
Classifier Construction Under Budget Constraints
Shay Gershtein

Tel Aviv University

shayg1@mail.tau.ac.il

Tova Milo

Tel Aviv University

milo@post.tau.ac.il

Slava Novgorodov

eBay Research

snovgorodov@ebay.com

Kathy Razmadze

Tel Aviv University

kathyr@mail.tau.ac.il

ABSTRACT
Search mechanisms over large assortments of items are central

to the operation of many platforms. As users commonly express

filtering conditions based on item properties that are not initially

stored, companies must derive the missing information by training

and applying binary classifiers. Choosing which classifiers to con-

struct is however not trivial, since classifiers differ in construction

costs and range of applicability. Previous work has considered the

problem of selecting a classifier set of minimum construction cost,

but this has been done under the (often unrealistic) assumption that

the available budget is unlimited and allows to support all search
queries. In practice, budget constraints require prioritizing some

queries over others. To capture this consideration, we study in this

work a more general model that allows assigning to each search

query a score that models how important it is to compute its result

set and examine the optimization problem of selecting a classifier

set, whose cost is within the budget, that maximizes the overall

score of the queries it can answer.

We show that this generalization is likely much harder to ap-

proximate complexity-wise, even assuming limited special cases.

Nevertheless, we devise a heuristic algorithm, whose effectiveness

is demonstrated in our experimental study over real-world data,

consisting of a public dataset and datasets provided by a large

e-commerce company that include costs and scores derived by busi-

ness analysts. Finally, we show that our methods are applicable

also for related problems in practical settings where there is some

flexibility in determining the budget.

CCS CONCEPTS
• Information systems→ Incomplete data; Clustering and classi-
fication; • Theory of computation→ Approximation algorithms
analysis.

KEYWORDS
Classifier construction; Attributes extraction; Data completion;

ACM Reference Format:
Shay Gershtein, Tova Milo, Slava Novgorodov, and Kathy Razmadze. 2022.

Classifier Construction Under Budget Constraints. In Proceedings of the
2022 International Conference on Management of Data (SIGMOD ’22), June
12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3514221.3517863

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517863

1 INTRODUCTION
Search mechanisms over large item sets are central to the operation

of many companies, such as e-commerce platforms, news sites, and

stock photo archives. Since users commonly express filtering condi-

tions based on item properties that initially are not explicitly stored

in a database, companies must derive these missing properties from

the item’s existing metadata, such as an image or a textual descrip-

tion, possibly also leveraging common knowledge. This is typically

achieved by training binary classifiers [58], that can test whether a

given conjunction of properties expressed in a user query holds for

any given item. Choosing which classifiers to construct is however

not trivial, since classifiers may significantly vary in the number of

search queries they are useful for and their construction cost, based,

e.g., on the required amount labeled data. Moreover, queries with

multiple filtering conditions can be addressed by multiple combina-

tions of classifiers, with each classifier evaluating a different subset

of these conditions.

Example 1.1. To illustrate these trade-offs, consider an online

platform,where users upload items for sale. Given the query “wooden

table”, many matching items may not be retrieved by the search

engine, since users did not explicitly specify the material, as it is

evident in the image. To address this, one can train a classifier that

identifies wooden tables specifically or a classifier that identifies

any wooden item. The classifier testing both properties simulta-

neously may require fewer training examples to achieve sufficient

accuracy than a classifier for all wooden items, as there is much

less variability in the features of tables. On the other hand, the

“wooden” classifier, while costlier, is also useful for queries involv-

ing other wooden items. Moreover, if some tables are not assigned

explicitly to a “tables” category (or items such as “table covers”

are erroneously assigned to this category), one may also need to

complement the “wooden” classifier with a “table” classifier.

Existing solutions. Previous work on this setting [19, 23, 24]

studied a model where given a query log and (estimated) construc-

tion costs of classifiers, one seeks a classifier set that can derive the

results sets of all the queries, such that the overall construction cost

is minimized. This model, however, is based on the often-unrealistic

assumption that the budget is unlimited and allows to support all
search queries. In practice, training each classifier is typically expen-

sive, as it requires humans to label a large volume of high-quality

training data. Thus, when the human or monetary resources are

insufficient to construct classifiers that compute result sets for all

queries, companiesmust prioritizemore frequent/important queries

for which there are economical classifiers.

Example 1.2. Continuing with the example of an e-commerce

platform, consider in addition to the “wooden table” query, also the

queries “round table” and “running shoes”. Companies periodically

allocate a given budget for improving search engine performance,

and in particular search query results, and in this toy example, it

https://doi.org/10.1145/3514221.3517863
https://doi.org/10.1145/3514221.3517863

may be the case that the budget is insufficient to cover the cost

of any classifier set that can compute the results sets for all three

queries. For instance, constructing a classifier that identifies run-

ning shoes may require more effort than the classifiers for the table

queries, since it is, arguably, harder to deduce from images and

descriptions which shoes are suitable for running. The cost estima-

tions might imply that the company can either construct classifiers

for both table queries or only for the shoes query.

Note that it is not necessarily the case that addressing the two

queries is better than the single query. It may be that it is more

important to have improved results pertaining to running shoes,

than both table queries. The prioritization of queries is decided by

business analysts, based on the search frequency of each query,

various monetary factors, and the existing quality of result sets for

different product domains. To account for this prioritization, we

provide a model that allows assigning to each query a utility score,

that reflects how important it is to compute its result set.

Model. To capture budget constraints, we study in this work an

extension of the above model that includes an upper bound on the

cost of the solution, which, in general, may not allow computing all

queries. As queries vary in their importance, each may be assigned

a utility score modeling the gain of constructing classifiers that

compute it. We thus define the Budgeted Classifier Construction
problem (𝐵𝐶𝐶) of selecting a classifier set that maximizes the overall

utility, without exceeding the given cost bound (we will formalize

this high-level description in Section 2).

Applications. The motivation for our work is optimizing the

effectiveness of classifier construction to recover missing data and

metadata. Thus, our work can also be classified as optimizing

(meta)data curation/cleaning or attribute extraction. A common

use case for recovering missing metadata is improving search re-

sults, which for large companies may drastically improve profits.

Hence, in our empirical analysis, utilities capture the importance of

specific search queries. More generally, companies build dedicated

high-accuracy classifiers to recover specific missing properties that

are then stored in a database. This structured data is then leveraged

not only to improve free-text query results but also other search

and categorization tasks that are less noise-tolerant, such as faceted

search [64] or providing the user with more complete information

when viewing a description of an item. Our abstract model is ag-

nostic to how utility is assessed and, therefore, the utility estimates

may also take into account these broader objectives.

Length parameter. Before describing our results, we first de-

fine the length parameter, 𝑙 , that crucially affects the computational

complexity of 𝐵𝐶𝐶 . Namely, with queries expressed as a conjunc-

tion of properties, that should hold for each item in the result set,

the length parameter is defined as the maximum number of such

conjuncts (properties) in any input query.

Hardness Bounds. While the non-budgeted problem of [19,

23, 24] can be solved exactly in PTIME for 𝑙 ≤ 2 and reasonably

approximated for the 𝑁𝑃-hard case of 𝑙 ≥ 3, we show that 𝐵𝐶𝐶

is likely much harder, even when utilities and costs are uniform.

Concretely, for 𝑙 = 2, 𝐵𝐶𝐶 is at least as hard as the Densest k-
Subgraph problem (𝐷𝑘𝑆), where one seeks a subgraph on 𝑘 nodes

with the maximum number of edges. The exact hardness of 𝐷𝑘𝑆 ,

however, is unknown, and despite decades of extensive research, its

best known approximation factor isΘ(𝑛1/4), where 𝑛 is the number

of vertices, which translates to the number of distinct properties

appearing in the queries of the 𝐵𝐶𝐶 input. We, therefore, follow

in the footsteps of works that base hardness results on this 𝐷𝑘𝑆

bound [14, 17, 30] (i.e. any 𝑜 (𝑛1/4)-approximation algorithm for

𝐵𝐶𝐶 would an improve on the best𝐷𝑘𝑆 algorithm). Lastly, for 𝑙 = 3,

𝐵𝐶𝐶 is as hard as the hypergraph extension of 𝐷𝑘𝑆 , for which the

best approximation factor is Θ(𝑛0.62).
Algorithm. To offer a solution that, despite the hardness bounds

above, works well in practice, we leverage the high prevalence

of short queries in real-life workloads demonstrated in [24] and

provide an improved algorithm for 𝑙 = 2, which we then extend

to the general case. To this end, we generalize ideas from several

𝐷𝑘𝑆 works [53, 62] and combine these with novel techniques to

devise a reduction from 𝐵𝐶𝐶 with 𝑙 = 2 to𝐷𝑘𝑆 . We then employ the

𝐷𝑘𝑆 heuristic [41], which was shown to produce solutions close to

optimal, scaling even to large graphs. To further facilitate efficiency,

we employ a pruning method, that can significantly reduce the size

of 𝐷𝑘𝑆 inputs, at the cost of a small additive error. We also provide

a worst-case constant bound on the error incurred by our reduction.

Lastly, to address the small subset of queries where 𝑙 > 3, we devise

a heuristic that allows to progressively simplify the problem, such

that a larger fraction of the solution space corresponds to the case

of 𝑙 = 2, for which we have the effective algorithm above.

Experimental study. To evaluate our algorithm, we conduct an

empirical study over real-world data consisting of a public dataset

and private datasets provided by a large e-commerce company, that

include actual costs and utility values, as estimated by business

analysts. We remark that e-commerce is a particularly suitable

domain for the 𝐵𝐶𝐶 problem, since the most popular platforms have

massive product catalogs, with insufficient information to support

all search queries, as mentioned above. Consequently, e-commerce

platforms devote a lot of resources to training classifiers to improve

query answering [60]. Since e-commerce is a trillion-dollar industry,

even modest improvements in the quality and completeness of the

result sets presented to users can greatly increase profits.

The results of our evaluation demonstrate that our approach

qualitatively outperforms all examined baselines for a large range

of input parameters, in practical time for an offline task. We also

validate the robustness of this performance over synthetic data that

explores additional ranges of input parameters.

Complementary problems. In practical scenarios, where there
is some flexibility in the budget constraint, there are alternative

objectives that may be of interest. For instance, companies may

wish to maximize the ratio of utility to cost, i.e. construct a classifier

set that provides maximum “bang for the buck”, or, given a utility

target, to find the classifier set of minimum cost that reaches it.

We show that our analysis methods can also be applied to derive

complexity bounds and algorithms for these two problems.

2 PRELIMINARIES
We open this section by describing the formal setting for the Bud-

geted Classifier Construction problem (𝐵𝐶𝐶), and how it relates

to practical settings. We then provide illustrations of problem in-

stances and present definitions and results that will prove useful in

our theoretical analysis.

2.1 Problem Definition
Motivating setting. As explained in the introduction, the 𝐵𝐶𝐶

problem arises in practice when a company’s item database is miss-

ing information necessary to derive complete result sets for search

queries in a given workload. Each query’s filtering condition corre-

sponds to a conjunction of one or more properties that must hold

for each item in the result set. To complete the missing values,

companies construct binary
1
classifiers, where each classifier is

characterized by a set of properties, such that it can determine

whether their conjunction holds for any given item. However, con-

structing classifiers requires human effort, which costs money, and

it may be the case that it is too expensive to construct a classifier

set sufficient to answer all queries. Thus, given estimates of the

utility gain of answering each query, the 𝐵𝐶𝐶 optimization problem

seeks a classifier set that allows answering a subset of queries of

the highest total utility, without exceeding the budget.

Our model is agnostic to how utility is estimated and its units of

measure. The only property of utility values that is in effect is the

utility ratio of two queries representing the ratio of their importance

(i.e. the contribution to the objective function of covering the query).

In practice, the relative importance of each query can correspond to

how frequently it is submitted to the company’s search engine, or to

a more complex metric, that also takes into account an estimation of

the size of the result set or an associated monetary gain. Similarly,

the cost of each classifier (and the budget) can represent the number

of labeled training examples or the monetary cost of employing

domain experts or crowd workers. As these are highly correlated,

any cost measure would roughly derive the same problem instance.

Input. To formally model the above setting, we denote the uni-

verse of properties of size 𝑛, the input query set of size𝑚, and the

set of classifiers one can construct by 𝑃 , 𝑄 , and 𝐶𝐿, respectively.

As each query or classifier is fully captured by its corresponding

set of properties, we have 𝑄 ⊆ 2
𝑃
and 𝐶𝐿 ⊆ 2

𝑃
. For any query 𝑞,

let 𝐶𝐿𝑞 = 2
𝑞 \ ∅ denote its power set excluding the empty set. This

models the set of all possible binary classifiers that are relevant for

𝑞, each corresponding to a different subset of its properties. Hence,

the input classifier set is 𝐶𝐿 = ∪𝑞∈𝑄𝐶𝐿𝑞 , the union of the power

sets of all queries (except for the empty set). For example, if the

query set consists of the two queries “wooden table” and “round ta-

ble”, then the property set is 𝑃 = {𝑤𝑜𝑜𝑑𝑒𝑛, 𝑟𝑜𝑢𝑛𝑑, 𝑡𝑎𝑏𝑙𝑒}, the query
set is 𝑄 = {{𝑤𝑜𝑜𝑑𝑒𝑛, 𝑡𝑎𝑏𝑙𝑒}, {𝑟𝑜𝑢𝑛𝑑, 𝑡𝑎𝑏𝑙𝑒}}, and the classifier set

is 𝐶𝐿 = {𝑤𝑜𝑜𝑑𝑒𝑛, 𝑟𝑜𝑢𝑛𝑑, 𝑡𝑎𝑏𝑙𝑒, {𝑤𝑜𝑜𝑑𝑒𝑛, 𝑡𝑎𝑏𝑙𝑒}, {𝑟𝑜𝑢𝑛𝑑, 𝑡𝑎𝑏𝑙𝑒}}.
To simplify notation, we use 𝑥 ,𝑦 and 𝑧 to represent properties,

denoting a query {𝑥,𝑦, 𝑧} as 𝑥𝑦𝑧, whereas a classifier {𝑥,𝑦, 𝑧}, that
tests for the conjunction of the same properties, is denoted by 𝑋𝑌𝑍 .

