
MC3: A System for Minimization of Classifier
Construction Cost

Shay Gershtein
Tel Aviv University

shayg1@mail.tau.ac.il

Tova Milo
Tel Aviv University
milo@post.tau.ac.il

Gefen Morami
Tel Aviv University

gefenkeinan@mail.tau.ac.il

Slava Novgorodov
eBay Research

snovgorodov@ebay.com

ABSTRACT
Search mechanisms over massive sets of items are the cor-
nerstone of many modern applications, particularly in e-
commerce websites. Consumers express in search queries a
set of properties, and expect the system to retrieve qualifying
items. A common difficulty, however, is that the informa-
tion on whether or not an item satisfies the search criteria is
sometimes not explicitly recorded in the repository. Instead,
it may be considered as general knowledge or “hidden” in
a picture/description, thereby leading to incomplete search
results. To overcome these problems companies invest in
building dedicated classifiers that determine whether an item
satisfies the given search criteria. However, building classi-
fiers typically incurs non-trivial costs due to the required
volumes of high-quality labeled training data.

In this demo, we introduceMC3, a real-time system that
helps data analysts decide which classifiers to construct to
minimize the costs of answering a set of search queries.MC3
is interactive and facilitates real-time analysis, by providing
detailed classifiers impact information. We demonstrate the
effectiveness ofMC3 on real-world data and scenarios taken
from a large e-commerce system, by interacting with the
SIGMOD’20 audience members who act as analysts.

ACM Reference Format:
Shay Gershtein, Tova Milo, Gefen Morami, and Slava Novgorodov.
2020. MC3: A System for Minimization of Classifier Construction
Cost . In Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’20), June 14–19, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 4 pages. https://doi.
org/10.1145/3318464.3384690

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384690

1 INTRODUCTION
Search over massive sets of items is the cornerstone of many
modern applications, particularly in e-commerce websites.
consumers express in search queries a set of properties, and
expect the system to retrieve qualifying items. A common
difficulty, however, is that the information on whether or not
a product satisfies the search criteria is sometimes not explic-
itly recorded in the repository. Instead, it may be considered
as general knowledge, or “hidden” in the picture/textual de-
scription associated with the product, thereby leading to
incomplete search results. This occurs since sellers tend to
provide only the most important properties, such as product
name and cost, with additional information given through
natural language description and/or a picture. For example,
the fact that a given clothing item is a “red cotton shirt”, may
be derivable only from the picture (for the color) and the
textual description (for the cloth material).
To overcome this problem, there is a growing trend of

companies leveraging Machine Learning (ML) algorithms to
complete the missing information. In particular, much effort
is put into building dedicated classifiers1 that allow determin-
ing whether an item satisfies the given search criteria or not
[10]. However, building accurate classifiers incurs non-trivial
cost due to the volumes of high-quality labeled training data
that is needed: labeling is often performed by humans for
each data item separately, leading to bottleneck concerns,
particularly when expertise is required, as there are fewer
experts and their time is more valuable. Thus optimizing the
classifiers construction process is an important goal.
We focus in this work on a common class of conjunctive

search queries that test the satisfaction of a set of properties.
Note that one can build a dedicated classifier for each query
separately, or a classifier for each of the individual proper-
ties and then conjunct their output to evaluate the queries.
Midway solutions are also possible.
The choice of classifiers has great monetary significance.

Our system,MC3, allows selecting a set of classifiers of over-
all low-cost to cover a given query load. We first illustrate
through a simple example how carefully selecting which clas-
sifiers to construct can lead to more cost-efficient solutions.

1We consider here binary classifiers. These are often preferred in practice,
as the increased granularity is essential for accurate performance [9].

https://doi.org/10.1145/3318464.3384690
https://doi.org/10.1145/3318464.3384690
https://doi.org/10.1145/3318464.3384690

pr_id pr_title description price team color brand

Ju18W1 Juventus
White 18/19

Juventus shirt from
2018/19 season, ...

$74.99 Adidas

Ch17B2 Chelsea Blue
#18

Chelsea Olivier
Giroud #18 shirt, ...

$64.90 Chelsea White

CS19Re CSKA
Moscow #14

CSKA Moscow
shirt, Nababkin #14

$69.90 CSKA Umbro

Figure 1: ‘Shirts’ relation example.

