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ABSTRACT
Search over massive sets of items is the cornerstone of many

modern applications. Users express a set of properties and

expect the system to retrieve qualifying items. A common

difficulty, however, is that the information on whether an

item satisfies the search criteria is not explicitly recorded in

the repository. Instead, it may be general knowledge or “hid-

den” in a picture/description, leading to incomplete search

results. To overcome this problem, companies build dedi-

cated classifiers that determine which items satisfy the given

criteria. However, building classifiers requires volumes of

high-quality labeled training data. Since the costs of training

classifiers for different subsets of properties can vastly differ,

the choice of which classifiers to train has great monetary

significance. The goal of our research is to devise effective

algorithms to choose which classifiers one should train to

address a given query load while minimizing the cost.

Previous work considered a simplified model with uni-

form classifier costs, and queries with two properties. We

remove these restrictions in our model. We prove NP-hard

inapproximability bounds and devise several algorithms with

approximation guarantees. Moreover, we identify a common

special case for which we provide an exact algorithm. Our

experiments, performed over real-life datasets, demonstrate

the effectiveness and efficiency of our algorithms.
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1 INTRODUCTION
Search over massive assortments of items is the cornerstone

of many modern applications, including, e.g., online stores,

video streaming services, news article archives, etc. Users

often express (through a variety of user interfaces, ranging

from form-based to free-text queries) a set of properties that

the desired items should satisfy, and expect the system to

retrieve qualifying items. A common difficulty however is

that the information on whether or not an item satisfies

the search criteria is sometimes not explicitly recorded in

the repository. Instead, it may be “hidden”, e.g., in the pic-

ture/textual description associated with the item, or as gen-

eral knowledge not recorded in the database, thereby leading

to incomplete search results. For example, product catalogs

in popular e-commerce sites often contain incomplete infor-

mation as sellers tend to focus, in their provided information,

only on the most important properties, such as product name

and cost, with additional information given through natural

language description and/or a picture. The fact that a given

clothing item is, e.g., a “white summer dress”, may be deriv-

able only from its picture (for the color and sleeveless shape)

and its textual description (for the cloth material).

To overcome this problem, there is an ever growing trend

of companies leveraging Machine Learning (ML) algorithms

to complete the missing information. In particular, much

effort is put into building dedicated classifiers that allow to

determine whether an item satisfies the given search crite-

ria or not [46]. However, building such accurate classifiers

typically incurs non-trivial cost due to the volumes of high-

quality labeled training data that is needed: labeling is often

performed by humans for each data item separately, lead-

ing to bottleneck concerns, particularly when expertise is

required, as there are fewer experts and their time is more

valuable. Thus optimizing the classifiers construction process

is an important goal.

We focus in this work on a common class of conjunctive

search queries that test the satisfaction of a set of properties.

Note that given a set 𝑄 of such queries, there are multiple

sets of classifiers that may be built to answer 𝑄 . At the one

extreme, one can build a dedicated classifier for each query

in𝑄 . At the other extreme, one can build a classifier for each

of the individual properties tested in 𝑄 , then conjunct their

output to evaluate the queries. Midway solutions are also
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Shirts
pr_id pr_title description price team color brand

Ju18W1 Juventus 
White 18/19

Juventus shirt from 
2018/19 season, ...

$74.99 Adidas

Ch17B2 Chelsea 
Blue #18

Chelsea Olivier 
Giroud #18 shirt, ...

$64.90 Chelsea

Ar19W1 Arsenal Red 
Long Sleeve

Arsenal 2017/18 red 
shirt with long sle...

$84.90 Red

CS19Re CSKA 
Moscow #14

CSKA Moscow shirt, 
Nababkin #14

$69.90 CSKA Umbro

Figure 1: ‘Shirts’ relation example.

possible, as exemplified below, where classifiers are built for

(the conjunction of) selected subsets of the properties, then

assembled to answer𝑄 . The choice of which classifiers set to

build depends on the training cost of the different classifiers,

pertaining to different subsets of properties, which can vastly

vary. The goal of our research is to devise effective algorithms

to choose which classifiers one should train to be able to

address a given query load, while minimizing the overall

construction cost.

We consider here binary classifiers. These are often pre-

ferred in practice over multi-valued classifiers, as the in-

creased granularity is essential for accurate performance.

Furthermore, typical methods for building multi-label classi-
fiers often consist of independently training a binary classi-

fier for each label [45]. Nevertheless, our model can capture

multi-valued classifiers as well. We explain in Section 5 how

the input can be adapted to account for these extra options,

so that our approach applies all the same.

Before presenting an overview of our approach and results,

let us first illustrate through a simple example how carefully

selecting which classifiers to construct can lead to more cost-

efficient solutions.

Example 1.1. Consider an e-commerce website where sell-

ers upload soccer shirts. The website has a products database

(depicted in Figure 1) which includes general information

such as product title, price and image. In addition, each shirt

has a set of attributes (e.g., brand), either provided by the

seller, or derived automatically from the title, description

and image (these attributes have grey background in the

figure). Consider the following two free-text search queries:

“white adidas juventus shirt" and “adidas chelsea shirt". The

queries are translated by the e-commerce application (e.g.,

via NLP-based methods) into the following SQL expressions,

to be evaluated on the database:

SELECT * FROM Shirts WHERE `team` = 'Juventus'
AND `color` = 'White' AND `brand` = 'Adidas';

SELECT * FROM Shirts WHERE `team` = 'Chelsea'
AND `brand` = Adidas';

Accurately answering the queries depends on correctly clas-

sifying each item w.r.t. whether or not they satisfy the color,

brand and team requirements. To answer the first query one

may train three binary classifiers (which, for brevity, we

denote by the initials of the properties): a 𝐽 classifier that

tests whether the shirt’s team is Juventus, a𝑊 classifier that

tests whether the shirt’s color is white, and an 𝐴 classifier

that tests whether the brand is Adidas. One can also train

classifiers for any combinations of these properties, e.g., a

𝐴𝐽 classifier (tests whether an item is a Juventus shirt of

Adidas brand), a 𝐴𝑊 classifier, or alternatively a full 𝐽𝐴𝑊

classifier which test the entire query. Similarly, for the sec-

ond query one could train the classifiers: 𝐶 (Chelsea), 𝐴 or

𝐶𝐴. The choice of which classifiers to build depends on their

construction cost.