For example, if the properties “wooden” and “table” are 𝑥 and 𝑧,

respectively, then the classifier that tests for wooden tables is 𝑋𝑍 .

The utility associated with each query is represented by the

function U : 𝑄 ↦→ R+. If, e.g., a company considers that it is twice

as valuable to compute the result set of the query “round table”

than of “wooden table”, then the utility of the former query would

be twice as large. Similarly, the cost of each classifier is represented

by C : 𝐶𝐿 ↦→ [0,∞), with the budget denoted by 𝐵 ∈ R+. The input
for the 𝐵𝐶𝐶 problem is thus the tuple ⟨𝑄,U, C, 𝐵⟩.

1
Compared to multi-valued classifiers, binary classifiers have higher accuracy, and are

preferred when accuracy is essential [58].

We note that a classifier of cost 0 implies either that it is al-

ready constructed or that the corresponding properties are fully

recorded in the database (e.g., if the classifier “wooden table” is

already constructed, then its cost would be zero), whereas an infi-

nite cost implies that the classifier is omitted from consideration in

advance, typically since it is deemed impractical to construct. For

example, classifying whether an item is “round (and) wooden” with

no additional context, may be considered impractical, as in each

domain the visual features of such items may be vastly different

(e.g., round wooden mirrors have only wooden frames, whereas

round wooden tables are primarily wood).

Covering queries. Before defining the objective, we first need

to formalize which classifier combinations are sufficient to deter-

mine the result set for a given query.

For any subset 𝑆 ⊆ 𝐶𝐿, we define 𝑃 (𝑆) = ∪𝑋 ∈𝑆𝑋 as the set of

all properties appearing in classifiers in 𝑆 . We say that a query 𝑞 is

covered by 𝑆 ⊆ 𝐶𝐿 if ∃𝑇 ⊆ 𝑆 : 𝑃 (𝑇) = 𝑞. That is, a query is covered

by a set of classifiers if it contains a subset of classifiers whose

conjunction tests exactly the truth value of the conjunction of

exactly the properties in the query. For example, the two classifiers

“wooden table” and “round table” cover together the query “round

wooden table”. A set of queries covered by 𝑆 ⊆ 𝐶𝐿 is denoted by

𝑄 (𝑆), and the utility of 𝑆 is defined as the sum of utilities of 𝑄 (𝑆).
Objective. The cost of a set of classifiers 𝑆 is defined as the sum

of the individual costs C(𝑆) = ∑
𝑠∈𝑆 C(𝑠). The solution space of the

𝐵𝐶𝐶 problem consists of classifier sets whose cost does not exceed

the budget. Note that, in general, the budget may not be sufficient

to cover all queries. The objective of 𝐵𝐶𝐶 is to find a classifier set

of maximum utility in this solution space. More formally, we aim

to compute 𝑎𝑟𝑔𝑚𝑎𝑥𝑆⊆𝐶𝐿,C(𝑆) ≤𝐵
∑
𝑞∈𝑄 (𝑆) U(𝑞) .

Model assumptions. We assume that the classifiers are con-

structed in parallel and that their construction costs are indepen-

dent. While some overlaps may exist in practice, it is arguably not

trivial to quantify these a priori. Hence, as in [24], the overall cost

of a classifier set is the sum of the individual costs.

We also follow [24] in assuming that partial coverage of a query

is insufficient to provide any utility, as research shows that in many

cases conforming only partially to search criteria can have an even

worse effect on user satisfaction than not conforming at all [32].

Moreover, estimating in advance the relative utility of such partial

covers out of the overall utility of the query is challenging.

For a solution to be judged suitable by typical e-commerce com-

panies classification accuracy must reach a high threshold for the

full multi-faceted search criteria (in our experiments, discussed in

Section 6, analysts employed by our industry collaborators pro-

vided cost estimates based on the experience of training classifiers

to exceed 95% accuracy). Therefore queries that are not covered

by a solution are considered not meeting the company’s quality

standard. The practical quality of a solution is thus respectively

reflected by of weighted sum of the covered queries in our model.

We leave to future work the study of models that account for

overlaps in construction costs, partial covers that provide quantifi-

able value, or multiple accuracy thresholds.

Length parameter.We refer to the cardinality of a query as its

length. Let 𝑙 = 𝑙𝑄 denote the maximal length of a query in 𝑄 . This

is an important parameter of the problem, as we derive different

Q = {xyz ,xz ,xy}

U(xyz) = 8
U(xz) = 1
U(xy) = 2

C(X) = 5
C(Y) = C(Z) = C(XYZ) = 3
C(XZ) = 4
C(YZ) = 0
C(XY) = ∞

B = 3
Solution = {YZ, XYZ}
Overall Utility = 8

B = 4
Solution = {YZ, XZ}
Overall Utility = 9

B = 11
Solution = {YZ, X, Y, Z}
Overall Utility = 11

Figure 1: Three examples of 𝐵𝐶𝐶 problem instances. The left
side depicts the queries, utilities and costs, shared by all in-
stances. The three different budget values, and the optimal
solutions are depicted on the right side.

approximation bounds for the cases, 𝑙 = 1, 𝑙 = 2 and 𝑙 ≥ 3. In

our analysis 𝑙 is assumed to be a constant (in practice, it rarely

exceeds 5 [28]). We use the notation 𝐵𝐶𝐶𝑙=𝑖 to denote the 𝐵𝐶𝐶

problem where 𝑙 = 𝑖 . Similarly, we define the length of a classifier

as the number of properties it tests. For example, the length of the

classifier 𝑋𝑌 is 2. We refer to queries and classifiers of length 1 as

singleton queries and singleton classifiers, respectively.

Input size.We denote the number of queries in 𝑄 by𝑚 and the

number of properties in 𝑃 = ∪𝑄𝑞 by 𝑛. Given 𝑛, the lower bound on
𝑚 is

𝑛
𝑙
(this matches the case where all queries are disjoint and of

length 𝑙), whereas the upper bound is 𝑂 (𝑛𝑙) corresponding to the

maximum number of distinct subsets of size at most 𝑙 = Θ(1). Thus,
𝑚 is at least of the order of 𝑛, and possibly polynomially larger.

The number of classifiers is also polynomial in 𝑛 (and 𝑚). To

see this, observe that 𝐶𝐿 does not include all possible classifiers

corresponding to all subsets of 𝑃 . For instance, if 𝑃 = {𝑥,𝑦, 𝑧} and
𝑄 = {𝑥𝑦, 𝑥𝑧}, then𝐶𝐿 = {𝑋,𝑌, 𝑍, 𝑋𝑌,𝑋𝑍 }. The classifier 𝑌𝑍 is not

included in𝐶𝐿, since it is not relevant to the solution of the problem.

Concretely, since no query includes both 𝑦 and 𝑧, the classifier 𝑌𝑍

cannot be used to cover any query. It follows that the number of

classifiers does not exceed𝑚 · 2
𝑙 = Θ(𝑚).

The following toy example illustrates problem instances of𝐵𝐶𝐶𝑙=3

in the above model.

Example 2.1. Consider the input in Figure 1. We will examine

three problem instances over the same input, except for different

budget values. The shared input, consisting of three queries, their

utilities, and the costs of the seven relevant classifiers, is depicted

on the left side of the figure, whereas on the right side optimal

solutions are presented, corresponding to the three budget values,

𝐵 ∈ {3, 4, 11}. As the classifier 𝑌𝑍 costs nothing, it can be pre-

emptively selected into any solution. Conversely, the classifier 𝑋𝑌

of infinite cost can be omitted from consideration, since its cost

exceeds the budget. To provide a practical context, one can assume

that 𝑥 , 𝑦, and 𝑧 are the properties “round”, “wooden” and “table”, re-

spectively. Then, the classifier “wooden table” (𝑌𝑍) costing nothing

implies that it is already constructed. Similarly, the classifier “round

wooden” costs∞, as it is not considered practical to construct.

Note that, in our model, we can always assume, for all classifiers

considered in the solution space, that C(𝑋𝑌) < C(𝑋) + C(𝑌).
Moreover, if𝐶 (𝑋𝑌) ≥ 𝐶 (𝑋) +𝐶 (𝑌), then 𝑋𝑌 may be safely pruned

without affecting the optimality. This is because any solution that

uses 𝑋𝑌 can instead use 𝑋 and 𝑌 , which may only improve the

coverage without increasing the cost. Therefore, the convention is

to assign the cost of infinity for any pruned classifier. The infinite

cost means that this classifier should not be considered as part

of the solution space and does not mean that it is impossible to

construct this classifier for a finite cost. Specifically, if the cost of

𝑋𝑌 is estimated at best to be 𝐶 (𝑋) +𝐶 (𝑌), then we assign to it an

infinite cost, which means that the algorithm will never examine

or select it, as there is a provably better alternative.

Instance with 𝐵 = 3. As every query contains the property 𝑥 , to

cover a query one must select a classifier that also contains this

property. When the budget is 3, the only valid classifier containing

𝑥 is 𝑋𝑌𝑍 . This covers the first query 𝑥𝑦𝑧, as the classifier matches

it exactly. Recall that the utility of the solution is the sum of the

utilities of the covered queries. With 𝑥𝑦𝑧 being the only covered

query, the utility of the solution {𝑌𝑍,𝑋𝑌𝑍 } is 8, the utility of the

covered query. Observe that the inclusion of the free classifier 𝑌𝑍

is optional, as the solution {𝑋𝑌𝑍 } has the same utility and cost.

Instance with 𝐵 = 4. When the budget increases to 4, of the

classifiers containing 𝑥 , one can also select𝑋𝑍 , which consumes the

entire Budget. It turns out that this solution ({𝑌𝑍,𝑋𝑍 }) improves

the overall utility, as it covers both 𝑥𝑦𝑧 and 𝑥𝑧, whose combined

utility is 9. Concretely, 𝑥𝑧 is covered by 𝑋𝑍 , since it matches it

exactly, while 𝑥𝑦𝑧 is covered by the conjunction of {𝑌𝑍,𝑋𝑍 }. Note
that their union is exactly these three properties, and that the

overlap in 𝑧 makes no difference, as the conjunction 𝑥𝑦𝑧 holds if

and only if both conjunctions 𝑦𝑧 and 𝑥𝑧 hold.

Instance with 𝐵 = 11. To improve on the previous instance, one

must cover 𝑥𝑦. It is easy to see that to cover the query 𝑥𝑦 one must

select both 𝑋 and 𝑌 since 𝑋𝑌 cannot be selected. Their conjunction

covers 𝑥𝑦, and when also adding the free classifier 𝑌𝑍 , the three

classifiers cover 𝑥𝑦𝑧. This leaves a budget of 3 to cover 𝑥𝑧 as well.

The classifier 𝑋𝑍 is too expensive, however, 𝑍 costs exactly 3, and

its conjunction with 𝑋 covers 𝑥𝑧. Thus, when the budget is 11, the

solution {𝑌𝑍,𝑋,𝑌, 𝑍 } covers all queries, and its total utility is 11.

Note that, as in the first instance, selecting 𝑌𝑍 is optional.

Absence of costs or utilities. In some cases, it may be hard

to estimate the costs in advance. In the absence of values that

differentiate between classifiers, the natural compromise would

be assuming uniform costs. An analogous argument applies to

using uniform utilities. Moreover, to significantly reduce input size

and complexity, one can restrict the solution space to singleton

classifiers. This begs the question of whether the 𝐵𝐶𝐶 problem

becomes much easier for practical use-cases with such limitations.

To this end, we show that all our hardness bounds hold, even when

assuming all the aforementioned restrictions.

2.2 Existing Results
We next present definitions and theoretical results for various prob-

lems, which we will leverage in our hardness analysis and algo-

rithms. To simplify the presentation, we use a “soft omega” notation,

Θ̃(·), to hide negligible factors.

We start with the well-known Knapsack problem.

Definition 2.2. In the Knapsack problem, there are 𝑛 items, each

with a nonnegative value and weight, and a bound𝑊 . The objective

is to select a subset of the items whose total weight does not exceed

𝑊 , such that the sum of the item values is maximized.

Theorem 2.3. [66] The Knapsack problem is NP-hard. However,
for any 𝜖 > 0, it admits (1 + 𝜖)-approximation.

We next overview the problem studied in [24], the immediate

predecessor of the present work.

Definition 2.4. In the Minimization of Classifier Construction

Costs problem (𝑀𝐶3), the setting is the same as in 𝐵𝐶𝐶 , except that

the input does not include utilities or a budget, and the goal is to

produce a classifier set of minimum cost that covers all queries.