Example 1.1. Consider an e-commerce website where sell-
ers upload soccer shirts. The website has a products database
(depicted in Figure 1) which includes general information
such as product title, price, and image. In addition, each shirt
has a set of attributes (these have a grey background in the
figure), e.g., brand, either provided by the seller, or derived
automatically from the title, description, and image. Consider
the following two search queries: “white adidas shirt" and
“adidas chelsea shirt". These are translated via NLP-based
methods into the following SQL expressions:

SELECT * FROM Shirts WHERE `color` = 'White'
AND `brand` = 'Adidas';

SELECT * FROM Shirts WHERE `team` = 'Chelsea'
AND `brand` = Adidas';

Accurately answering the queries depends on correctly
classifying each item w.r.t. whether or not they satisfy the
color, brand and team requirements. To answer the first query
one may train two binary classifiers (which we denote by the
initials of the properties): aW classifier that tests whether the
shirt’s color is white, and an A classifier that tests whether
the brand is Adidas. One can also train a classifier for com-
binations of properties, i.e., an AW classifier. Similarly, for
the second query, one could train the classifiers:C (Chelsea),
A or AC . The choice of which classifiers to build depends
on their construction costs. Note that while both queries
need to know whether or not the shirt’s brand is “Adidas”,
building this single-property classifier may not be the best
choice. Indeed, while it may seem counter-intuitive, in some
cases the cost of training a multi-property classifier (e.g., “X
and Y classifier”) may be cheaper than the sum of the cor-
responding single-property ones (e.g. “X classifier” and “Y
classifier”). For instance, detecting an Adidas shirt may be
non-trivial and require many labeled samples (due to the
variety of the Adidas shirt types that are used by different
teams). Similarly, general detection of Chelsea shirts may
be challenging (as the team switched multiple designs and
sponsors in the last decade). In this example classification
for the “Adidas Chelsea” conjunction is an easier task, since
these shirts have only a few variants.
Assume that the classifier construction costs (for a given

accuracy level) are as follows, for some cost unit N :
C: 5N, A: 3N, W: 1N, AC: 3N, AW: 5N

The optimal set of classifiers to build, given these queries
and costs, is {AC,A,W }, whose cost is 7N . Interestingly,
while already having the A classifier, it is better to train the
AC classier (instead of C), due to its lower cost.

The problem of selecting a minimal-cost set of classifiers
to cover a given query load was initially introduced by [3]
in a vision paper with several simplifying assumptions (all
classifiers had the same construction costs, and queries con-
tained at most two properties). In MC3 we remove these
assumptions, and provide a solution for the general case
where queries and classifiers may be of arbitrary lengths and
costs. The system we demonstrate in this work relies on our
theoretical results, presented in [4].MC3 allows analysts to
compute a provably low-cost set of classifiers that cover the
given query load, and to add external constraints to adjust
the requirements until a satisfying trade-off is achieved.

Demonstration Overview. We demonstrate the operation of
MC3 over real-world e-commerce data. Our demonstration
illustrates a real-life scenario where an e-commerce analyst
needs to select which new models to train given their costs
and a weekly search-query load. The audience will play the
role of the e-commerce analysts and experience the full cycle
of processing, from input selection to solution generation
and tuning, and finally actual classifiers generation.

2 TECHNICAL BACKGROUND
We first formally define the problem that we study in this
work, which we call the Minimization of Classifier Construc-
tion Cost problem, and briefly discuss our key theoretical
results and corresponding algorithms. Detailed discussion
of our results along with formal proofs can be found in [4].

2.1 Formal Problem Definition
Recall that in the motivating setting, as described in the
introduction, we have a set of distinct queries, which we
denote by Q , each specifying a conjunction of properties.
Let P denote a universe of properties. A query q ⊆ P is a
set of properties, and Cq = 2q \ ∅ is the set of all possible
binary classifiers that are relevant for q, each corresponding
to a different subset of its properties. Given any item in
the search space, a binary classifier, which pertains to some
specific set of properties, returns true if the item satisfies all
these properties, and false otherwise. Given a set of queries
Q , let CQ = ∪q∈QCq denote the set of all relevant classifiers.
The input for the problem is a query set Q , and a weighting
functionW which assigns a cost for every classifier in CQ .
A query q is said to be covered by a set of classifiers if

the union of the properties in these classifiers is exactly the
set q. The weight of a classifier set is defined as the sum of
its weights. The objective is to output a set of classifiers of
minimal weight such that it covers all queries in Q .

To simplify notation, we use x ,y and z to denote properties,
thereby denoting a query {x,y, z} as xyz, whereas a classi-
fier {x,y, z}, that tests for the conjunctive satisfaction of the
properties (x,y, z), is denoted byXYZ . Observe thatCQ does
not include all possible classifiers corresponding to all sub-
sets of P . For instance, if P = {x,y, z,u} and Q = {xy, zu},
then CQ = {X ,Y ,Z ,U ,XY ,ZU }. Classifiers such as XZ are
not included inCQ , since they are not relevant to the solution
of the problem. Concretely, since no query includes both x
and z, the classifier XZ cannot be used to cover any query.
For a given query set Q , let k = kQ denote the maximal

length of a query in it. This is an important parameter of
the problem for two reasons. First, we study separately the
variant of the problem where k = 2. Second, for the general
problem, our approximation lower and upper bounds are
functions of k . In our analysis, unless stated otherwise, k
is assumed to be a constant, and in practice it rarely even
exceeds 5. Furthermore, we denote the by I = IQ the incidence
of Q , which is defined as the maximal number of queries in
Q a (single) property appears in, over all properties.