The choice of which classifiers are more cost-effective to

build depends on the individual classifier costs and which

queries they can serve. Note that while both queries need to

know whether or not the shirt’s brand is “Adidas”, building

this single-property classifier may not be the best choice.

Indeed, while it may seem counter-intuitive, in some cases

the cost of training a multi-property classifier (e.g., “X and Y

classifier”) may be cheaper than the sum of the corresponding

single-property ones (e.g. “X classifier” and “Y classifier”).

For instance, detecting that a shirt is an Adidas shirt may

be non-trivial and require many labeled samples (due to the

variety of the Adidas shirt types that are used by different

teams). Similarly, general detection of Juventus shirts may

be challenging (as the team switched multiple designs and

sponsors in the last decade). In this example classification

for the “Adidas Juventus” conjunction is an easier task, since

these shirts have just a few variants.

Assume that the classifier construction costs (for a given

accuracy level) are as follows, for some cost unit 𝑁 :

C: 5N, A: 5N, J: 5N, W: 1N,
AC: 3N, AW: 5N, AJ: 3N, JW: 4N, JAW: 5N

The optimal set of classifiers to build, given these queries

and costs, is {𝐴𝐶,𝐴𝐽,𝑊 }, whose cost is 7𝑁 . We now briefly

discuss the intuition behind this solution, which will later

guide our algorithms. In general, the fewer properties the

classifier tests the more queries it may potentially be used

for. For example, the classifier 𝐴 can be used to answer both

queries, whereas the classifier𝐴𝐶 can only be used to answer

the second query. On the other hand, the latter costs less

than the former, demonstrating a trade-off between cost and

range of applicability. In this specific case, because 𝐴 is only

relevant for the first query, it is not more useful than the

cheaper 𝐴𝐶 classifier. As the same holds for 𝐴𝐽 , choosing

𝐴𝐶 and 𝐴𝐽 turns out to be preferable to choosing 𝐴, 𝐽 and𝐶

individually. Finally, the choice of𝑊 is not surprising since

its cost is extremely low, and it is required to complete the

answer to the first query.



The problem of selecting the minimal-cost set of classifiers

to cover a given query load has been initially introduced by

[13] in a short vision paper, but the proposed model and

algorithms there were based on two over-simplifying as-

sumptions. First, it was assumed that construction costs are

identical for all classifiers. Second, the number of properties

tested by a query, which we refer to henceforth as the length
of the query, was assumed to be at most two. Accordingly,

the limited setting has lead to straightforward algorithms.

In practice, real-life scenarios are more complex. First, the

monetary cost of training a given classifier can be estimated

in advance [44], and analysis of real-world applications and

data shows that these costs can vary immensely (see Sec-

tion 6). Second, while in practice the incidence of queries

of a given length tends to correlate negatively with said

length, it is nevertheless the case that queries whose length

exceeds two make up a significant percentage of the over-

all query load. In this paper we address the general case of

non-uniform classifiers costs and queries of arbitrary length.

We prove this generalized model to principally differ from

its restricted predecessor in [13] in terms of computational

complexity, and, respectively, our optimization algorithms

bear no resemblance to those in [13].

More formally, in the problem we study here, which we

term as the Minimization of Classifier Construction Cost for
Search Queries problem (𝑀𝐶3

), we are given a set of queries,

each testing the satisfaction of a set of properties, and a list

which associates a cost
1
with every binary classifier per-

taining to a conjunction of any combination of one or more

properties. Each such classifier can determine for its associ-

ated properties whether they all hold true (simultaneously)

or not. We are interested in training a set of classifiers which

can cover all queries. That is, for every query, the truth value

of its conjunction of properties can be determined (w.r.t. any

given item in the search space) via a conjunction of one or

more classifiers out of those trained. The objective of the

problem is to identify of all such possible sets of classifiers,

one whose overall cost (the sum of the individual classifiers

cost) is minimal.

We prove, via a reduction from the Set Cover problem,

the NP-hardness of our problem, along with an inapprox-

imability bound which grows stricter as the maximal query

length increases. These hardness bounds hold even in a con-

siderably restricted setting. Nevertheless, we demonstrate

both in our theoretical and experimental analysis, that one

can make headway, and provide effective algorithms for the

problem. First, we study the special case where the maximal

query length is two (but, unlike [13], the classifiers cost may

1
The cost may reflect monetary cost, or be based on other criteria, such as

the number of data items required for training, the time that it is estimated

to take an expert to label all data items, etc.

still vary). We prove it to be a simpler problem, for which

we provide an exact, PTIME solution. Concretely, we reduce

this simple variant to a Max-Flow problem over bipartite

graphs, thereby leveraging the best performing algorithms

known for this special case of the problem. While, as ex-

plained before, in practice one often also encounters longer

queries, there still exist some domains (exemplified in Sec-

tion 6) where short queries are dominant, hence this special

case has practical utility. Second, for the general problem,

by reducing it to a special case of the Weighted Set Cover

Problem (a different reduction from the hardness result), we

identify two possible effective algorithms, both with approx-

imation guarantees, each suiting a different range of query

lengths. We further augment both algorithms with heuristics

which preserve the approximation guarantees, yet improve

in practice, as we demonstrate in our experiments, both the

quality of the solution and the running time.

In our experiments (Section 6) we consider both synthetic

data and real-world datasets provided by a large e-commerce

company. These datasets include a curated set of queries

(based on actual user sessions) along with actual cost esti-

mations for training classifiers. We note that e-commerce is

a particularly apt domain for the𝑀𝐶3
problem, as the most

popular sites have product catalogs of colossal proportions,

often with incomplete information, as mentioned above. Con-

sequently, these companies invest significant resources in

developing classifiers which assist in query answering [46].

With e-commerce being a trillion dollar industry, even small

improvements, enabling to present to users search results

which they are more likely to be interested in purchasing,

can greatly increase profits.