Theorem 2.5. [24] The𝑀𝐶3 problem where the maximum length
parameter is 𝑙 = 2 can be solved exactly in PTIME. For 𝑙 > 3 the
problem is 𝑁𝑃-hard, and admits min{2

𝑙−1,𝑂 (log𝑛)} approximation.

A more central role in our analysis is played by graph and hy-

pergraph density problems, as defined next.

Definition 2.6. In the Densest k-Subgraph problem (𝐷𝑘𝑆), given a

graph on 𝑛 nodes and an integer 𝑘 , the goal is to find a subgraph

on 𝑘 nodes with the highest number of edges. The extension where

edges have positive weights and the goal is to maximize the sum of

edges weights in the subgraph is the Heaviest k-Subgraph problem
(𝐻𝑘𝑆). Further generalizing 𝐻𝑘𝑆 to have node costs, and replacing

the cardinality bound 𝑘 with a total cost bound 𝐵, is the Quadratic
Knapsack problem (𝑄𝐾). Finally, the Densest 𝑘-Subhypergraph prob-
lem (𝐷𝑘𝑆𝐻) asks for a subhypergraph of𝑘 nodes with themaximum

number of hyperedges.

The following is known of the approximation hardness of 𝐷𝑘𝑆

and its generalizations.

Theorem 2.7. [7, 8, 62] All four problems in Definition 2.6 are
𝑁𝑃-hard, even when all node degrees equal 3. Additionally, 𝐷𝑘𝑆 and
𝐻𝑘𝑆 can be approximated within a 𝑂̃ (𝑛1/4) factor. For𝑄𝐾 this factor
increases to 𝑂̃ (𝑛0.4). Finally, 𝐷𝑘𝑆𝐻 with hyperedges of size 3, admits
𝑂̃ (𝑛0.62)-approximation.

Conjectured hardness of DkS. Despite decades of study [20,

39], there remains a large gap between the proven hardness of

𝐷𝑘𝑆 and the best known approximation factor, 𝑂̃ (𝑛1/4) [8]. Under
widely-believed complexity assumptions, it cannot be approximated

towithin a constant factor [4]. There are also stronger superlogarith-

mic bounds derived under stronger assumptions [47]. Nevertheless,

we follow in the footsteps of works that reduce the hardness of ex-

amined problems to the hardness of 𝐷𝑘𝑆 [14, 17, 30], as the “Dense

vs Random” conjecture [18, 48] implies that the 𝑂̃ (𝑛1/4) factor is
tight. The discussion above also roughly applies to 𝐷𝑘𝑆𝐻 [5].

3 HARDNESS RESULTS
In this section, we provide approximation hardness bounds showing

that 𝐵𝐶𝐶 is 𝑁𝑃-hard for any 𝑙 and may become much harder to

approximate as 𝑙 increases.

We first show a simple equivalence between 𝐵𝐶𝐶𝑙=1
and the

Knapsack problem (Definition 2.2), implying that Theorem 2.2 ap-

plies to 𝐵𝐶𝐶𝑙=1
as well (all formal proofs appear in our technical

report [3]).

Theorem 3.1. The 𝐵𝐶𝐶𝑙=1
problem is equivalent to the Knapsack

problem.

For 𝐵𝐶𝐶𝑙=2
, we prove that it generalizes𝐷𝑘𝑆 (Definition 2.6), and

is, thus, at least as hard. In particular, following the discussion in

Section 2, any 𝑜 (𝑛1/4)-approximation algorithm for 𝐵𝐶𝐶 (recall that

𝑛 = |𝑃 | is the number of properties), would imply an improvement

over the best known 𝐷𝑘𝑆 algorithm. Similarly, 𝐵𝐶𝐶𝑙=3
generalizes

𝐷𝑘𝑆𝐻 with edges of cardinality 3 (Definition 2.6), for which the

best known approximation factor is Ω(𝑛0.62). Finally, since 𝐵𝐶𝐶
can only become harder as 𝑙 increases (e.g., adding one query that

increases 𝑙 , and of otherwise negligible effect, would retain the

same hardness), all bounds also apply when 𝑙 > 3.

We next define the special cases of 𝐵𝐶𝐶 that are equivalent to

𝐷𝑘𝑆 and 𝐷𝑘𝑆𝐻 .

Definition 3.2. Let 𝐼𝑙 denote the 𝐵𝐶𝐶 problem restricted to inputs

where all queries are of length 𝑙 , all utilities and costs of singleton

classifiers are 1, all other classifier costs are ∞, and the budget is

an integer.

Considering these 𝐼𝑙 variants implies the following result.

Theorem 3.3. The 𝐵𝐶𝐶 problem with 𝑙 = 2 and 𝑙 ≥ 3 is at least
as hard as 𝐷𝑘𝑆 and 𝐷𝑘𝑆𝐻 , respectively. In particular, 𝐼𝑙 for 𝑙 = 2 and
𝑙 = 3 is equivalent to 𝐷𝑘𝑆 and 𝐷𝑘𝑆𝐻 with hyperedges of cardinality
3, respectively. When modifying 𝐼2 such that all classifier costs are
uniform, the inapproximability of the problem is retained.

Lastly, we would like to note the robustness of the hardness

result above, focusing for simplicity on the case of 𝑙 = 2. The proof

of Theorem 3.3 demonstrates that even if we extend 𝐼2 such that

the cost of every classifier 𝑋𝑌 satisfies C(𝑋𝑌) ≥ 𝛾 (C(𝑋) + C(𝑌))
for any 𝛾 = 𝑜 (𝑝𝑜𝑙𝑦 (𝑛)), then the hardness bound is relaxed by

at most a negligible 𝛾 factor. Therefore, while the hardest inputs

pertain to solutions that consist mostly of singleton classifiers, this

hardness bound remains more or less the same, even if we assume

that most classifiers of length 2 cost polylogarithmically less than

the corresponding singleton classifiers.

4 ALGORITHM
In this section, we devise a 𝐵𝐶𝐶 algorithm that, despite the inap-

proximability bounds (Section 3), is demonstrated to perform well

over real-world data (Section 6). Before presenting our solution,

we note that it has been observed in [24] that in real-life work-

loads most queries are of length at most 2. This fact was exploited

there to design an algorithm (for the non-budgeted problem) that

first solves the problem over the subset of queries where 𝑙 = 2,

and then extends the solution to the residual queries. Our solution

exploits this property as well, and, accordingly, we first describe

an improved algorithm for 𝐵𝐶𝐶𝑙=2
, based on a reduction to 𝐷𝑘𝑆 ,

before presenting its extension for the general case.

Importantly, while we leverage the Set Cover solution of [24]

(which is unrelated to 𝐷𝑘𝑆) in a black-box manner as a heuristic

local search optimization, all other components of our algorithm are

entirely different from the methods of [24], as our generalized prob-

lem is likely much harder to approximate. In particular, we must

leverage an effective heuristic for the 𝐷𝑘𝑆 special case, and, thus,

apply a more granular treatment in our reduction, compared to the

Set Cover setting, to ensure that the performance of our algorithm

for the general 𝐵𝐶𝐶 problem roughly preserves the performance

ratio of the 𝐷𝑘𝑆 heuristic.

4.1 Algorithm for 𝑙 = 2

Overview. In this subsection, we first explain how we partition

𝐵𝐶𝐶𝑙=2
into two problems: one is equivalent to the Knapsack prob-

lem, and the other - to the 𝑄𝐾 problem (Definition 2.6), which is

much harder to approximate in the worst case. We first present a

algorithm for 𝑄𝐾 focused on the worst case approximation, with

no regard for scalability. We then modify it to use 𝐻𝐾𝑆 solvers to

derive practical running time and solution quality for typical inputs,

without catering to artificial worst-case inputs. Then, in the next

subsection, we will present an algorithm for 𝑙 > 2, that repeatedly

employs the algorithm described in this subsection, to solve the

problem in iterations, in concert with two pruning heuristics to

further improve scalability.

Approach for 𝑙 = 2. The first phase of our algorithm for 𝐵𝐶𝐶𝑙=2

breaks down the problem, such that we need to solve a Knapsack

and a 𝑄𝐾 instance, with the optimal solution to one of these prob-

lems yielding at least half of the optimal utility of the original 𝐵𝐶𝐶

instance (we will show that the union of the solution spaces of these

two sub-instances is exactly the original solution space, hence, at

least half of the optimal solution, in terms of utility, is a valid so-

lution of one of the two sub-instances). If most of the utility can

be derived from the Knapsack instance, then we can provide an

effective solution that yields at least half of the optimal utility for

the 𝐵𝐶𝐶 instance, as the Knapsack problem can be approximated

to arbitrary precision (Theorem 2.3). However, when the utility

derived from the Knapsack instance is insufficient, we need to solve

the much harder 𝑄𝐾 problem, which is the focus of all the subse-

quent phases of the algorithm. Specifically, we will first show that

we can modify the currently best approximation algorithm for 𝑄𝐾

[62] to derive improved worst-case guarantees for 𝑄𝐾 and 𝐵𝐶𝐶𝑙=2
.

However, since this algorithm is still not sufficiently scalable and

is tailored mostly to the worst-case instances, we further modify

several of its key components to use the state-of-the-art 𝐻𝑘𝑆 (Defi-

nition 2.6) heuristic [41] and prove that our new reduction (to 𝐻𝑘𝑆)

makes better use of this heuristic in terms of the approximation

factor.

To describe how to break down the 𝐵𝐶𝐶𝑙=2
problem into the

Knapsack and 𝑄𝐾 subproblems, we need the following definitions

and observations, which we also illustrate with examples.

BCC(i) subproblems. Given a query 𝑞, we call a set 𝑆𝑖 of 𝑖

classifiers that cover 𝑞 an 𝑖-cover if any proper subset of 𝑆𝑖 does not
cover 𝑞. We accordingly denote by 𝐵𝐶𝐶 (𝑖), for 𝑖 ≤ 𝑙 , the modified

𝐵𝐶𝐶 problem where for each given solution (classifier set) 𝑆 , a

query 𝑞 is covered by 𝑆 if and only if 𝑆 contains an 𝑖-cover of 𝑞. To

illustrate, consider the following example.

Example 4.1. In a (standard) 𝐵𝐶𝐶 instance, where the query set is

𝑄 = {𝑥𝑦𝑧, 𝑥𝑦, 𝑥} (for brevity, we omit here the input costs, utilities,

and budget bound, as these are inconsequential for the arguments

in this example) if we select the classifier set 𝑆 = {𝑋,𝑋𝑌, 𝑍 }, then
all three queries are covered. However, in the 𝐵𝐶𝐶 (1) instance over
the same input, the classifier set 𝑆 only covers the queries 𝑥 and

𝑥𝑦, as these are the only queries for which 𝑆 contains a 1-cover.

Namely, 𝑥 is 1-covered by 𝑋 , and 𝑥𝑦 is 1-covered by 𝑋𝑌 (in general,

in 𝐵𝐶𝐶 (1), a query can only be covered by the identical classifier).

Similarly, for 𝐵𝐶𝐶 (2) over the same input, 𝑆 covers only 𝑥𝑦𝑧 (with

the two classifiers 𝑋𝑌 and 𝑍). In contrast, the singleton query 𝑥

Q = {xy, yz, xz}

U(xy) = 2
U(yz) = 1
U(xz) = 2

Knapsack Instance

Items Weight Value

XY 3 2

YZ 1 1

XZ 3 2

X Z

Y

1 3

1
2

2

1

QK Instance

C(X) = C(Y) = C(YZ) = 1
C(Z) = C(XY) = C(XZ) = 3

B = 3

 W = 3
Optimal solution: {XZ} (of value 2)

Optimal solution:
{X, Y, YZ} (of utility 3)

 B = 3
Optimal solution: {X, Y} (of weight 2)

BCC Instance

Figure 2: Example of a 𝐵𝐶𝐶 instance with 𝑙 = 2, separated
into Knapsack and 𝑄𝐾 instances. The optimal solution of
each instance is depicted next to the corresponding input.

cannot be 2-covered by any classifier set, and the query 𝑥𝑦 can only

be 2-covered by {𝑋,𝑌 } (note that the selection {𝑋,𝑋𝑌 } is not a
2-cover of 𝑥𝑦 since 𝑋 is dispensable). Lastly, in the corresponding

𝐵𝐶𝐶 (3) instance, no query is 3-covered. Moreover, only 𝑥𝑦𝑧 can be

3-covered (and only via the set {𝑋,𝑌, 𝑍 }).

Each query covered by an optimal 𝐵𝐶𝐶 solution is 𝑖-covered for

at least one 𝑖 ∈ [𝑙] (recall that 𝑙 is the maximum length of any query

in the input). Thus, at least 1/𝑙 of the optimal utility is derived by

at least one of these cover types.

Observation 4.2. Given a 𝐵𝐶𝐶 input with an optimal solution of
utility𝑈𝑂 , at least one of the problems 𝐵𝐶𝐶 (𝑖) over the same input,
has a solution of utility at least𝑈𝑂/𝑙 .

It follows that we can partition 𝐵𝐶𝐶 into the 𝐵𝐶𝐶 (𝑖) subprob-
lems, solve each separately, and choose the best solution, such that

the overall approximation factor is higher by at most 𝑙 than the

worst factor of any subproblem.