2.2 Model characteristics
In our model we assume that the classifiers are constructed
in parallel with independent construction costs. While in
practice there may be some overlap in terms of data labeling
or crowd-worker time, it is arguably not trivial to quantify
such overlap in advance. Hence, in our model the cost of
each classifier is independent, and the total cost of a set of
classifiers is the sum of all the individual costs. We note
that in practice queries also often contain properties for
which there already exists knowledge sufficient to accurately
determine in real-time whether they hold for any given item.
To ensure consistency with our model, we assign a cost of
zero for any classifier testing a property (or a conjunction
of such properties) for which a classifier construction is not
necessary. Observe that this is not equivalent to stripping
such properties from Q . For example, consider a query xy
for which the property x does not require a classifier. In this
case we setW (X) = 0, however we still consider for this
query the classifier XY (in addition to Y), whose cost may
be non-zero (and may be lower than that of Y).
Another characteristic of our problem definition is the

requirement to cover all the queries in Q . Alternatively, one
could consider a variant of the problem where queries have
different weights (e.g. based on their importance) and there
is a bound on the how much can be spent on classifiers con-
struction. Then the goal would be to choose a set of classifiers
whose cost is within the given budget, such that the sum
of weights of all the queries it covers is maximized. We can
show that this problem is much harder to approximate, and
thus it requires different solution techniques than the ones
we employ in our system, and leave it for future work.

UIQueries

white 4
grey nike 5
red adidas 3
blue cotton 9
….

 Queries &
Classifiers Cost

{task:“red”,
amount: 10,
images:
[“http://…”,
“http://…”],
...}

Crowd
Tasks

Constraints

Solver

Proposed
solution

Figure 2: System Architecture

2.3 Theoretical Bounds and Algorithms
We proved that the special case where all queries are of size at
most 2 can be solved optimally using maximum-flow-based
techniques in almost linear time, unlike the general problem
which is NP-hard. In practice this length bound holds for
queries in many search categories [6]. Moreover, we showed
empirically, that evenwhen only 90% of the queries are of size
at most 2, combining our algorithm for this special case with
our general algorithm improves the quality of the solution.

As for the general problem, we proved that it is NP-hard,
and cannot be approximated below amin{(k−2), ln I } factor.
We devised a novel algorithm, achieving an approximation
factor of min{ln I + ln (k − 1) + 1, 2k−1}. Concretely, we first
perform a preprocessing procedure, that partitions the input
into independent sub-instances to enable parallelization, and
further reduces the input size by discarding classifiers which
one can prove are not included in an optimal solution. The
system then runs our algorithm in parallel with an algorithm
for queries of size two, followed by our general algorithm
over the residual problem. The solution of the best quality is
then produced. The preprocessing step and the paralleliza-
tion facilitate the real-time performance of our system. We
performed an extensive set of experiments, demonstrating
the efficiency of our solution, as well as its effectiveness, as
it often greatly exceeds the worst-case guarantees [4].

3 SYSTEM AND DEMONSTRATION
We implementedMC3 using Python and Flask. The system
architecture is depicted in Figure 2. The analyst interacts
with the system via the UI, and provides the list of queries
that should be covered by the classifiers and the classifiers
costs as an input. Both the queries and the classifier cost
estimations are taken from a real-world dataset provided
to us by a large e-commerce company. The Solver module
generates the solution and presents it over a UI which allows
to explore impact information of any selected classifier. The
system is interactive, and allows the analyst to adjust the
solution by adding/removing constraints. The process contin-
ues until the analyst is satisfied with the proposed solution.
The system then generates dedicated labeling tasks that are
automatically deployed and executed to a crowdsourcing
platform.