Our main contributions can be summarized as follows.

(1) We formulate the Minimization of Classifier Construc-

tion Cost for Search Queries problem (𝑀𝐶3
), account-

ing both for varying classifiers costs and query lengths.

(2) We study the computational complexity of 𝑀𝐶3
and

prove its NP-hardness and approximation hardness.

(3) We identify the special case of queries of length at most

two as solvable in polynomial time, and propose an

exact algorithm for it, which can handle non-uniform

classifiers costs. We show in our data analysis that in

some domains such queries form over 95% of the query

load, thus this special case is also relevant in practice.

(4) We propose efficient approximation algorithms to solve

the general problem, based on a reduction to the Set-

Cover problem, coupledwith novel preprocessing heuris-

tics. Moreover, all our proposed algorithms come with

approximation guarantees.

(5) We present an extensive experimental study based on

real-world datasets obtained from a large e-commerce

site, as well as on synthetic data, demonstrating the

effectiveness and efficiency of our algorithms.



Paper outline. Section 2 provides the necessary defini-

tions and formalism for our problem, along with useful theo-

retical results. Section 3 describes our preprocessing heuris-

tics. Section 4 studies the𝑀𝐶3
problem restricted to queries

of length at most two. The theoretical study is then extended

to the general case in Section 5. Experimental studies are

presented in Section 6. Finally, the related work appears in

Section 7. We discuss future work and conclude in Section 8.

2 PRELIMINARIES
We start by formally defining the problem that we study in

this paper, and discussing important aspects of our model.

We conclude this section by presenting results for related

problems that will be useful in developing our algorithms

and proving our hardness results.

2.1 Formal problem definition
Recall that in the motivating setting, as described in the

introduction, we have a set of distinct queries, which we

denote by 𝑄 , each specifying a conjunction of properties.

Let 𝑃 denote a universe of properties. A query 𝑞 ⊆ 𝑃 is

defined as a set of properties. For any query 𝑞 let𝐶𝑞 = 2
𝑞 \ ∅

denote its power set excluding the empty set. This models

the set of all possible binary classifiers that are relevant for

𝑞, each corresponding to a different subset of its properties.

Given any item in the search space, a binary classifier, which

pertains to some specific set of properties, returns true if

the item satisfies all these properties, and false otherwise.

Given a set of queries 𝑄 , let 𝐶𝑄 = ∪𝑞∈𝑄𝐶𝑞 denote the union

of the power sets of all its queries (except for the empty set).

This represents the universe of classifiers. For any subset

𝑆 ⊆ 𝐶𝑄 , we define 𝑃 (𝑆) = ∪𝐶∈𝑆𝑞 ∪𝑝∈𝐶 𝑝 as the set of all

distinct properties appearing in members (classifiers) of 𝑆 .

The input ⟨𝑄,𝑊 ⟩ to the Minimization of Classifier Con-
struction Cost for Search Queries problem (𝑀𝐶3

) consists

of a set 𝑄 of 𝑛 queries over 𝑃 , and a weighting function

𝑊 : 𝐶𝑄 → [0,∞) (later in this section, when we discuss

input representation, we note that to capture practical set-

tings where classifiers of infinite weight are simply omitted

from the input, we do not count these classifiers towards

the input size). This function assigns a cost to each classifier.

The output is a set 𝑆 ⊆ 𝐶𝑄 of classifiers. The weight of any

set 𝑆 ⊆ 𝐶𝑄 is defined as𝑊 (𝑆) =
∑

𝑐∈𝑆𝑊 (𝑐), which is the

sum of the costs of all the classifiers. We say that a query

𝑞 is covered by 𝑆 ⊆ 𝐶𝑄 if ∃𝑇 ⊆ 𝑆 : 𝑃 (𝑇 ) = 𝑞. That is, a

query is covered by a set of classifiers if it contains a subset

of classifiers whose conjunction tests exactly the truth value

of the conjunction of exactly the properties in the query. A

set of queries 𝑄 is said to be covered by 𝑆 ⊆ 𝐶𝑄 if all its

queries are covered by 𝑆 . The goal of𝑀𝐶3
is to output a set

of classifiers of minimal weight s.t. it covers 𝑄 .

Additional notation. To simplify notation, we use 𝑥 ,𝑦 and

𝑧 to denote properties, thereby denoting a query {𝑥,𝑦, 𝑧} as
𝑥𝑦𝑧, whereas a classifier {𝑥,𝑦, 𝑧}, that tests for the conjunc-
tive satisfaction of the properties (𝑥,𝑦, 𝑧), is denoted by𝑋𝑌𝑍 .
Additionally, for any given query set 𝑄 , let 𝑘 = 𝑘𝑄 denote

the maximal length of a query in it. This is an important

parameter of the problem for two reasons. First, we study

separately the variant of the problem where 𝑘 = 2. Second,

for the general problem, our approximation lower and up-

per bounds are functions of 𝑘 . In our analysis, unless stated

otherwise, 𝑘 is assumed to be a constant, and in practice it

rarely even exceeds 5. Nevertheless, we provide results for

super-constant 𝑘 as well. Similarly, we define the length of

a classifier as the number of properties it tests. For exam-

ple, the length of the classifier 𝑋𝑌 is 2. We refer to queries

and classifiers of length 1 as singleton queries and singleton
classifiers, respectively.

Input representation and size. Observe that 𝐶𝑄 does not

include all possible classifiers corresponding to all subsets

of 𝑃 . For instance, if 𝑃 = {𝑥,𝑦, 𝑧,𝑢} and 𝑄 = {𝑥𝑦, 𝑧𝑢}, then
𝐶𝑄 = {𝑋,𝑌, 𝑍,𝑈 ,𝑋𝑌, 𝑍𝑈 }. Classifiers such as 𝑋𝑍 are not

included in𝐶𝑄 , since they are not relevant to the solution of

the problem. Concretely, since no query includes both 𝑥 and

𝑧, the classifier𝑋𝑍 cannot be used to cover any query. Lastly,

we assume, for simplicity, that 𝑃 only includes properties

which appear in at least one query in 𝑄 .