Knapsack subproblem. For 𝐵𝐶𝐶 (1), each query can only be

covered by the classifier that is identical to it, which implies the

following extension of Theorem 3.1 (Section 3).

Observation 4.3. 𝐵𝐶𝐶 (1) is equivalent to the Knapsack problem.

QK subproblem. In 𝐵𝐶𝐶𝑙=2
(2), only queries of length 2 and

singleton classifiers are relevant. Moreover, each query 𝑥𝑦 can

only be 2-covered by the set {𝑋,𝑌 }. This implies a straightforward

equivalence to 𝑄𝐾 .

We next formalize this observation.

Observation 4.4. 𝐵𝐶𝐶𝑙=2
(2) is equivalent to𝑄𝐾 when modeling

it as a graph, where the nodes are the classifiers, the edges are the
queries, the node costs and edge weights are the costs and utilities,
respectively, and the budget 𝐵 is the same.

The following example illustrates the above approach.

Example 4.5. Consider the 𝐵𝐶𝐶𝑙=2
input depicted on the upper

half of Figure 2. Its partition into a Knapsack instance (modeling

the 𝐵𝐶𝐶 (1) subproblem), and a𝑄𝐾 instance (modeling the 𝐵𝐶𝐶 (2)
subproblem), is depicted on the bottom of the figure. Next to each of

the three inputs, the corresponding optimal solution is presented.

Observe that, w.r.t. the optimal solution of the 𝐵𝐶𝐶 instance, the

query𝑦𝑧 is 1-covered by𝑌𝑍 yielding utility 1, and the query 𝑥𝑦 is 2-

covered by {𝑋,𝑌 } yielding utility 2. Correspondingly, the solution

𝑌𝑍 also yields value 1 in the Knapsack instance, and the solution

{𝑋,𝑌 } also yields weight 2 in the 𝑄𝐾 instance. This demonstrates

that the optimal utility is partitioned across the two subproblems.

Moreover, in the Knapsack instance, 𝑌𝑍 is not the optimal solution,

as𝑋𝑍 is more valuable. This demonstrates that theworst-case factor

of 2 is not necessarily lost in the performance ratio when partition-

ing the 𝐵𝐶𝐶 instance. In this case, the solutions to the Knapsack

and𝑄𝐾 instances both provide utility 2 in the original 𝐵𝐶𝐶 context,

and choosing any of them results in a (2/3)-approximation.

Algorithm with worst-case bounds. As explained above, our

algorithm separates 𝐵𝐶𝐶𝑙=2
into a 𝐵𝐶𝐶 (1) subproblem, that can

be approximated to arbitrary precision via a Knapsack algorithm

(Theorem 2.3), and a 𝐵𝐶𝐶 (2) subproblem that can be solved via a

𝑂̃ (𝑛0.4) PTIME algorithm [62] (our code solves both problems in

parallel). Selecting the best of the two solutions guarantees 𝑂̃ (𝑛0.4)-
approximation. Moreover, we show that a modification of the algo-

rithm in [62], denoted henceforth as 𝐴
𝑄𝐾

𝑇
, improves this factor to

𝑂̃ (𝑛1/3), which carries over directly to 𝐵𝐶𝐶𝑙=2
.

Lemma 4.6. There are 𝑂̃ (𝑛1/3)-approximation algorithms for 𝑄𝐾
and 𝐵𝐶𝐶𝑙=2

.

As noted above, the𝐴
𝑄𝐾

𝑇
algorithm is, however, impractical (and

hence also the corresponding 𝐵𝐶𝐶 algorithm), due to scalability

issues and its guarantees being of a 𝑝𝑜𝑙𝑦 (𝑛) order, corresponding
to worst-case instances, which may not resemble real-world data.

Nevertheless, we show below that we can modify key components

of 𝐴
𝑄𝐾

𝑇
, to derive a more practical alternative, denoted by 𝐴

𝑄𝐾

𝐻
,

that is both scalable and tailored to real-world performance.

To provide context for the modifications in 𝐴
𝑄𝐾

𝐻
, we first briefly

outline the high-level approach of𝐴
𝑄𝐾

𝑇
. Concretely,𝐴

𝑄𝐾

𝑇
partitions

the graph into 𝑂 (log
3 𝑛) subgraphs (to solve each separately) of

a simple form: a bipartite graph (left and right node sets), with

uniform edge weights, where all costs on the left side are 1, and all

costs on the right side are𝑤 > 1. Then, each node on the right side

is replaced by𝑤 copies of weight 1, and a 𝑂̃ (𝑛1/4) 𝐷𝑘𝑆 algorithm is

employed. Finally, a greedy procedure transforms the 𝐷𝑘𝑆 output

into a solution over the original graph.

We will use in𝐴
𝑄𝐾

𝐻
the idea of replacing each node with multiple

copies, however, we do so in a more general graph setting, and thus

use a more involved novel procedure to transform the 𝐷𝑘𝑆 solution

over this graph into a 𝑄𝐾 solution over the original graph.

Effect of cost distributions on hardness. Before presenting
our heuristic 𝑄𝐾 algorithm, we first note why, in our examination

of easier special cases, we only target the case that can be efficiently

solved via a Knapsack algorithm, and are not examining different

cost structures pertaining to the 𝑄𝐾 instance.

First, note that, since we can effectively solve the Knapsack sub-

problem, the worst-case hardness pertains only to instances where

no good approximate solution contains a non-negligible subset

that corresponds to the Knapsack solution. That is the hard cases

must require solutions that are almost entirely derived via the 𝑄𝐾

(𝐵𝐶𝐶 (2)) subproblem, otherwise our algorithm guarantees a good

approximation. Therefore, when aiming to bypass the worst-case

hardness we may focus only on the subset of the input consisting of

queries of length two and singleton classifiers. Theorem 3.3 shows

that 𝑄𝐾 is hard even when all costs are uniform. One may wonder,

however, whether some reasonable assumptions on the cost distri-

bution may relax the worst-case bound. Note that the worst-case

hardness of 𝑂̃ (𝑛1/4) still applies to any cost structure that can be

derived from the uniform distribution by multiplying or dividing

the costs by factors that are upper-bounded by 𝛾 = 𝑜 (𝑝𝑜𝑙𝑦 (𝑛)),
which is the case for a small constant 𝛾 in all our examined datasets.

This is a simple corollary that follows from the result we prove in

Section 4 of our technical report [3]: changing the budget by a 𝛾

factor changes the optimal score by at most a 𝛾2
factor. Neverthe-

less, we bypass the worst-case hardness by using a modern 𝐻𝑘𝑆

solver [41] that is shown to achieve close to optimal performance

over inputs with uniform singleton costs, and we prove below in

Theorem 4.7 that our adaptation to varying weights adds at most a

small constant factor.

Heuristic QK algorithm. The first modification we perform in

𝐴
𝑄𝐾

𝑇
is replacing the worst-case-oriented 𝐷𝑘𝑆 algorithm with the

𝐻𝑘𝑆 heuristic in [41], that has been shown to produce solutions

close to optimal on large graphs. This allows to significantly im-

prove both the efficiency and the quality of the solution. However,

even assuming an optimal solution to the 𝐷𝑘𝑆 instance, the corre-

sponding 𝐵𝐶𝐶 solution may yield only a 𝑂 (log
3 𝑛)-fraction of the

optimal utility, (improved only to 𝑂 (log
2 𝑛), if we more generally

reduce to 𝐻𝑘𝑆 instead of 𝐷𝑘𝑆). We, therefore, as a second modifi-

cation, devise a different reduction, such that this polylogarithmic

factor is reduced to a much smaller constant.

Due to space constraints, we show here a simplified version

of 𝐴
𝑄𝐾

𝐻
, omitting the more technical phases. The full algorithm

appears in our technical report [3], where we also prove the follow-

ing worst-case bound on its performance, which is conditioned on

the performance of the 𝐻𝑘𝑆 algorithm (that was shown in [41] to

provide solutions close to 80% of the optimal value).

Theorem 4.7. Given an 𝐻𝑘𝑆 algorithm with performance ratio
𝛼 = 𝑂 (1), the performance ratio of 𝐴𝑄𝐾

𝐻
is at most (5𝛼 + 𝜖) (for any

𝜖 > 0), implying a (7𝛼 + 𝜖)-approximation algorithm for 𝐵𝐶𝐶𝑙=2
.

Importantly, we show in our proofs that most of the loss in

optimality pertains to degenerate cases. This is corroborated by our

experiments (Section 6), where the eventual value derived by the

𝑄𝐾 algorithm always exceeds that of the 𝐻𝑘𝑆 algorithm.

Preprocessing.We also omit here our preprocessing procedure

that transforms the 𝐵𝐶𝐶𝑙=2
(2) input, such that all classifier costs

(and thus all node costs in the𝑄𝐾 instance) are integers in [1, 𝐵/2].
We assume henceforth that the input is already transformed as

mentioned above.

The simplified 𝐴
𝑄𝐾

𝐻
algorithm is depicted in Algorithm 1.

Random bipartite graph (lines 1-3 in Algorithm 1). Given
as input a budget 𝐵 and a graph 𝐺 = (𝑉 , 𝐸), with node costs given

by C(·) and edge weights given by W(·, ·), the first step is to

transform𝐺 into a bipartite graph. To do so, we adopt a randomized

procedure pointed out in [53]. we employ it log𝑛 times (we do so

in parallel) and choose the best solution of all iterations (line 1). In

each iteration, we partition𝑉 into two sets 𝐿 and 𝑅, assigning each

node independently to one of the sets with uniform probability

(line 2). We then derive from 𝐺 a bipartite graph 𝐺 = (𝑉 , 𝐸) where
𝐸 = 𝐸 ∩ (𝐿 × 𝑅), with the same costs and weights (line 3). With

Algorithm 1: 𝐴𝑄𝐾
𝐻

Input: budget 𝐵; graph𝐺 = 𝑉 , 𝐸, with costs C : 𝑉 ↦→ [𝐵/2] and weights

W : 𝐸 ↦→ R+
1 repeat log𝑛 times the following algorithm, and choose the best solution:

2 assign each node in𝑉 independently with uniform probability to one of the two sets

{𝐿̄, 𝑅 }
3 derive from𝐺 a new graph𝐺 = (𝑉 , 𝐸) where 𝐸 = 𝐸 ∩ (𝐿̄ × 𝑅) , with the same costs

and weights

4 derive 𝐺̂ = (𝑉̂ , 𝐸) from𝐺 , as follows:

5 replace every 𝑣 ∈ 𝑉 with C(𝑣) copies
6 ∀{𝑣,𝑢 } ∈ 𝐸: connect all copies of 𝑣 and𝑢 with edges of weight

W(𝑣,𝑢)
C (𝑣) ·C (𝑢)

7 denote the set of copies of 𝐿̄ and 𝑅 by 𝐿̂ and 𝑅̂, respectively

8 run an𝐻𝑘𝑆 algorithm over 𝐺̂ with 𝑘 = 𝐵/2, denoting the output by 𝑆

9 let 𝐿 = 𝐿̂ ∩ 𝑆 and 𝑅 = 𝑅̂ ∩ 𝑆
10 denote by𝑉𝐿 ⊂ 𝑉 the nodes of𝐺 whose copies are in 𝐿

11 ∀𝑣 ∈ 𝑉𝐿 : let 𝑐𝑜𝑝𝐿 (𝑣) denote the number of copies of 𝑣 in𝑉𝐿

12 solve the following Knapsack instance, denoting the output by 𝑅̃:

13 the items are𝑉 /𝑉𝐿
14 the weight of each 𝑣 is C(𝑣)
15 the value of each 𝑣 is

∑
𝑢∈𝑉𝐿 (W(𝑣,𝑢) · 𝑐𝑜𝑝𝐿 (𝑢)

C (𝑢))
16 the weight bound is 𝐵 −∑

𝑢∈𝑉𝐿 𝑐𝑜𝑝𝐿 (𝑢)
17 solve the following Knapsack instance, denoting the output by 𝐿̃:

18 the items are𝑉 /𝑅̃
19 the weight of each 𝑣 is its cost

20 the value of each 𝑣 is
∑
𝑢∈𝑅̃ W(𝑣,𝑢)

21 the weight bound is 𝐵 −∑
𝑣∈𝑅̃ C(𝑣)

22 return 𝐿̃ ∪ 𝑅̃

probability exceeding (1 − 1/𝑛) (following the proof in [53]), in at

least one iteration, the value of the optimal 𝑄𝐾 solution in 𝐺 =

(𝑉 , 𝐸) exceeds half of the optimal value in 𝐺 .

Solving HkS on a blown-up graph (lines 4-9). The next step
is to eliminate costs, so that an 𝐻𝑘𝑆 algorithm can be employed.

Specifically, a graph𝐺 = (𝑉 , 𝐸) is derived from𝐺 (line 4), as follows.

