. An overview of

graph-based keyword extraction methods and approaches. JIOS, 39(1):1–20, 2015.
[10] Ali Cevahir and Koji Murakami. Large-scale multi-class and hierarchical product

categorization for an e-commerce giant. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers, pages
525–535, 2016.

[11] Shui-Lung Chuang and Lee-Feng Chien. A practical web-based approach to

generating topic hierarchy for text segments. In CIKM, page 127–136, 2004.

[12] Eyal Dushkin, Shay Gershtein, Tova Milo, and Slava Novgorodov. Query driven

data labeling with experts: Why pay twice? In EDBT, 2019.
[13] Shay Gershtein, Uri Avron, Ido Guy, Tova Milo, and Slava Novgorodov. On the

hardness of category tree construction. In ICDT, pages 4:1–4:17, 2022.
[14] Amit Gupta, Rémi Lebret, Hamza Harkous, and Karl Aberer. Taxonomy induction

using hypernym subsequences. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pages 1329–1338, 2017.

[15] Magnús M Halldórsson and Elena Losievskaja. Independent sets in bounded-

degree hypergraphs. Discrete applied mathematics, 157(8):1773–1786, 2009.
[16] Idan Hasson, Slava Novgorodov, Gilad Fuchs, and Yoni Acriche. Category recog-

nition in e-commerce using sequence-to-sequence hierarchical classification. In

WSDM, 2021.

[17] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution

of fashion trends with one-class collaborative filtering. In Proc. of WWW, pages

507–517, 2016.

[18] Y. Hsieh, S. Wu, L. Chen, and P. Yang. Constructing hierarchical product cate-

gories for e-commerce by word embedding and clustering. In IRI, 2017.
[19] Jiaxin Huang, Yiqing Xie, Yu Meng, Yunyi Zhang, and Jiawei Han. Corel: Seed-

guided topical taxonomy construction by concept learning and relation trans-

ferring. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1928–1936, 2020.

[20] Hua Jiang, Chu-Min Li, and Felip Manya. An exact algorithm for the maximum

weight clique problem in large graphs. In AAAI, pages 830–838, 2017.

[21] Zornitsa Kozareva. Everyone likes shopping! multi-class product categorization

for e-commerce. In NAACL, pages 1329–1333, 2015.
[22] Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo

Zhang. Exactly solving the maximum weight independent set problem on large

real-world graphs. In 2019 Proceedings of the Twenty-First Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 144–158. SIAM, 2019.

[23] Xueqing Liu, Yangqiu Song, Shixia Liu, and Haixun Wang. Automatic taxonomy

construction from keywords. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1433–1441, 2012.

[24] Maximilian Nickel and Douwe Kiela. Poincar\’e embeddings for learning hierar-

chical representations. arXiv preprint arXiv:1705.08039, 2017.
[25] Alexander Panchenko, Stefano Faralli, Eugen Ruppert, Steffen Remus, Hubert

Naets, Cédrick Fairon, Simone Paolo Ponzetto, and Chris Biemann. Taxi at

semeval-2016 task 13: a taxonomy induction method based on lexico-syntactic

patterns, substrings and focused crawling. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016), pages 1320–1327, 2016.

[26] Kunal Punera, Suju Rajan, and Joydeep Ghosh. Automatically learning document

taxonomies for hierarchical classification. In Proc. of WWW, 2005.

[27] Cécile Robin, James O’Neill, and Paul Buitelaar. Automatic taxonomy generation:

A use-case in the legal domain. In Language and Technology Conference, pages
318–328. Springer, 2017.

[28] Jingbo Shang, Xinyang Zhang, Liyuan Liu, Sha Li, and Jiawei Han. Nettaxo:

Automated topic taxonomy construction from text-rich network. In Proceedings
of The Web Conference 2020, page 1908–1919, 2020.

[29] Dan Shen, Jean-David Ruvini, and Badrul Sarwar. Large-scale item categorization

for e-commerce. pages 595–604, 10 2012.

[30] Jiaming Shen, Zhihong Shen, Chenyan Xiong, Chi Wang, Kuansan Wang, and

Jiawei Han. Taxoexpan: self-supervised taxonomy expansion with position-

enhanced graph neural network. In Proceedings of The Web Conference 2020,
pages 486–497, 2020.

[31] Yuyin Sun, Adish Singla, Dieter Fox, and Andreas Krause. Building hierarchies

of concepts via crowdsourcing, 2015.

[32] Lei Tang, Jianping Zhang, and Huan Liu. Acclimatizing taxonomic semantics for

hierarchical content classification. volume 2006, pages 384–393, 01 2006.

[33] Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang, Phuong Nguyen,

Thrivikrama Taula, and Jiawei Han. A phrase mining framework for recursive

construction of a topical hierarchy. In KDD, pages 437–445, 2013.
[34] Yue Yu, Yinghao Li, Jiaming Shen, Hao Feng, Jimeng Sun, and Chao Zhang. Steam:

Self-supervised taxonomy expansion with mini-paths. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 1026–1035, 2020.

[35] Quan Yuan, Gao Cong, Aixin Sun, Chin-Yew Lin, and Nadia Magnenat Thalmann.

Category hierarchy maintenance: a data-driven approach. In SIGIR, 2012.
[36] Chao Zhang, Fangbo Tao, Xiusi Chen, Jiaming Shen, Meng Jiang, Brian Sadler,

Michelle Vanni, and Jiawei Han. Taxogen: Unsupervised topic taxonomy con-

struction by adaptive term embedding and clustering. In KDD, page 2701–2709,
2018.

[37] Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and Alexander Smola. Taxonomy

discovery for personalized recommendation. In WSDM, pages 243–252, 2014.

https://export.ebay.com/en/start-sell/selling-basics/seller-fees/fees-optional-listing-upgrades/
https://export.ebay.com/en/start-sell/selling-basics/seller-fees/fees-optional-listing-upgrades/
https://github.com/shayg1/CategoryTrees
https://data.world/crowdflower/ecommerce-search-relevance
https://data.world/crowdflower/ecommerce-search-relevance
https://www.kaggle.com/c/home-depot-product-search-relevance/data
https://www.kaggle.com/c/home-depot-product-search-relevance/data
https://www.kaggle.com/PromptCloudHQ/innerwear-data-from-victorias-secret-and-others
https://www.kaggle.com/PromptCloudHQ/innerwear-data-from-victorias-secret-and-others
https://www.elastic.co/elasticsearch

	Abstract
	1 Introduction
	2 Model
	2.1 Formal Setting
	2.2 Similarity Functions
	2.3 Practical Applicability
	2.4 Hardness Bounds

	3 MIS-based Algorithm
	3.1 Exact Variant
	3.2 Perfect-Recall Variant
	3.3 General Algorithm

	4 Clustering-based Algorithm
	5 Implementation and Experiments
	5.1 Data Preparation
	5.2 Experimental Setup
	5.3 Score-based Evaluation Results
	5.4 User Study

	6 Related Work
	7 Conclusion
	References