We next clarify some ambiguity regarding the size of the

input. The weighting function𝑊 , in particular, can be repre-

sented in variousways (for example, one can save space using

an enumeration scheme for the domain 𝐶𝑄 ), each implying

a somewhat different input size. However, for 𝑘 = 𝑂 (1) the
input size of both parts of the input (and thus overall) is in all

cases Θ(𝑛). Hence, for uniformity, we assume a simple rep-

resentation, where the input size of𝑊 is treated as the sum

of lengths of the classifiers in its domain (we ignore, for sim-

plicity, factors such as the logarithmic number of bits needed

to represent weights and properties). The upper bound on

the overall input size pertains to the case where all queries

are disjoint and of maximal length. The representation size

of 𝑄 here is 𝑛𝑘 . For each query, there are

(
𝑘
𝑖

)
classifiers of

length 𝑖 , and hence we have a known result for a telescopic

sum, which implies that the sum of lengths of classifiers for

a query is 𝑘 · 2𝑘−1. Hence, the overall representation size

is at most (𝑛𝑘 · (1 + 2
𝑘−1)), which is Θ(𝑛) for 𝑘 = 𝑂 (1). In

practice, it is not always true that all theoretically relevant

classifiers are considered. When the number of combinations

of properties is too large it is common to only consider classi-

fiers of length at most 𝑘 ′ < 𝑘 . Furthermore, some classifiers

are not considered because it is hard to bound their cost

in advance, or they are deemed infeasible (e.g., not enough

training data available). In some cases one can efficiently



determine in a preprocessing step (see Sections 4 and 5) that

some classifiers are always inferior to others and should not

be considered. Our model accounts for these classifiers by

setting their weight to ∞ (we assume that 𝑄 can be covered

by a solution of finite weight, and disregard the trivial cases

where this does not hold). However, as in practice such classi-

fiers are simply omitted from the input, in our model as well

we do not count these towards the input size. As mentioned,

for constant 𝑘 this makes no difference asymptotically on

the size of the input.

Model characteristics. In our model we assume that the

classifiers are constructed in parallel and their construction

costs are independent. While in practice there may be some

overlap, e.g., in terms of data labeling or crowd-worker time,

it is arguably not trivial to quantify such overlap in advance.

Hence, in our model the cost of each classifier is independent,

and the total cost of a set of classifiers is derived as the sum

of all the individual costs. The procedure of constructing clas-

sifiers, followed by completing the corresponding missing

values in the database is performed offline
2
. Hence, which

specific classifiers were constructed has no bearing on the

running time of search queries over the completed database.

We note that in practice queries also often contain prop-

erties for which there already exists knowledge sufficient

to accurately determine in real-time whether they hold for

any given item. To ensure consistency with our model, we

assign a cost of zero for any classifier testing a property (or

a conjunction of such properties) for which a classifier con-

struction is not necessary. Observe that this is not equivalent

to stripping such properties from 𝑄 . For example, consider a

query 𝑥𝑦 for which the property 𝑥 does not require a classi-

fier. In this case we set𝑊 (𝑋 ) = 0, however we still consider

for this query the classifier 𝑋𝑌 (in addition to 𝑌 ), whose cost

may be non-zero (and may be lower than that of 𝑌 ).

Another characteristic of our problem definition is the

requirement to cover all the queries in 𝑄 . Alternatively, one

could consider a variant of the problem where queries have

different weights (e.g. based on their importance) and there

is a bound on the how much can be spent on classifiers

construction. Then the goal would be to choose a set of

classifiers whose cost is within the given budget, such that

the sum of weights of all the queries it covers is maximized.

We explain in Section 5 why this variant requires different

solution techniques than the ones we employ here and leave

it for future work.

2
Positive classification for a conjunction of conditions yields a positive anno-

tation for each of the individual conditions, and otherwise null (unknown)

value.

2.2 Related Problems
Finally, we present definitions and results pertaining to re-

lated problems, which will also serve us in the theoretical

analysis.

Definition 2.1. [50] In theWeighted Vertex Cover Problem
(𝑊𝑉𝐶) the input is a weighted undirected graph 𝐺 , and the

goal is to select a subset of the vertices of minimal weight

which covers all the edges.

Definition 2.2. [8] In the Max-Flow Problem the input is

a directed graph 𝐺 , with a source node 𝑠 and a sink node

𝑡 , and each edge (𝑢, 𝑣) having capacity 𝑐𝑢𝑣 . The goal is to

find a maximum feasible flow. A flow assigns a positive real

edge-flow 𝑓𝑢𝑣 to each edge (𝑢, 𝑣). A feasible flow satisfies

two conditions: (1) for every edge (𝑢, 𝑣): 𝑓𝑢𝑣 ≤ 𝑐𝑢𝑣 ; (2) for

every vertex not in {𝑠, 𝑡}: the sum of its incoming edge-flows

equals the sum of its outgoing edge-flows.

While the𝑊𝑉𝐶 problem is known to be NP-hard [16],

the following result states that the special case of𝑊𝑉𝐶 over

bipartite graphs is reducible to Max-Flow, which is in PTIME.

Theorem 2.3. [2] The𝑊𝑉𝐶 problem over a bipartite graph
can be reduced in linear time to the PTIME Max-Flow problem
over a bipartite graph.

We conclude with an overview of results regarding the

Weighted Set Cover problem.

Definition 2.4. [50] In the Weighted Set Cover Problem
(𝑊𝑆𝐶) the input is a collection S of𝑚 sets over a universe

U of 𝑛 elements. Each set is associated with a cost, and the

goal is to find a subset of S of minimal cost whose union

includes all elements. The degree Δ of a𝑊𝑆𝐶 instance is de-

fined as the cardinality of the largest set in S. Moreover, for

any instance of𝑊𝑆𝐶 its frequency is defined as the maximal

number of sets any element belongs to. In the special case of

the Unweighted Set Cover Problem (𝑆𝐶), all set costs equal 1.

Observe that𝑊𝑉𝐶 is equivalent to𝑊𝑆𝐶 with 𝑓 = 2, by

equating the edges to the elements and the vertices to the

sets.