Each node 𝑣 ∈ 𝑉 is replaced in 𝑉 by C(𝑣) copies (line 5), where
C(𝑣) is the cost of 𝑣 . For every edge {𝑣,𝑢} ∈ 𝐸 there are C(𝑣) · C(𝑢)
edges in 𝐸 connecting all copies of 𝑣 to all copies of 𝑢, where the

weight of each such edge is
W(𝑣,𝑢)

C (𝑣) ·C (𝑢) (line 6). The sets of copies of

𝐿 and 𝑅 are denoted in 𝐺 by 𝐿̂ and 𝑅, respectively (line 7). We then

run an 𝐻𝑘𝑆 algorithm over 𝐺 with 𝑘 = 𝐵/2, yielding a solution 𝑆

(line 8) (we allocated only half of the budget, thus losing a factor of

2 in the optimality, as the other half is used when transforming 𝑆

into a solution over the 𝐺 .) Given 𝑆 , we further use 𝐿 = 𝐿̂ ∩ 𝑆 and
𝑅 = 𝑅 ∩ 𝑆 (line 9), to denote the subset of the solution in each of

the two sets of the partition. For any edge {𝑣,𝑢} ∈ 𝐸, the sum of

weights of the edges between the copies of 𝑣 and 𝑢 is W(𝑣,𝑢). It
follows that every 𝑄𝐾 solution in 𝐺 has a corresponding solution

in𝐺 , with the same cost and weight, where all the copies of the first

solution are selected. Therefore, the weight of the optimal solution

in𝐺 can only exceed the optimal weight in𝐺 . Hence, if we translate

the 𝐻𝑘𝑆 output 𝑆 back into a solution over𝐺 with the same weight

(and at most twice the cost), then the performance ratio would be

at least as good as the performance of the 𝐻𝑘𝑆 algorithm.

Knapsack instances (lines 10-22).We next use two Knapsack

procedures to derive a subgraph of 𝐺 , of cost at most 𝐵, whose

weight is at least a 4/5-fraction of the weight of the subgraph

induced by 𝑆 in𝐺 , up to an 𝜖 factor in the Knapsack approximation.

For this, we select arbitrarily the set 𝐿, and denote by 𝑉𝐿 ⊂ 𝑉 the

nodes of 𝐺 whose copies are in 𝐿 (line 10). For each 𝑣 ∈ 𝑉𝐿 , we
denote the number of copies of 𝑣 in 𝐿 by 𝑐𝑜𝑝𝐿 (𝑣) (line 11). We then

solve the following Knapsack instance (line 12): the items are the

nodes𝑉 /𝑉𝐿 (line 13); their weights are their costs (line 14); the value
of each node 𝑣 is

∑
𝑢∈𝑉𝐿 (W(𝑣,𝑢) · 𝑐𝑜𝑝𝐿 (𝑢)C (𝑢)) (line 15), which is the

sum of the edge weights in 𝐺 that connect all copies of 𝑣 to 𝐿; and

the weight bound is the budget after deducting the selection of 𝐿:

𝐵 −∑
𝑢∈𝑉𝐿 𝑐𝑜𝑝𝐿 (𝑢) (line 16). The output is denoted by 𝑅̃, which, at

this point, replaces 𝑅. To also replace 𝐿 with nodes from𝐺 , we solve

another Knapsack instance (line 17): the items are𝑉 /𝑅̃ (line 18); the

weight of each node is its cost (line 19); the value of each node 𝑣 is∑
𝑢∈𝑅̃W(𝑣,𝑢) (line 20), the sum of edge weights connecting it to

𝑅; and the weight bound is what is left of the budget after selecting

𝑅̃: 𝐵 −∑
𝑣∈𝑅̃ C(𝑣) (line 21). Denoting the output of the Knapsack

algorithm by 𝐿̃, the final output is 𝐿̃ ∪ 𝑅̃ (line 22).

4.2 Algorithm for l > 2
We are now ready to present our heuristic algorithm in its most

general form, which also covers the case of 𝑙 > 2. For simplicity,

we focus in our description on the case of 𝐵𝐶𝐶𝑙=3
, however, our

arguments also apply to larger 𝑙 values, analogously.

We next overview the high-level ideas, which we also illustrate

with an example.

Overview.We first observe that, similarly to Theorem 4.7, for

𝑙 > 2, our solution of the subproblems 𝐵𝐶𝐶 (1) and 𝐵𝐶𝐶 (2) still
guarantees an approximation factor of 𝑂 (1), albeit of a larger con-
stant, assuming the performance ratio of the 𝐻𝑘𝑆 solver is also

𝑂 (1). While 𝐵𝐶𝐶 (1) is the Knapsack problem for any 𝑙 , in 𝐵𝐶𝐶 (2)
for queries of length over 2 the problem becomes more complex,

as there are multiple overlapping 2-covers. For example, there are

6 different 2-covers of a query of length 3. Hence, when modeling

𝐵𝐶𝐶 (2)𝑙=3
as a𝑄𝐾 instance, where the nodes are the classifiers and

an edge connects any two classifiers that form a 2-cover, the objec-

tive value of any solution may be up to 6 times larger than its utility

in the 𝐵𝐶𝐶 context, as the same query may be covered multiple

times (i.e. 6 different edges in the𝑄𝐾 input represent the same 𝐵𝐶𝐶

query). This 6 factor, however, can then be reduced, as such worst

cases imply a redundancy in the selected classifiers. Specifically,

given a 𝑄𝐾 output 𝑆 that covers the query set 𝑄𝑆 , finding a set

of classifiers of the lowest cost that covers 𝑄𝑆 is exactly the𝑀𝐶3

problem (Definition 2.4), for which we can use the algorithm from

[24] (Theorem 2.5). The fraction of the budget saved by the solution

to the𝑀𝐶3 instance compared to 𝑆 can then be used for the residual

problem (i.e. to cover the remaining uncovered queries, given the

classifiers selected so far). A second important observation is that

when solving the residual problem, new covering possibilities may

be considered in 𝐵𝐶𝐶 (1) and 𝐵𝐶𝐶 (2) as illustrated next.

Example 4.8. Consider the input query set 𝑄 = {𝑥𝑦𝑧, 𝑥𝑦𝑤} (as
in Example 4.1, we omit here the input costs, utilities, and budget

bound, since our high-level arguments are not based on concrete

numerical computations). When solving the corresponding 𝐵𝐶𝐶 (1)
and 𝐵𝐶𝐶 (2) instances, the only two covering possibilities not in-

cluded in the combined solution space of these two problems is the

cover of 𝑥𝑦𝑧 by {𝑋,𝑌, 𝑍 } and the cover of 𝑥𝑦𝑤 by {𝑋,𝑌,𝑊 }, as
these are 3-covers. Assume, next, that the solution for the 𝐵𝐶𝐶 (2)
instance produced by our 𝐴

𝑄𝐾

𝐻
algorithm is {𝑌𝑍,𝑋𝑍,𝑌 }, and that

this solution was chosen over the Knapsack Solution for the 𝐵𝐶𝐶 (1)

instance. Observe that only the 𝑥𝑦𝑧 query is covered. However, the

solution contains a redundancy as the sets {𝑌𝑍,𝑋𝑍 } and {𝑌,𝑋𝑍 }
are both 2-covers of the same query. If we then run an𝑀𝐶3 algo-

rithm that searches for the lowest-cost set of classifiers that covers

𝑥𝑦𝑧, it may output the less costly solution {𝑋𝑍,𝑌 }, which saves

the cost of 𝑌𝑍 that can be instead used to select other classifiers.

We note that since the 𝑀𝐶3 problem is 𝑁𝑃-hard (Theorem 2.5),

the𝑀𝐶3 algorithm is not guaranteed to improve on the previous

solution (which in the above case was {𝑌𝑍,𝑋𝑍,𝑌 }), even if there

indeed exists a less costly solution that covers the same queries,

and if this is the case, then we retain the previous solution instead

of the 𝑀𝐶3 output. Therefore, the 𝑀𝐶3 algorithm in our context

is essentially a local search optimization. Also note that, while the

𝑀𝐶3 algorithm is oblivious to the budget bound, if, nevertheless,

the𝑀𝐶3 solution does improve on the previous solution, then the

newer (𝑀𝐶3) solution is necessarily within the budget constraint,

as the costlier solution also did not exceed the bound.

Next, given that we have so far selected {𝑋𝑍,𝑌 }, only the query

𝑥𝑦𝑤 remains uncovered in the residual problem. Moreover, as 𝑌 is

already selected, it is not necessary to select in the residual problem

classifiers that contain 𝑦, and thus a cover of the 𝑥𝑤 component

in 𝑥𝑦𝑤 is sufficient. This implies that we can treat both {𝑋𝑌𝑊 }
and {𝑋𝑊 } as a 1-cover of 𝑥𝑦𝑤 in the residual problem (however,

selecting both, would once again imply a redundancy, that can be

ameliorated with an𝑀𝐶3 algorithm). Note that𝑋𝑌𝑊 is a 1-cover of

𝑥𝑦𝑤 in both the original and the residual problems, however,𝑋𝑊 is

only a 1-cover in the residual problem, since it must be paired with

the 𝑌 classifier selected earlier. Similarly, the 2-covers of 𝑥𝑦𝑤 are

now {𝑋,𝑊 }, {𝑋𝑌,𝑊 }, {𝑋,𝑊𝑌 }, and {𝑋𝑌,𝑊𝑌 }. Note that, there
are no longer 3-covers of 𝑥𝑦𝑤 , as these require the selection of

𝑌 , which is already selected and does not appear in the residual

problem. Therefore, all covering possibilities are now considered

(albeit with some redundancies). Lastly, observe that the above

arguments for the simplification of the residual problem also apply

for queries whose length exceeds 3. For instance, selecting the

classifier 𝑋𝑌 implies that all covering possibilities in the residual

problem for the query 𝑥𝑦𝑧𝑤 are either 1-covers or 2-covers.

Budget allocation.We, therefore, initially use a constant frac-

tion of the budget to solve the 𝐵𝐶𝐶 (1) and 𝐵𝐶𝐶 (2) subproblems

(via our algorithm for 𝐵𝐶𝐶𝑙=2
), to guarantee that a sufficient frac-

tion of the budget is available for the residual problem, that now

contains a larger fraction of the complete solution space of 𝐵𝐶𝐶 .

Determining the exact fraction of the budget allocated to the

first iteration is somewhat arbitrary. It is important to note, that

the subsequent iterations also solve only the 𝐵𝐶𝐶 (1) and 𝐵𝐶𝐶 (2)
subproblems. No stage of the algorithm solves any 𝐵𝐶𝐶 (𝑖) instance
for 𝑖 > 2. Additionally, queries of length 1 or 2 are targeted by

the algorithm in all iterations. In particular, typical 𝐵𝐶𝐶 inputs

primarily consist of queries of length at most 2, hence, the algo-

rithm “focuses” almost exclusively on these short queries in all
iterations, regardless of the initial budget allocation. The budget

allocation only determines how quickly some of the rare longer

queries are integrated into the examined solution space. For this

reason, the exact allocation is to a large extent inconsequential

over practical inputs. Our experiments verify the small effect of the

allocation choice (especially, for any fraction in [0.2, 0.9]) on the

overall score, even on a synthetic dataset with a higher percentage

of longer queries. The results and explanation of this invariability

phenomenon, are provided in Section 6. We, therefore, allocate to

the first iteration of the algorithm half of the budget, as this is one

of the best-performing values over all datasets. Nevertheless, this

fraction may be considered as a parameter, and over other datasets,

it may be beneficial to test different allocations.

Pruning optimization. To ensure, however, that the solution
space does not become too large and hinders scalability, we use

two preprocessing procedures to prune the input classifier set.

Algorithm. We next list the steps of the algorithm outlined

above, as depicted schematically at high-level in Algorithm 2.

Algorithm 2: 𝐴𝐵𝐶𝐶 (high-level scheme)

1 preprocessing: apply two pruning methods to reduce the number of classifiers

2 allocate half of the budget to solve the 𝐵𝐶𝐶 (1) and 𝐵𝐶𝐶 (2) subproblems via the

algorithm for 𝐵𝐶𝐶𝑙=2
(Subsection 4.1)

3 test whether the solution produced in the previous step can be improved cost-wise via

the𝑀𝐶3 algorithm in [24]

4 while the budget allows covering more queries repeat the following steps:

5 compute the input for the residual problem

6 perform the two steps in lines 2 and 3, using the remainder of the budget (instead of

only half of it, as before)

Preprocessing (line 1 in Algorithm 2). For 𝑙 > 2, the number

of relevant classifiers for 𝐵𝐶𝐶 (2) may be significantly larger than

for 𝑙 = 2. Therefore, as a preliminary step, we prune classifiers from

the solution, using two procedures with a bound on the incurred

error. The first procedure removes every classifier of length 𝑟 > 1

that can be replaced by several shorter classifiers whose total cost is

at most 𝑟 times its cost. For example, if the classifiers𝑋𝑌𝑍 ,𝑋 ,𝑌 , and

𝑍 all cost 1, then we can remove 𝑋𝑌𝑍 since any solution that uses

it can instead use 𝑋 , 𝑌 and 𝑍 such that the set of covered queries

can only increase. In particular, in instances with uniform costs, the

solution space is reduced to using only singletons. Note, however,

that in some edge cases, this pruning rule is not applied. Concretely,

for any given query, if the rule would retain only short classifiers,

such that any combination of these classifiers that covers the query

exceeds the budget, then we do not prune the longer classifiers

relevant to this query. The second pruning procedure is based on

weighted leverage scores [11, 46, 53], which are derived via spectral

methods over the adjacency matrix of the 𝑄𝐾 input graph.