Figure 3: Costs and Constraints definition

Demonstration ScenarioWe demonstrate the opera-
tion of MC3, an interactive system that identifies a provably
low-cost set of classifiers to address a given query load. We
reenact a real-life scenario where an e-commerce analyst,
played by the audience, needs to select which models to train
given a weekly search-query load and the estimated classifier
costs. First, we will present a UI which captures the input,
as depicted in Figure 3. Then, our algorithm will produce a
solution, and we will show how it is recomputed given vari-
ous user constraints, as shown in Figure 4. Finally, we will
show how actual classifiers specifications are constructed to
be uploaded to a crowdsourcing platform.
Input: To start the demonstration the analyst initializes the
process by loading the queries from the e-commerce cate-
gories of her choice. Our UI visualizes the input as a list of
queries alongside a graph whose nodes are the classifiers. A
directed edge connects node A to node B, if the properties
A tests are a subset of the ones B tests. The UI is equipped
with zoom-in/out capabilities, enabling to explore different
subcategories of queries and their corresponding classifiers.
Moreover, clicking on a classifier prompts the system to high-
light the queries that it addresses. Clicking on classifiers also
allows to add constraints - a set of “must-have” classifiers to
include in the final result. This is usually driven by the busi-
ness logic of the company, e.g., upcoming seasonal changes
and the expected queries they bring about.
Analysis: After exploring the input data, the analyst will
run our algorithm to produce the initial solution. Together
with the audience we will use the UI to examine the proposed
solution, and explore which of the selected classifiers are
used for which queries. Here again, the audience will be able
to add different constraints, based on the produced solution,
omitting less important (based on the accompanying statis-
tics we will provide the audience with) or costly queries,
and possibly specifying which classifiers must be selected or
removed from consideration. MC3 recomputes the refined
solutions on-the-fly. The new output will be presented with
the changes, relative to the previous result, highlighted.
Generation: Once the system produces the final solution,
approved by the analysts, it automatically generates annota-
tion jobs, that can be loaded to the various crowd platforms,
such as Figure-Eight2. To conclude the demonstration we
will show examples of these generated tasks.

2https://www.figure-eight.com

Figure 4: Solution graph representation

Related Work Supervised machine learning is a key
solution for many real world problems. As in modern hy-
brid systems [2, 7, 10], the human component is the most
costly and error prone, many works studied minimization
of interactions with human workers [11]. Our current work
falls under latter category. Previous work [3] considered a
simplified variant of our model where all classifiers had the
same cost and queries included at most two properties.

A related line of work is materialized view selection (MVS)
in data warehouses [5, 8], where one materializes a set of
queries that enable to answer an expected query load. The
materialized objects are relations, rather than binary classi-
fiers, the query language is richer, and a key objective is fast
query load execution time. Partial query answers are often
tolerable [1], in contrast to our setting. The approximation
guarantees achieved by our PTIME algorithms, as mentioned
in Section 2.3, do not follow, to our knowledge, from any
previous MVS results for models that generalize ours.

Acknowledgements This work has been partially funded
by the Israel Innovation Authority, the Israel Science Foun-
dation, the Binational US-Israel Science foundation.

REFERENCES
[1] J. R. Bernardino, P. S. Furtado, and H. C. Madeira. Approximate query

answering using data warehouse striping. JIIS, 19(2):145–167, 2002.
[2] J. Cheng and M. S. Bernstein. Flock: Hybrid crowd-machine learning

classifiers. In CSCW, pages 600–611. ACM, 2015.
[3] E. Dushkin, S. Gershtein, T. Milo, and S. Novgorodov. Query driven

data labeling with experts: Why pay twice? In EDBT, 2019.
[4] S. Gershtein, T. Milo, G. Morami, and S. Novgorodov. Minimization of

classifier construction cost for search queries. In SIGMOD, 2020.
[5] H. Gupta and I. S. Mumick. Selection of views to materialize in a data

warehouse. TKDE, 17(1):24–43, 2005.
[6] I. Guy. Searching by talking: Analysis of voice queries on mobile web

search. In SIGIR 2016, pages 35–44, 2016.
[7] A. Jarovsky, T. Milo, S. Novgorodov, and W.-C. Tan. Rule sharing for

fraud detection via adaptation. ICDE, 2018.
[8] Y. Kotidis and N. Roussopoulos. A case for dynamic view management.

TODS, 26(4):388–423, 2001.
[9] M. S. Sorower. A literature survey on algorithms for multi-label learn-

ing. Oregon State University, Corvallis, 18, 2010.
[10] C. Sun, N. Rampalli, F. Yang, and A. Doan. Chimera: Large-scale clas-

sification using machine learning, rules, and crowdsourcing. PVLDB,
7(13):1529–1540, 2014.

[11] M.-C. Yuen, I. King, and K.-S. Leung. A survey of crowdsourcing
systems. In SocialCom/PASSAT, pages 766–773, 2011.

	Abstract
	1 Introduction
	2 Technical Background
	2.1 Formal Problem Definition
	2.2 Model characteristics
	2.3 Theoretical Bounds and Algorithms

	3 System and Demonstration
	References