Theorem 2.5. [11, 16, 30, 49] The 𝑆𝐶 problem for 𝑓 ≥ 2

and Δ ≥ 3 is NP-hard, and is hard to approximate beyond
a min{(𝑓 − 1), lnΔ} factor unless 𝑃 = 𝑁𝑃 . Moreover, if the
Unique Games Conjecture (UGC) [29] is true, then this inap-
proximability factor (𝑓 −1) increases to 𝑓 . All the above bounds
hold even for the case where all sets are of the same size Δ, or
when all elements appear in exactly 𝑓 sets.

Note that the above hardness results apply for𝑊𝑆𝐶 as

well, as it has 𝑆𝐶 as a special case. More generally, all lower



and upper bounds on the approximation of𝑊𝑆𝐶 and 𝑆𝐶 are

the same.

A straightforward greedy algorithm for𝑊𝑆𝐶 is known

with a (nearly) tight approximation factor of (lnΔ+1) [6] (ob-
serve that Δ ≤ 𝑛). This algorithm chooses at each iteration

the set that maximizes the ratio between the number of ele-

ments it covers (not including previously covered elements)

and its cost. Its running time is therefore 𝑂 (𝑛𝑚), which can

be improved using priority queues to𝑂 (log𝑚 ·∑𝑠∈S |𝑠 |) [9].
Moreover, for a bound dependent on 𝑓 , a simple polynomial

LP-based algorithm [50] achieves an approximation factor

of 𝑓 , which is tight if the UGC is true. By combining these

two algorithms, we get the following result.

Theorem 2.6. [6, 50] The𝑊𝑆𝐶 problem admits a PTIME
min{(𝑓 , lnΔ + 1)}-approximation algorithm.

3 PREPROCESSING
Wenext describe our preprocessing pruning procedure, which

is the initial step in all our algorithms. This procedure con-

sists of four steps each corresponding to a simple observation

regarding the characteristics of an optimal solution.

We show that our pruning preserves the optimal solution

(more precisely, at least one optimal solution is preserved),

and can only improve the parameters in our results. While

theoretically there is no guaranteed worst-case improvement

in quality or efficiency, we show in our experiments that

in practice there is a significant improvement in both (for

𝑘 = 2 only the running time is improved, since the quality is

already optimal).

The complete procedure is depicted in Algorithm 1, and

we refer to it in our description below. When analyzing our

algorithms in Sections 4 and 5, we assume this processing

procedure has already been employed.

Step 1 - Singleton queries and zero weight classifiers.

Observation 3.1. For every singleton query the solution
must include its corresponding singleton classifier.

Following this trivial observation, we first select all such

classifiers (line 1 in Algorithm 1). Selecting a classifier can

be modeled by setting its weight to 0, after adding its weight

to the cost of the solution. More generally, we select all

classifiers of weight 0 (line 2).

We also remove from the input all queries that are now

covered by these selected classifiers, as well as any classifier

which is no longer relevant for the remaining queries (line 3).

Removing a classifier can be modeled by setting its weight

to ∞. This step is linear in the input size.

We can assume henceforth that there are no singleton

queries in the input.

Algorithm 1: Preprocessing

Step 1 (Observation 3.1):
1 Select all classifiers for singleton queries

2 Select all classifiers of weight 0

3 Remove all queries covered by the previous steps

Step 2 (Observation 3.2):
4 Build a graph with nodes as properties and a path between any two

properties from the same query

5 Discover connected components using a BFS algorithm

6 Partition the problem into independent sub-instances based on the

connected components

Step 3 (Observation 3.3):
7 Go over all classifiers by increasing length (2 to 𝑘)

8 For each classifier 𝑆 consider all combinations of two classifiers

whose union is 𝑆 , and for each of the two, if already removed,

consider instead the least costly decomposition which was

marked to replace it

9 If the least costly of these decompositions of 𝑆 does not cost more

than𝑊 (𝑆) then remove 𝑆 and mark this decomposition to

replace it

10 Check for every query if it now has only one cover possibility, and

if so select the corresponding classifiers

11 keep repeating Step 3 for all classifiers that intersect with at least

one classifier selected in line 10

Step 4 (Observation 3.4): if 𝑘 = 2:

12 For every singleton classifier 𝑋 , if the overall cost of the set 𝑆𝑋 of

all classifiers the intersect 𝑋 satisfies𝑊 (𝑆𝑋 ) ≤𝑊 (𝑋 ) , then
select 𝑆𝑋 and remove 𝑋

13 For every selection of a classifier 𝑋𝑌 along with a removal of 𝑋 ,

recheck this condition for 𝑌

Step 2 - Decomposition into smaller problems.

Observation 3.2. If the query set𝑄 can be partitioned into
𝑚 > 1 subsets {𝑄1, 𝑄2, ..., 𝑄𝑚}, such that every two subsets
are disjoint in terms of properties, then the optimal solution
is a union of the𝑚 optimal solutions pertaining to each sub-
instance where the query set is restricted to 𝑄𝑖 for 𝑖 ∈ [𝑚].

To discover such a partition into the maximal number

of subsets, we use the following algorithm. We build an

undirected graph whose nodes are the properties, and for

every query we choose some arbitrary order of its properties,

and connect every two nodes that correspond to two adjacent

properties (line 4).

A simple BFS procedure then yields the connected com-

ponents (line 5), which in turn induce the partition of the

queries (line 6). The number of edges in the graph is bounded

by the number of classifiers, hence this algorithm is linear.

This step allows us to solve all sub-instances in parallel. For

simplicity, we assume henceforth that the input translates

into a single connected component.



Step 3 - Removing classifiers with less costly alternatives.

Observation 3.3. For any given classifier 𝑋 and a set S
of classifiers of length at most |𝑋 | − 1, such that ∪𝑆 ∈S = 𝑋 , if
𝑊 (𝑋 ) ≥ ∑

𝑆 ∈S𝑊 (𝑆), then 𝑋 can be removed.