Solving BCC(1) and BCC(2) subproblems (line 2). We use

half the budget to solve each of the subproblems, 𝐵𝐶𝐶 (1) (via the
Knapsack algorithm) and 𝐵𝐶𝐶 (2) (via our algorithm for 𝑙 = 2), and

select the solution 𝑆 of the highest utility of the two solutions.

Improvement via MC3 algorithm (line 3). Let𝑄𝑆 denote the
set of queries covered by 𝑆 . We next employ the 𝑀𝐶3 algorithm

from [24], over the input consisting of 𝑄𝑆 and all the classifiers

from the 𝐵𝐶𝐶 input that are relevant for covering 𝑄𝑆 . We denote

the output of the𝑀𝐶3 algorithm by 𝑆 ′.
Solving iteratively residual problems (lines 4 − 6).We next

compute the residual problem, given the selection of 𝑆 ′, and use the
remainder of the budget (instead of only half the budget, as before)

to employ over it the algorithm for 𝐵𝐶𝐶 (1) and 𝐵𝐶𝐶 (2), along with
the 𝑀𝐶3 optimization, as we did in the previous two steps. This

is repeated iteratively until the budget is consumed entirely (i.e.

the𝑀𝐶3 algorithm no longer produces a less costly solution). The

selected set of classifiers at this point is the final output.

5 COMPLEMENTARY OBJECTIVES
In this section, we define two alternative objectives for which our

𝐷𝐾𝑆-based analysis methods yield hardness bounds and algorithms.

These problems, defined below, may be of interest in practical

scenarios where there is some flexibility in the budget constraint,

Definition 5.1. In the Generalized𝑀𝐶3 problem (𝐺𝑀𝐶3) the in-

put is ⟨𝑄,U, C,𝑇 ⟩, where 𝑄 ,U and C, as in 𝐵𝐶𝐶 , are the queries,
utilities, and costs, respectively, with 𝑇 ∈ R+ representing a target

utility value. The goal is to find a set of classifiers of minimum cost,

yielding utility at least 𝑇 .

Definition 5.2. In the Effective Classifier Construction problem
(𝐸𝐶𝐶), the input is ⟨𝑄,U,𝐶⟩, where 𝑄 , U and C, are as in 𝐵𝐶𝐶 ,
and the goal is to find a classifier set that maximizes the ratio of its

utility to its cost.

Due to space constraints, the detailed descriptions of our theo-

retical and empirical results for these problems are deferred to our

technical report [3]. Concretely, we provide hardness bounds and

an algorithm for 𝐺𝑀𝐶3, showing that despite it containing 𝑀𝐶3

(Definition 2.4) as a special case, the problem is more similar theo-

retically to 𝐵𝐶𝐶 . In particular, we show that at a worst-case cost of

a log𝑛 factor in the performance ratio, our 𝐵𝐶𝐶 algorithm can be

adapted to𝐺𝑀𝐶3. We then examine 𝐸𝐶𝐶 and prove that it is much

easier than 𝐵𝐶𝐶 and 𝐺𝑀𝐶3, as it admits an exact PTIME solution

for 𝑙 = 2, and a constant approximation for general (constant) 𝑙 .

6 EXPERIMENTAL STUDY
In this section, we present the experimental evaluation of our 𝐵𝐶𝐶

algorithm performed over various datasets, including real-world

data of 𝐵𝐶𝐶 use-cases. We start with describing our experimental

setup and then present the evaluation results.

6.1 Experimental Setup
Our algorithms were implemented using Python, and we ran the

experiments on a server with 128GB RAM and 32 cores. In addition,

we used external implementations of the𝐻𝑘𝑆 algorithm of [41] and

the𝑀𝐶3 algorithm of [24]. To evaluate our solution, we performed

a set of extensive experiments on a publicly available real-world

dataset, a larger private dataset provided by a large e-commerce

company, including costs and utilities provided by the company’s

business analysts, and a synthetically generated dataset.

Datasets. As noted above, we performed our evaluation over

three datasets. For all datasets, we tested a wide range of budget

bounds, detailed in our presentation of the experimental results.

• BestBuy (BB) - First, we used a small publicly available dataset

from BestBuy, which had been used by [19, 24] for their evalua-

tion. The dataset consists of roughly 1000 queries with 725 dis-

tinct properties from the electronics domain. The average query

length is 1.4, with more than 95% of the queries containing at

most 2 properties, and 65% of the queries being of length exactly

1, which is the most common query length in all datasets. This

dataset includes the number of times each query was searched,

and we also use this number as the utility score (based on the

logic that popular queries are more important to compute cor-

rectly). No classifier costs, however, are included, and, hence, we

assume uniform costs, as discussed in Section 2.

• Private (P) - The second dataset is private and comes from a

large e-commerce company. It consists of 5𝐾 popular queries

(with 2𝐾 distinct properties) of various lengths (1 to 5 properties),

utilities, and classifier costs. This dataset is a union of several

sub-datasets pertaining to different categories of products. These

queries are taken from the search logs of Q1 2021 and represent

the actual complete query set marked by analysts as top priority

for result set improvement. The average length of a query is 1.7.

Concretely, more than 95% of the queries are of length at most 2,

and 55% are of length exactly 1. The costs represent a scaling by

a factor of 𝑁 (an internal measure of the e-commerce company)

of the estimated monetary cost of training each classifier. After

the normalization, the costs are in the range [0, 50], with the

average cost being roughly 8. The classifiers whose cost is ∞ are

omitted from the input. These cost estimations were determined

by business analysts based on the estimated number of training

examples domain experts must label to train the corresponding

classifier to the required precision. Similarly, the utility score of

each query is derived by the analysts as a combination of the

importance of the corresponding product category and the search

frequency of the query. As explained in Section 2, the units of

measure of the utility are inconsequential for our model, and

thus these scores can be rescaled by any factor. For simplicity,

we scale these into the range [1, 50].
• Synthetic (S) - The third dataset is generated synthetically, to

consist of 100𝐾 queries. We note that to facilitate the scalabil-

ity tests, the size of this query set greatly exceeds typical query

load sizes targeted by classifier construction (as reported by ana-

lysts). The costs and utilities are integers drawn independently

from a uniform distribution over the ranges [0, 50] and [1, 50],
respectively. The length of any generated query equals 𝑖 with

probability
1

2
𝑖 , i.e. half of the queries are of length one, a quarter

of the queries are of length two, and so on. This captures the

inverse correlation of query frequency and length that exists in

practice (and, in particular, in the two previous datasets). Queries

generated with a length exceeding 6 are omitted because com-

panies do not allocate resources for such rare queries [28]. The

average query length resulting from this process is 1.8. Into each

query, we select uniformly properties from a pool of 10𝐾 proper-

ties. This dataset is regenerated for each separate experiment.

Algorithms. We compare the following four 𝐵𝐶𝐶 algorithms.

Since no competing algorithm exists in the literature, we examine

natural greedy and random baselines.

In terms of adapting 𝑀𝐶3 algorithm to 𝐵𝐶𝐶 , note that of all

works on 𝑀𝐶3, only [24] provides a relevant 𝑀𝐶3 algorithm, as

[23] uses the same algorithm, which subsumes the algorithm in

[19]. Observe that we cannot use any 𝑀𝐶3 algorithm directly as

ignores the budget constraint. We only use the 𝑀𝐶3 algorithm

to determine the upper bound on the range of examined budgets.

Nevertheless, the 𝐼𝐺2 algorithm described below is an adaptation

to our context of the greedy Set Cover algorithm used to solve the

𝑀𝐶3 problem in [24]. This is essentially the same greedy algorithm,

except it terminates as soon as the budget bound is reached.

• RAND - This simple baseline randomly selects in each iteration

one of the classifiers whose selection will not exceed the budget.

0

200

400

600

800

20 50 100 300

U
til
ity

RAND IG1 IG2 ABCC

(a) BB dataset, various budgets

0

50000

100000

150000

500 1000 2000 4000

U
til
ity

RAND IG1 IG2 ABCC

(b) P dataset, various budgets

0

500

1000

1500

2000

2500

1000 2000 5000 10000

U
til

ity
 (x

10
00

)

RAND IG1 IG2 ABCC

(c) S dataset, various budgets

0

1000

2000

3000

10 15 20 25

U
til
ity

ABCC BruteForce

(d) Brute Force

0

100

200

300

400

10000 20000 50000 100000

Ti
m

e
(m

in
ut

es
)

queries

with preprocessing w/o preprocessing

(e) Preprocessing effect - Time

0

500

1000

1500

2000

10000 20000 50000 100000

U
til

ity
 (x

10
00

)

queries

with preprocessing w/o preprocessing

(f) Preprocessing effect - Utility
Figure 3: Experimental results

• IG1 - An iterative greedy algorithm that in each iteration com-

putes for each uncovered query the least costly set of classifiers

that covers it (by checking all 𝑂 (1) relevant sets), and then se-

lects the classifier set that maximizes the ratio of the utility of the

corresponding query and its cost (we only count the costs of the

classifiers that have not been selected in the previous iterations).

• IG2 - Another iterative greedy algorithm, that in each iteration

selects a single classifier. Concretely, it computes for each clas-

sifier the sum of utilities of the queries that contain it and then

selects the classifier that maximizes the ratio between the corre-

sponding sum of utilities and its cost.

• 𝑨𝑩𝑪𝑪
- Our proposed algorithm (Algorithm 2 in Section 4).

Evaluation outline.We compared the algorithms listed above

over all datasets, both in terms of the overall utility of the selected

classifier set and the overall running time. We executed the ran-

domized algorithms, which are 𝐴𝐵𝐶𝐶 (due to step 2 in Algorithm 1)

and the 𝑅𝐴𝑁𝐷 baseline, 5 times in each experiment, and averaged

the results. We tested each dataset with a wide range of budget

values. To compute an upper bound on this range, we solved the

𝑀𝐶3 problem (Definition 2.4) using the algorithm of [24], as the

cost of the produced solution is sufficient to cover all queries. To

understand how our algorithm compares with the optimal solution,

we also ran experiments on small subsets of the input, where a brute

force approach could find the best solution. We also examined how

different budget allocations in step 2 of Algorithm 2 affect the score.

Lastly, we examined the effect of our preprocessing step (the first

step of Algorithm 2) on the execution time and the solution quality.

6.2 Evaluation Results
We next present the results and discuss important insights.

Solutionquality. Figures 3a, 3b, and 3c depict the utility achieved
by each algorithm over the 𝐵𝐵, 𝑃 , and 𝑆 datasets respectively, for

some of the examined budget values. In all examined cases the

𝐴𝐵𝐶𝐶 algorithm always achieved the best performance. Moreover,

the variance of our randomized𝐴𝐵𝐶𝐶 algorithm across 5 executions

was very low (since each execution of Algorithm 1, employed by

𝐴𝐵𝐶𝐶 , already takes the best solution out of multiple iterations):

less than 3% over the 𝐵𝐵 and 𝑃 datasets, and less than 1% over the

𝑆 dataset. This is visualized in the figures via error bars, which are

either barely visible, or not visible at all (over the 𝑆 dataset).

Figure 3a depicts the utilities achieved over the 𝐵𝐵 dataset for

4 different budget values. The ranking of the algorithms for all

budget bounds is the same: 𝐴𝐵𝐶𝐶 is the best performing algorithm,

followed by 𝐼𝐺2, 𝐼𝐺1, and 𝑅𝐴𝑁𝐷 . We note that the 𝐵𝐵 dataset is

very sparse since each property appears in a very small number

of queries, and the corresponding 𝐻𝑘𝑆 instance (Definition 2.6)

is, therefore, very sparse as well. Moreover, both 𝐴𝐵𝐶𝐶 and 𝐼𝐺2

produce solutions where almost all of the utility comes from cover-

ing singleton queries. This allows 𝐼𝐺2 to achieve results close to

𝐴𝐵𝐶𝐶 . However, over all other tested datasets, the gap significantly

widens as there are solutions containing classifiers that help cover

simultaneously queries of different lengths, which are found via

good approximation of the 𝐻𝑘𝑆 instance. This is evident over the 𝑃

and 𝑆 datasets, for which results for a selection of budget values are

depicted in Figures 3b and 3c, respectively. Here again the ranking

of the algorithms is the same, except that 𝐼𝐺1 outperforms 𝐼𝐺2

over small budgets. In particular, the gap between 𝐴𝐵𝐶𝐶 and the

second-best algorithm over 𝑃 is much larger than over 𝑆 . This oc-

curs because the probabilistic generative process that constructs 𝑆

results in a, roughly speaking, more “balanced”𝐻𝑘𝑆 graph, whereas

the 𝑃 dataset can be better exploited by the 𝐻𝑘𝑆 algorithm that

focuses on a union of low-cost dense subgraphs.

Lastly, Figure 3d depicts the comparison of 𝐴𝐵𝐶𝐶 and the brute-

force algorithm over a subset of the 𝑃 dataset (we tested small query

subsets that pertain to very specific subdomains). Naturally, there is

some loss in optimality compared to the (non-practical) exhaustive

search. However, the loss is always less than 20% on these small

instances. The brute-force results over small synthetic instances

showed roughly the same trends and hence omitted.

Insights. We next present insights derived from the quality

experiments. We first note the effect of diminishing returns, which is
particularly noticeable over the 𝑃 dataset: we see that the growth in

the utility is not quadratic (as one could expect, e.g., in the extreme

𝐷𝐾𝑆 case, where the number of edges is quadratic in the subgraph

size), but rather sublinear. This is because most of the utility is

typically concentrated in much smaller subsets of the instance.