This step entails removing classifiers whose range of appli-

cability is subsumed by a set of shorter classifiers of at most

the same cost. To illustrate, consider the weights𝑊 (𝑋 ) =
𝑊 (𝑌 ) = 1 and𝑊 (𝑋𝑌 ) = 3. We can disregard the option of

selecting 𝑋𝑌 , since selecting 𝑋 and 𝑌 instead subsumes the

covering contribution of 𝑋𝑌 and costs less.

Since 𝑘 is constant, even a naive implementation testing

all relevant combinations takes linear Θ(𝑛) time. Neverthe-

less, we provide a more efficient implementation, avoiding

redundant comparisons (moreover, this procedure is worth

running regardless of efficiency, as in our offline setting the

most important aspect is the cost of the solution). Concretely,

we iterate over all classifiers by increasing length starting

from 2 up to 𝑘 (line 7), and consider for each classifier 𝑆 all

combinations of two classifiers whose union is 𝑆 (line 8). We

call each combination a decomposition of 𝑆 of size 2. If the

combined cost of the least costly decomposition does not

exceed𝑊 (𝑆), then we remove 𝑆 from the input (line 9). If one

of the two classifiers in the decomposition has been previ-

ously removed, then we consider instead its own least costly

decomposition. For example, suppose 𝑋𝑌 was removed and

{𝑋,𝑌 } has been marked as its least costly decomposition (in

this case it is also the only one). Later, when we move on

to examining classifiers of length 3, and in particular 𝑋𝑌𝑍 ,

for which we consider several decompositions of size 2, the

weight of any decomposition that includes 𝑋𝑌 would be

computed by replacing its weight with the weight of its least

costly decomposition𝑊 (𝑋 ) +𝑊 (𝑌 ).
We next check for every query if there remains only a

single way to cover it, due to the removal of classifiers. If so,

we then select all these classifiers (line 10).

Finally, we keep repeating this step, each time reexamin-

ing only classifiers that intersect with the selected singletons

(line 11). Since the number of times we recheck the decom-

positions of any given classifier is bounded by the number of

its sub-classifiers, which is 𝑂 (1) for constant 𝑘 , the overall
complexity remains Θ(𝑛).

Step 4 - for 𝑘 = 2: removing singleton classifiers with less
costly alternatives.

Observation 3.4. When𝑘 = 2, for every singleton classifier
𝑋 , if the sum of weights of all other classifiers which contain
𝑋 is at most𝑊 (𝑋 ), then an optimal solution includes all these
classifiers and not 𝑋 .

We test the above condition for every singleton classifier,

and if it holds, we remove it and select all the classifiers that

intersect with it (line 12). Here as well, a chain reaction of

pruning steps can occur. After removing a classifier 𝑋 , for

each classifier 𝑋𝑌 selected (its weight is now 0), the pruning

condition nowmay transition from false to true for𝑌 (line 13).

As every further pruning action induced involves selecting

at least one more classifier which covers an entire query, this

whole final pruning step is performed in linear time.

We remark that we employ further optimizations in imple-

menting the above procedure, however the precise descrip-

tion is convoluted, and the high-level ideas and overall Θ(𝑛)
complexity remain the same.

4 QUERIES OF LENGTH TWO
In this section we present the theoretical study of the special

case of the 𝑀𝐶3
problem where 𝑘 = 2, before moving on

to the general problem in the next section. The reason for

studying this variant separately is twofold. First, while we

will show that the general problem is NP-hard, this is not

the case here. We promptly show that this variant can be

solved exactly in polynomial time. Second, as we show in

our experiments, in some settings queries of length at most

two account for more than 95% of the query load. In such

cases we demonstrate that first solving the problem only for

these short queries is the best strategy.We now prove that the

special case of𝑘 = 2 reduces to theMax-Flow problem, which

is well-known to have efficient algorithms for finding the

optimal solution. Moreover, the resulting Max-Flow instance

has characteristics, most notably bipartiteness, which allow

for further optimizations beyond the general problem.

Theorem 4.1. The𝑀𝐶3 problem, where𝑘 ≤ 2, can be solved
exactly in PTIME. In particular, its time complexity is upper-
bounded by the complexity of solving the Max-Flow problem
over bipartite graphs where the number of nodes and edges is
𝑂 (𝑛).

Proof. The case of 𝑘 = 1 is trivial since the only solu-

tion is to choose all classifiers. Otherwise, given an instance

⟨𝑄,𝑊 ⟩ of𝑀𝐶3
where 𝑘 = 2, we reduce it to an instance ⟨𝐺⟩

of the Weighted Vertex Cover Problem over a bipartite net-

work, which is known to be in PTIME via a straightforward

reduction to the Max-Flow problem (Theorem 2.3).

Concretely, we construct a bipartite graph𝐺 whoseweighted

vertex set is 𝐿 ∪ 𝑅. The set 𝐿 contains a node per each sin-

gleton in 𝐶𝑄 (denoted the same as the classifier, as a slight

abuse of notation), whereas the set 𝑅 contains a node per

each classifier of length 2. In both cases the weight of the

node equals the weight of the corresponding classifier (here,

for simplicity, we include classifiers with infinite weight in

the input). Recall that following our preprocessing there are

no singleton queries, hence here all queries are of length

2. We add for each query 𝑥𝑦 two edges which are adjacent

to the node 𝑋𝑌 : one connecting it to 𝑋 and the other to 𝑌 .



Algorithm 2:𝑀𝐶3
solver for k=2

1 Run preprocessing procedure (Algorithm 1)

2 Reduce to bipartite𝑊𝑉𝐶 (proof of Theorem 2.3)

3 Reduce bipartite𝑊𝑉𝐶 to Max-Flow ([2])

4 Run a Max-Flow algorithm [10]

5 Translate to a𝑀𝐶3
solution (as described in [2])

The nodes represent the corresponding classifiers, the edges

represent the corresponding queries for which they were

added, and in particular, each single edge represents a prop-

erty of the query. It is easy to show that the two instances

are completely analogous and their solutions are equivalent.

Note that the number of nodes and edges is at most 2𝑛

each. In the reduction to Max-Flow [2] only two nodes are

added (the source and sink nodes), and the number of added

edges is at most 2𝑛 (one per each node). Therefore, the entire

reduction is linear in 𝑛, and the number of nodes and edges

in the resulting graph is also 𝑂 (𝑛). □

Our full algorithm is depicted in Algorithm 2. It consists

of the pruning procedure (line 1) described in Section 3,

followed by the reduction to Max-Flow (line 3), via an inter-

mediary reduction to𝑊𝑉𝐶 (line 2) as described in the proof

above, and a solution of the generated Max-Flow instance

(line 4) with translation back to an𝑀𝐶3
(line 5). As all other

steps are linear, the running time of Algorithm 2 is domi-

nated by the Max-Flow algorithm. The (theoretically) best

known strongly polynomial algorithm for sparse networks

is [40], which runs here in 𝑂 (𝑛2/log𝑛). Since the resulting
Max-Flow instance is bipartite, in addition to being sparse,

optimized algorithms exist [1]. The choice of the best algo-

rithm depends on several parameters such the as maximum

capacity of an edge and the size 𝑛1 of the smaller set of nodes

out of 𝐿 and 𝑅. our experimental study led to the choice of

the algorithm originally described in [10] which runs here

in 𝑂 (𝑛2
1
· 𝑛). Further discussion appears in our Experiments

and Related Work sections.

Almost 𝑘 = 2. As demonstrated in our experiments (Sec-

tion 6), some domains produce datasets in which a very high

percentage of queries (but not all) are of length at most 2.

In such cases we suggest the following heuristic: we first

cover only these short queries using the optimal Algorithm 2,

followed by running our algorithm for the general problem

(Algorithm 3 in Section 5) on the residual problem. We report

in our experiments that this heuristic is likely to be the best

strategy in such cases.

5 GENERAL PROBLEM
In this section we study the general𝑀𝐶3

problem, where 𝑘 ,

the maximal query length, may exceed 2. As mentioned in

the preliminaries, while we also provide results for super-

constant 𝑘 , unless stated otherwise, 𝑘 is assumed to be a

constant. We show here that 𝑀𝐶3
is NP-hard, and provide

hardness bounds on its approximation, which hold even

for a considerably restricted variant. We then present our

algorithm, that is based on a reduction to𝑊𝑆𝐶 , and comes

with approximation guarantees. We conclude this section

by discussing how our results apply for several common

variations of our model.

Before presenting our results, we first define additional

useful notation, along with an incidence parameter, which

facilitates more granular approximation bounds. For any

subset of properties 𝑆 ⊆ 𝑃 , we denote by 𝑄𝑆 ⊆ 𝑄 the set of

queries which include 𝑆 . We also define for a classifier 𝑆 , if

𝑊 (𝑆) ≠ ∞, its incidence 𝐼 (𝑆) = |𝑄𝑆 | ≤ 𝑛 as the cardinality

of this set. If𝑊 (𝑆) = ∞, then 𝐼 (𝑆) = 0. Accordingly, we

define the incidence 𝐼 = max𝑆 ∈𝐶𝑄
𝐼 (𝑆) of an 𝑀𝐶3

instance,

as the highest incidence of all classifiers.

For example, for𝑄 = {𝑥𝑦,𝑦𝑧}with all classifier costs being
finite, we have 𝑄𝑥 = 𝑄𝑥𝑦 = {𝑥𝑦}, 𝑄𝑧 = 𝑄𝑦𝑧 = {𝑦𝑧} and
𝑄𝑦 = {𝑥𝑦,𝑦𝑧}, implying 𝐼 (𝑥) = 𝐼 (𝑧) = 𝐼 (𝑥𝑦) = 𝐼 (𝑦𝑧) = 1,

and 𝐼 = 𝐼 (𝑦) = 2.

5.1 Approximation Hardness
We first prove the hardness of 𝑀𝐶3

in 𝑛, the number of

queries, which holds even in limited settings and extends

to any 𝑘 > 2 which is at most polynomial in 𝑛. Then, we

also show that 𝑀𝐶3
is NP-hard in 𝑘 (when there is no re-

striction on its size) independently of 𝑛, once again even in

a considerably restricted setting.

Theorem 5.1. The𝑀𝐶3 problem is NP-hard for any 𝑘 > 2

where the number of classifiers is polynomial in 𝑛, and has
no approximation factor below min{(𝑘 − 2), ln 𝐼 } (𝐼 is the
incidence defined above), unless 𝑃 = 𝑁𝑃 . Moreover, if the UGC
is true, then this bound improves to min{(𝑘 − 1), ln 𝐼 }. Finally,
these bounds hold even for the special case where all classifiers
(of finite weight) are of length 2, all weights are in {0, 1}, and
all queries are of length exactly 𝑘 .

Proof. We use here the (unweighted) Set Cover prob-

lem (𝑆𝐶) from Definition 2.4. We describe an approximation-

preserving reduction from 𝑆𝐶 with parameters 𝑓 > 1 and

Δ > 2, where all elements appear in exactly 𝑓 sets to𝑀𝐶3
with

parameters 𝑘 = (𝑓 + 1) > 2 and 𝐼 = Δ > 2. Theorem 5.1 then

follows from Theorem 2.5. Given an instance ⟨S,U⟩ of 𝑆𝐶 ,
we transform every set 𝑠 ∈ S into a distinct property 𝑠 , and

for each element inU we add a query to𝑄 whose properties

are the sets this element belongs to, along with a special

property 𝑒 (the same 𝑒 for every element), that appears in

every query. All properties except for 𝑒 are referred to as

set-properties. The weights of the classifiers are assigned as

follows. We assign the weight 0 to all classifiers of length



2 that test two set-properties. We assign the weight 1 to all

classifiers of length 2 that test 𝑒 along with one other set-

property. All other possible classifiers (whose length does

not equal 2) are not added to 𝐶𝑄 (if classifiers of infinite

weight were part of the input, this reduction would be poly-

nomial only for 𝑘 = 𝑂 (𝑙𝑔𝑛)). We can assume that all queries

are distinct, as elements that belong to exactly the same sets

can be “merged", and do not add to the complexity of the 𝑆𝐶

problem. Clearly, the number of queries equals the number

of elements (both denoted by 𝑛), 𝐼 = Δ, and 𝑘 = (𝑓 + 1),
which is the length of every query. To illustrate this con-