One important corollary is that compared to the budget required

to cover all queries (which is computed in the𝑀𝐶3 setting of [24])

the budget required to cover a large fraction of the utility is much

smaller. For instance, over the 𝑃 dataset the budget required by the

𝑀𝐶3 algorithm exceeds 8000, however, a budget of 4000 is sufficient

to cover 75% of the total utility of all queries (which is roughly 186K).

We also note that the real quarterly budget provided to us by the

analysts is roughly 2000, and this is sufficient for 65% of the total

utility. This loose bound on the optimal utility implies that our

performance ratio is at most 4/3 for 50% of the budget. We also

note that the total utility possible over the 𝐵𝐵 dataset is roughly

1𝐾 , whereas over the 𝑆 dataset it is roughly 2.5𝑀 .

Second, we note a characteristic of the real-world datasets (𝐵𝐵

and even more so 𝑃): popular queries (which are queries of high

utility) tend to have popular subqueries. For example, if people

often look for “black Adidas shoes” then people also often look

for “Adidas shoes” and “black shoes”. This property is exploited

well by our algorithm, 𝐴𝐵𝐶𝐶 . Specifically, in many cases, the 𝑄𝐾

solution is better than the Knapsack solution, and consists mostly of

singleton classifiers. Therefore, when covering popular queries of

length 2 the 𝑄𝐾 solution also tends to cover many popular queries

of length 1 that are captured by the Knapsack instance. A similar

phenomenon occurs when we solve the residual problem, as the

classifiers used for the shorter popular queries, tend to be relevant

for longer queries that contain the former queries as subsets, which

simplifies the residual problem (see Algorithm 2).

Budget Allocation. Recall that 𝐴𝐵𝐶𝐶 allocates half of the bud-

get to the first iteration. As discussed in Section 5, this allocation is

a heuristic. Examining a wide range of fractions in [0, 1] over all
datasets, indicated that this choice affects the score by less than

5%. The only significant trend was that the best choice lies in the

range [0.2, 0.9], and values in this range typically differ in the score

by less than 1%. As discussed in Section 4, the small effect on the

solution is due to the fact that the queries of length at most 2 are

targeted by all iterations of the algorithm. In general, once a query

is integrated into the solution space, every subsequent iteration

will also target this query unless it is already covered.

The reason the algorithm performs worse when the allocation

fraction is close to 0 is that the residual problem in the second

iteration is too similar to the original problem, and longer queries

are not considered. Similarly, the performance typically worsens for

fractions close to 1 since the budget remaining for the subsequent

iterations is rather small. Nevertheless, even when all the budget is

used on the first iteration, the performance degradation is limited,

since most of the queries are of length at most 2.

Scalability and Preprocessing. Finally, we discuss scalability,
and the effect of our preprocessing procedure (step 1 in Algorithm

2), which reduces the size of the input. The relevant experiments

involved testing a wide range of budget values (including the bud-

get sufficient to cover all queries), and for each budget bound we

generated the synthetic datasets multiple times with different sizes

of the input query set. As the general trends were similar over all

budgets, we only show representative results for a budget bound of

5000. Concretely, figures 3e and 3f depict, respectively, the running

time and utility of 𝐴𝐵𝐶𝐶 with and without preprocessing, over the

𝑆 dataset, where we varied the number of generated queries from

10K to 100K and always used the same budget bound of 5000. Note

that on instances with over 50K queries the variant of the algo-

rithm without preprocessing did not terminate. The degradation in

performance caused by the preprocessing is negligible, however,

the gain in efficiency is significant. In particular, over the dataset

with 100K queries 𝐴𝐵𝐶𝐶 produced a solution after 65 minutes, and

even on much larger budgets the running time over 𝑆 did not ex-

ceed 80 minutes, which is affordable running time for an offline

task. We also report that all other examined baselines are much

faster. However, since this is an offline task that aims to derive

the most cost-effective plan for corporations to increase profits,

a slower algorithm that increases the solution quality is arguably

preferable. We note that the performance also benefits from the

total parallelizability of step 1 in Algorithm 1.

Lastly, recall that the preprocessing procedure described in Sec-

tion 4 consists of two independent pruning heuristics. The experi-

ments have shown that the effect of both heuristics on the quality

is equally negligible, whereas, in terms of the speed-up, roughly

80% is due to the heuristic based on the leverage scores.

7 RELATEDWORK
We start this section by describing previous work on non-budgeted

variants of our problem, and, more generally, work on optimizing

the cost of classifier construction and minimization of human effort.

We then discuss problems that share some similarities with our

setting, highlighting important technical distinctions. Lastly, we

review additional𝐻𝑘𝑆 (Definition 2.6) and 𝐷𝑘𝑆 algorithms that can

be paired with our reduction scheme (Section 4).

Non-budgeted variants of BCC. The problem of identifying

cost-effective classifiers has been introduced in [19, 23, 24]. How-

ever, no budget constraints were taken into account, hindering the

practical applicability of these solutions. To address this, we extend

the above model with a budget constraint, and, since in our case not

all queries are necessarily covered, we also differentiate between

queries via utility scores that model how valuable it is for a solu-

tion to cover each given query. Due to 𝐵𝐶𝐶 generalizing 𝐷𝑘𝑆 , the

set-cover-based methods used for𝑀𝐶3 [24] are no longer relevant

for our model, and novel techniques needed to be developed.

Economic classifier construction. In recent years, companies

have been relying on classifiers for an ever-increasing number of

applications, including spam detection [27, 36], identifying helpful

sentences from user reviews [22, 35], fraud detection [6, 37, 49],

finding a proper category for an item in the company’s taxonomy

[33, 65, 72], and classifying search queries [12], which is also the

focus of our work. As mentioned in the introduction, classifier con-

struction is known to be expensive [68, 69], primarily due to the

training process requiring volumes of high-quality labeled train-

ing data [40]. In particular, labeling is performed by humans for

each data item separately, leading to bottleneck concerns, espe-

cially when expertise is required, as experts’ time is more valuable

[60]. Therefore, much research has been devoted to optimizing the

cost of the training process [21, 45]. These works typically focus

on the use-case where the properties the classifier must test are

given, and the goal is to select the most cost-effective construction

methods [54] or devise techniques to minimize the number of data

examples required by the method of choice to reach a satisfactory

level of precision [15]. Our paper is complementary to these lines

of research: given cost estimations for the classifiers, our algorithm

identifies the (conjunctions of) item properties.

Importance of accurate meta-data in e-commerce. Main-

taining accurate and high-quality metadata is one the key chal-

lenges of large e-commerce platforms. In addition to previously

mentioned paper [60] by Walmart, that aims to improve prod-

uct classification accuracy, there are other works from other e-

commerce companies, e.g., [51, 67] by Amazon that study the im-

portance of high-quality attributes information. Other companies

such as Alibaba [1] and eBay [2] explicitly ask the sellers to provide

accurate information about the product and specifically product

attributes as part of their guidelines. It is clear that having the

most accurate attributes of the products is crucial for e-commerce

companies (e.g., for having better search results [29]). Hence the

aforementioned and other large e-commerce companies both re-

quest the best available data (attributes) from the sellers while

uploading new products and, in parallel, train high-quality classi-

fiers. Those classifiers are used to extract the attributes from other

provided inputs (e.g., title, image and description). However, to the

best of our knowledge our work is the first to address the problem

of which classifiers to train in a cost-efficient manner (in terms of

required labeled data) under given budget constraint. Specifically,

while in our work the goal is to minimize the effort (amount of

training data) needed to train classifiers that cover a specific need

(in our case - search queries), other works focus on how develop

best possible classifiers and generally do not deal with the budget

constraint. Hence, our work is complementary to these efforts.

Minimization of crowdwork.More broadly, our research falls

under the category of works aiming to minimize the effort or in-

volvement of human workers in various tasks that support super-

vised machine learning [71], e.g., feature selection [52], learning

semantic attributes [63], and image tagging [61]. In these tasks, the

human component tends to be the costliest [60], and in our problem,

as well, the construction costs capture the required human effort.

Related problems.While we are not aware of anywork directly

comparable to ours, we briefly discuss below three problems that

share some similarities with our model.

First, we mention theMaterialized View Selection problem (𝑀𝑉𝑆)

[42, 50, 56], where the goal is to materialize, in the context of data

warehouses, a set of views (relations) that strike the right balance

between optimizing the execution time of answering an expected

query workload and minimizing the overall space used. At high-

level,𝑀𝑉𝑆 is somewhat analogous to 𝐵𝐶𝐶 , with views correspond-

ing to classifiers, space - to costs, and execution time - to utility. Even

so, the𝑀𝑉𝑆 problem has much higher inapproximability bounds

[38], and we are not aware of any theoretical results or heuristic

solution methods that resemble ours. Typical technical modeling

distinctions include the fact that each query is covered by only one

view (the smallest view that contains its result set) [31], and that

the execution time of each query is counted towards the objective

function regardless of the view selection [25]. In contrast, in 𝐵𝐶𝐶

queries are either covered entirely (and precisely) or not at all, and

the objective measures the utility gained only from covered queries,

with no extra penalty for not covering the remaining queries. Cor-

respondingly, the greedy heuristics typically used for𝑀𝑉𝑆 [25, 26]

are unrelated to 𝐷𝑘𝑆 , and thus also do not apply to 𝐵𝐶𝐶 , which

generalizes𝐷𝑘𝑆 (to our knowledge, all top 𝐷𝑘𝑆 heuristics are based

on convex optimization [9, 41, 59] and spectral methods [53]). Nev-

ertheless, it may be interesting to explore whether applying our

model to the 𝑀𝑉𝑆 setting, allows capturing practical objectives,

e.g., storing a set of relations within a space budget, to maximize

the utility gain over queries computed by join/union operations,

which correspond to the logical conjunction of classifiers in 𝐵𝐶𝐶 .

An even more similar line of research is Multi-Task Learning
(𝑀𝑇𝐿) [55, 73, 74]. In𝑀𝑇𝐿 there is a set of tasks, and onemust select

which set of classifiers to construct, such that various combinations

of subsets of these classifiers may address these tasks optimally.

The relation to our model is clear, as classifiers have more or less

the same role, the tasks correspond to queries (there is also typically

one primary high-level task which corresponds in our setting to

improving query results), and different combinations of classifiers

may address (cover) different tasks (queries). Most𝑀𝑇𝐿works focus

on network architectures and on deriving the possible combinations

of classifiers that are most relevant to each task, however, to our

knowledge, there is no study of which combinations are the most

cost-effective, despite the fact the the implementation of the𝑀𝑇𝐿

solution also requires human effort in training the classifiers, and

is subject to budget limitations. Thus, an interesting future work

direction is applying our methods to𝑀𝑇𝐿.

A related line of research examines theMinimum Substring Cover
problem [13, 34], where one searches for a set of strings, such that

subsets of these can be concatenated to derive any string in an-

other input set of strings. This problem, however, is much easier to

approximate than 𝐵𝐶𝐶 , primarily due to the technical differences

between (string) concatenation and logical conjunction (of classi-

fiers). Moreover, the requirement of the solution to cover all input

strings is more similar to𝑀𝐶3 [24] than to the present work, where

we cover only a subset of the queries.

HkS and DkS algorithms. Our 𝐵𝐶𝐶 algorithm leverages the

state-of-the-art 𝐻𝑘𝑆 heuristic [41], based on convex optimization.

Since our solution is modular and uses 𝐻𝑘𝑆 as a black-box, one

can, in principle, use any other 𝐻𝑘𝑆 algorithm. For instance, the

algorithms in [43] and [57] were also shown to perform well in

practice. Moreover, for instances with uniform utility values, 𝐻𝑘𝑆

simplifies into 𝐷𝑘𝑆 for which there are many additional algorithms

to consider. A recent example of an empirically-tested heuristic is

[9], and one can also consider superpolynomial algorithms [10].

8 CONCLUSION AND FUTUREWORK
In this work, we studied the 𝐵𝐶𝐶 problem of selecting a classifier set

of the highest utility in practical settings where a budget constraint

is imposed. We showed that 𝐵𝐶𝐶 is as hard as the 𝐷𝑘𝑆 problem

and its hypergraph extensions, for which reasonable worst-case

guarantees have eluded researchers for decades. Nevertheless, we

proposed a practical algorithm that leverages recently-devised 𝐷𝑘𝑆

heuristics and showed experimentally over real-world and synthetic

data that it greatly exceeds the worst-case bounds. As explained in

Section 5, our methods are also applicable to other problem variants

where there is some flexibility in the available budget.

One interesting direction for future work is identifying special

cases that allow providing better worst-case bounds. Another in-

triguing avenue of exploration is generalizing our model to account

for multiple accuracy thresholds and utility in partial covers of

queries, or generalizing the cost function to capture overlaps in

classifier construction. Moreover, our methods may be adapted to

other similar problems where one must select a set of components

such that their subsets can be combined to address a set of objec-

tives (e.g., the 𝑀𝑉𝑆 and 𝑀𝑇𝐿 problems, discussed in Section 7).

Lastly, our scalable heuristic 𝑄𝐾 algorithm may be applied to prob-

lems that also reduce to 𝑄𝐾 , such as many entity summarization

works [16, 44, 70] or incremental view maintenance [75] where a

𝑄𝐾 formulation is avoided due to inefficiency.

Acknowledgment. We are grateful to the anonymous reviewers, for their

insightful comments. This work has been partially funded by the Israel

Science Foundation, BSF - the Binational US-Israel Science foundation and

the Tel Aviv University Data Science center.

REFERENCES
[1] Alibaba’s Rules for Filling of Product Information. https://rule.alibaba.com/rule/

detail/11000682.htm.

[2] eBay’s Guidelines for Listing Specifics. https://pages.ebay.com/seller-center/

listing-and-marketing/item-specifics.html.

[3] Technical Report. http://slavanov.com/research/bcc-tr.pdf.

[4] N. Alon, S. Arora, R. Manokaran, D. Moshkovitz, and O. Weinstein. Inapproxima-

bility of densest𝜅-subgraph from average case hardness. Unpublished manuscript,
1, 2011.

[5] B. Applebaum. Pseudorandom generators with long stretch and low locality from

random local one-way functions. SIAM Journal on Computing, 42(5):2008–2037,
2013.

[6] J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare. Credit card fraud detection

using machine learning techniques: A comparative analysis. In ICCNI, pages 1–9.
IEEE, 2017.

[7] A. Bhangale, R. Gandhi, and G. Kortsarz. Improved approximation algorithm for

the dense-3-subhypergraph problem. arXiv preprint arXiv:1704.08620, 2017.
[8] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detect-

ing high log-densities: an o (n 1/4) approximation for densest k-subgraph. In

Proceedings of the forty-second ACM symposium on Theory of computing, pages
201–210, 2010.

[9] P. Bombina and B. Ames. Convex optimization for the densest subgraph and

densest submatrix problems. In SN Operations Research Forum, volume 1, pages

1–24. Springer, 2020.

[10] N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, and V. T. Paschos. Exact and

superpolynomial approximation algorithms for the densest k-subgraph problem.

European Journal of Operational Research, 262(3):894–903, 2017.
[11] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation

algorithm for the column subset selection problem. In Proceedings of the twentieth
annual ACM-SIAM symposium on Discrete algorithms, pages 968–977. SIAM, 2009.

[12] A. Z. Broder, M. Fontoura, E. Gabrilovich, A. Joshi, V. Josifovski, and T. Zhang.

Robust classification of rare queries using web knowledge. In SIGIR, pages
231–238, 2007.

[13] S. Canzar, T. Marschall, S. Rahmann, and C. Schwiegelshohn. Solving the mini-

mum string cover problem. In ALENEX, pages 75–83, 2012.
[14] M. Charikar, M. Hajiaghayi, and H. Karloff. Improved approximation algorithms

for label cover problems. Algorithmica, 61(1):190–206, 2011.
[15] Y. Chen, L. Cheng, and Y. Zhang. Building a training dataset for classification

under a cost limitation. Electron. Libr., 39(1):77–96, 2021.
[16] G. Cheng, D. Xu, and Y. Qu. C3d+ p: A summarization method for interactive

entity resolution. Journal of Web Semantics, 35:203–213, 2015.
[17] E. Chlamtac, M. Dinitz, and R. Krauthgamer. Everywhere-sparse spanners via

dense subgraphs. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pages 758–767. IEEE, 2012.

[18] E. Chlamtáč, M. Dinitz, and Y. Makarychev. Minimizing the union: Tight ap-

proximations for small set bipartite vertex expansion. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 881–
899. SIAM, 2017.

[19] E. Dushkin, S. Gershtein, T. Milo, and S. Novgorodov. Query driven data labeling

with experts: Why pay twice? In EDBT, 2019.
[20] U. Feige, M. Seltser, et al. On the densest k-subgraph problem. Citeseer, 1997.

[21] G. Forman and I. Cohen. Learning from little: Comparison of classifiers given

little training. In European Conference on Principles of Data Mining and Knowledge
Discovery, pages 161–172. Springer, 2004.

[22] I. Gamzu, H. Gonen, G. Kutiel, R. Levy, and E. Agichtein. Identifying helpful

sentences in product reviews. In NAACL-HLT 2021, Online, June 6-11, 2021, pages
678–691, 2021.

[23] S. Gershtein, T. Milo, G. Morami, and S. Novgorodov. Mc3: A system for mini-

mization of classifier construction cost. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 2725–2728, 2020.

[24] S. Gershtein, T. Milo, G. Morami, and S. Novgorodov. Minimization of classifier

construction cost for search queries. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 1351–1365, 2020.

[25] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for

olap. In Proceedings 13th International Conference on Data Engineering, pages
208–219. IEEE, 1997.

[26] H. Gupta and I. S. Mumick. Selection of views to materialize under a maintenance

cost constraint. In International Conference on Database Theory, pages 453–470.
Springer, 1999.

[27] V. Gupta, A. Mehta, A. Goel, U. Dixit, and A. C. Pandey. Spam detection using

ensemble learning. InHarmony search and nature inspired optimization algorithms,
pages 661–668. Springer, 2019.

[28] I. Guy. Searching by talking: Analysis of voice queries on mobile web search. In

SIGIR 2016, pages 35–44, 2016.
[29] I. Guy, T. Milo, S. Novgorodov, and B. Youngmann. Improving constrained search

results by data melioration. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pages 1667–1678. IEEE, 2021.

[30] M. T. Hajiaghayi and K. Jain. The prize-collecting generalized steiner tree problem

via a new approach of primal-dual schema. In SODA, volume 6, pages 631–640.

Citeseer, 2006.

[31] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes

efficiently. In SIGMOD Record, volume 25, pages 205–216, 1996.

[32] A. Hassan, X. Shi, N. Craswell, and B. Ramsey. Beyond clicks: query reformulation

as a predictor of search satisfaction. In CIKM, pages 2019–2028, 2013.

[33] I. Hasson, S. Novgorodov, G. Fuchs, and Y. Acriche. Category recognition in e-

commerce using sequence-to-sequence hierarchical classification. In Proceedings
of WSDM, pages 902–905, 2021.

[34] D. Hermelin, D. Rawitz, R. Rizzi, and S. Vialette. The minimum substring cover

problem. Information and Computation, 206(11):1303–1312, 2008.
[35] S. Hirsch, S. Novgorodov, I. Guy, and A. Nus. Generating tips from product

reviews. In WSDM, pages 310–318, 2021.

[36] A. J. Ibrahim, M. M. Siraj, and M. M. Din. Ensemble classifiers for spam review

detection. In 2017 IEEE Conference on Application, Information and Network
Security (AINS), pages 130–134. IEEE, 2017.

[37] J. Jurgovsky, M. Granitzer, K. Ziegler, S. Calabretto, P.-E. Portier, L. He-Guelton,

and O. Caelen. Sequence classification for credit-card fraud detection. Expert
Systems with Applications, 100:234–245, 2018.

[38] H. Karloff and M. Mihail. On the complexity of the view-selection problem. In

PODS, pages 167–173, 1999.
[39] Y. Khanna and A. Louis. Planted models for the densest 𝑘-subgraph problem.

arXiv preprint arXiv:2004.13978, 2020.
[40] Y. Ko and J. Seo. Text classification from unlabeled documents with bootstrapping

and feature projection techniques. Inf. Process. Manag., 45(1):70–83, 2009.
[41] A. Konar and N. D. Sidiropoulos. Exploring the subgraph density-size trade-off

via the lovaśz extension. In Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, pages 743–751, 2021.

[42] Y. Kotidis and N. Roussopoulos. A case for dynamic view management. TODS,
26(4):388–423, 2001.

[43] M. Letsios, O. D. Balalau, M. Danisch, E. Orsini, and M. Sozio. Finding heaviest

k-subgraphs and events in social media. In 2016 IEEE 16th International Conference
on Data Mining Workshops (ICDMW), pages 113–120. IEEE, 2016.

[44] Q. Liu, G. Cheng, K. Gunaratna, and Y. Qu. Entity summarization: State of the

art and future challenges. Journal of Web Semantics, page 100647, 2021.
[45] N. Lu, G. Niu, A. K. Menon, and M. Sugiyama. On the minimal supervision for

training any binary classifier from only unlabeled data, 2019.

[46] M. W. Mahoney and P. Drineas. Cur matrix decompositions for improved data

analysis. Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.
[47] P. Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest

k-subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 954–961, 2017.

[48] P. Manurangsi and D. Moshkovitz. Improved approximation algorithms for

projection games. Algorithmica, 77(2):555–594, 2017.
[49] T.Milo, S. Novgorodov, andW. Tan. Interactive rule refinement for fraud detection.

In EDBT, pages 265–276, 2018.
[50] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view selec-

tion and maintenance using multi-query optimization. ACM SIGMOD Record,
30(2):307–318, 2001.

[51] F. Moraes, J. Yang, R. Zhang, and V. Murdock. The role of attributes in product

quality comparisons. In Proceedings of the 2020 Conference on Human Information
Interaction and Retrieval, pages 253–262, 2020.

[52] B. Nushi, A. Singla, A. Krause, and D. Kossmann. Learning and feature selection

under budget constraints in crowdsourcing. In HCOMP 2016, 2016.
[53] D. Papailiopoulos, I. Mitliagkas, A. Dimakis, and C. Caramanis. Finding dense

subgraphs via low-rank bilinear optimization. In International Conference on
Machine Learning, pages 1890–1898. PMLR, 2014.

[54] J. Pons, J. Serrà, and X. Serra. Training neural audio classifiers with few data. In

ICASSP, pages 16–20, 2019.
[55] S. Ruder. An overview of multi-task learning in deep neural networks. arXiv

preprint arXiv:1706.05098, 2017.
[56] T. K. Sellis. Multiple-query optimization. ACM Transactions on Database Systems

(TODS), 13(1):23–52, 1988.
[57] H. Singh, M. Kumar, and P. Aggarwal. Approximation of heaviest k-subgraph

problem by size reduction of input graph. In ICCCN, pages 599–605. Springer,
2019.

[58] M. S. Sorower. A literature survey on algorithms for multi-label learning. Oregon
State University, Corvallis, 18, 2010.

[59] R. Sotirov. On solving the densest k-subgraph problem on large graphs. Opti-
mization Methods and Software, 35(6):1160–1178, 2020.

[60] C. Sun, N. Rampalli, F. Yang, and A. Doan. Chimera: Large-scale classification

using machine learning, rules, and crowdsourcing. PVLDB, 7(13):1529–1540, 2014.
[61] J. Tang, Q. Chen, M. Wang, S. Yan, T.-S. Chua, and R. Jain. Towards optimizing

human labeling for interactive image tagging. TOMM, 9(4):29, 2013.

[62] R. Taylor. Approximation of the quadratic knapsack problem. Operations Research
Letters, 44(4):495–497, 2016.

https://rule.alibaba.com/rule/detail/11000682.htm
https://rule.alibaba.com/rule/detail/11000682.htm
https://pages.ebay.com/seller-center/listing-and-marketing/item-specifics.html
https://pages.ebay.com/seller-center/listing-and-marketing/item-specifics.html
http://slavanov.com/research/bcc-tr.pdf

[63] T. Tian, N. Chen, and J. Zhu. Learning attributes from the crowdsourced relative

labels. In AAAI, volume 1, page 2, 2017.

[64] D. Tunkelang. Faceted search. ICR, 1(1):1–80, 2009.
[65] D. Vandic, F. Frasincar, and U. Kaymak. A framework for product description

classification in e-commerce. J. Web Eng., 17(1&2):1–27, 2018.
[66] V. V. Vazirani. Approximation algorithms. Springer Science & Business Media,

2013.

[67] Y. Wang, Y. E. Xu, X. Li, X. L. Dong, and J. Gao. Automatic validation of textual

attribute values in e-commerce catalog by learning with limited labeled data.

In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2533–2541, 2020.

[68] G. M. Weiss and F. Provost. Learning when training data are costly: The effect of

class distribution on tree induction. J. Artif. Int. Res., 19(1):315–354, Oct. 2003.
[69] G. M. Weiss and Y. Tian. Maximizing classifier utility when there are data

acquisition and modeling costs. Data Min. Knowl. Discov., 17(2):253–282, 2008.

[70] D. Xu, L. Zheng, and Y. Qu. Cd at ensec 2016: Generating characteristic and

diverse entity summaries. In SumPre@ ESWC, 2016.
[71] M.-C. Yuen, I. King, and K.-S. Leung. A survey of crowdsourcing systems. In

SocialCom/PASSAT, pages 766–773, 2011.
[72] T. Zahavy, A. Krishnan, A. Magnani, and S. Mannor. Is a picture worth a thousand

words? A deep multi-modal architecture for product classification in e-commerce.

In AAAI, pages 7873–7881, 2018.
[73] Y. Zhang and Q. Yang. A survey on multi-task learning. arXiv preprint

arXiv:1707.08114, 2017.
[74] Y. Zhang and Q. Yang. An overview of multi-task learning. National Science

Review, 5(1):30–43, 2018.
[75] W. Zhao, F. Rusu, B. Dong, K. Wu, and P. Nugent. Incremental view maintenance

over array data. In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 139–154, 2017.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Existing Results

	3 Hardness Results
	4 Algorithm
	4.1 Algorithm for l=2
	4.2 Algorithm for l > 2

	5 Complementary Objectives
	6 Experimental Study
	6.1 Experimental Setup
	6.2 Evaluation Results

	7 Related Work
	8 Conclusion and Future Work
	References