struction, consider an element that appears in two sets, 𝑥

and 𝑦. It follows that we add a query 𝑥𝑦𝑒 , and assign the clas-

sifier weights𝑊 (𝑋𝐸) =𝑊 (𝑌𝐸) = 1,𝑊 (𝑋𝑌 ) = 0. Observe

that for any query, one can use free queries of length 2 to

test all set-properties. Thus, at least one classifier of length

2 that tests 𝑒 and some set-property must be selected. The

cost of any solution therefore is the number of such classi-

fiers selected. Given an 𝛼-approximation algorithm for𝑀𝐶3
,

which produces a solution 𝑇 for this instance, we construct

a solution 𝑇 ′
for the 𝑆𝐶 instance. Concretely, we examine

only classifiers of the form 𝑋𝐸 in𝑇 , and for each such classi-

fier add to 𝑇 ′
the corresponding set 𝑥 . Both solutions have

the same cost. Moreover, each classifier 𝑋𝐸 covers exactly

the queries that correspond to the elements the set 𝑥 covers.

It is straightforward to show that this equivalency of solu-

tions works in both directions and always preserves the cost,

implying an 𝛼-approximation algorithm for 𝑆𝐶 as well. □

Theorem 5.2. The𝑀𝐶3 problem is NP-hard in 𝑘 , even when
𝑛 = 1 and all (finite) weights equal 1.

Proof. We reduce an instance ⟨S,U⟩ of 𝑆𝐶 to an instance

of𝑀𝐶3
with a single query of length 𝑘 . Concretely, the query

has one property for every element in𝑈 , and for every set

𝑆 ∈ S we add a classifier of weight 1, whose properties are

the corresponding elements in 𝑆 . it is straightforward to see

that the instances are equivalent. We note that we rely here

on the result that in the hard instances of 𝑆𝐶 , the number of

sets is polynomial in the number of elements [49], to ensure

a polynomial reduction. □

5.2 Algorithm
We now present an approximation algorithm for𝑀𝐶3

with

𝑘 > 2. We use here the𝑊𝑆𝐶 problem from Definition 2.4.

Our algorithm is based on an initial reduction to𝑊𝑆𝐶 (fol-

lowing the preprocessing procedure in Section 3). We then

use known algorithms for𝑊𝑆𝐶 . The rest of this subsection is

structured as follows. We first explain the reduction to𝑊𝑆𝐶 ,

then analyze the resulting parameters of the𝑀𝐶3
instance,

followed by an analysis of the approximation guarantees

Sets:

Elements:

X    Y    Z    XY   XZ   YZ    XYZ    V    YV    ZV    YZV

Xxyz Yxyz Zxyz Yyzv Zyzv Vyzv

Figure 2: Reduction to𝑊𝑆𝐶.

of two known algorithms for𝑊𝑆𝐶 , and finally put every-

thing together into a single approximation algorithm for the

general𝑀𝐶3
problem.

Reduction to𝑊𝑆𝐶 . Given an instance ⟨𝑄,𝑊 ⟩ with a prop-

erty set 𝑃 , we reduce it to an instance ⟨S,U⟩ of𝑊𝑆𝐶 as

follows. For every query 𝑞 ∈ 𝑄 , for each property 𝑝 ∈ 𝑞 we

add the element 𝑝𝑞 to U (note that a distinct element is cre-

ated for each occurrence of the same property in a different

query). The classifiers become the sets in S (and are denoted

the same). The cost of each set equals the weight of the cor-

responding classifier. An element 𝑥𝑞 is added to a set 𝑆 if

and only if both 𝑥 ∈ 𝑆 and 𝑆 ⊆ 𝑞 hold. Every (approximated)

solution to this𝑊𝑆𝐶 instance is translated directly to the

same solution for the𝑀𝐶3
instance (selecting the classifiers

corresponding to the sets). One can see that to cover a query

of length 𝑘 ′
, one can choose exactly the same classifiers that

correspond to sets whose union contains the 𝑘 ′
properties

created for this query. Hence, in this reduction as well, the

instances are completely analogous, and equivalent in terms

of the possible solutions and their costs. To illustrate this

reduction, consider an instance of𝑀𝐶3
where 𝑃 = {𝑥,𝑦, 𝑧, 𝑣},

𝑄 = {𝑥𝑦𝑧,𝑦𝑧𝑣} and 𝐶𝑄 contains all possible relevant clas-

sifiers, all of weight 1. The resulting𝑊𝑆𝐶 instance is then

depicted in Figure 2.

Parameter analysis. In the resulting 𝑊𝑆𝐶 instance the

number of elements inU is the sum of lengths of all queries

in 𝑄 , and is denoted by 𝑛̂ =
∑

𝑞∈𝑄 |𝑞 | ≤ 𝑛𝑘 . The number of

sets in S is the same as the number of classifiers, which is

denoted by 𝑚̂, and it follows that 𝑚̂ ≤ 𝑛 · (2𝑘−1) (all queries
disjoint and of length 𝑘). The frequency pertains to elements

corresponding to properties in a query of length 𝑘 , which in

our reduction is 𝑓 = 2
𝑘−1

(the number of sets corresponding

to the classifiers that test the given property along with any

possible subset of the other properties in the query). The size

of a set which corresponds to a classifier 𝑆 is |𝑆 | · 𝐼 (𝑆) (the
length times the incidence), since it covers |𝑆 | elements for

every query it appears in. While all queries are distinct, it

is possible that a subset of size (𝑘 − 1) appears in 𝐼 queries,

hence the degree is bounded by Δ ≤ (𝐼 · (𝑘 − 1)).

Approximation guarantees of𝑊𝑆𝐶 algorithms. It follows
from Theorem 2.6 that the greedy [6] and the LP-based [50]

algorithms for𝑊𝑆𝐶 yield, respectively, the approximation

guarantees (ln (min{Δ}) + 1) and 𝑓 . By assuming the worst



Algorithm 3:𝑀𝐶3
solver for general problem

1 Run preprocessing procedure (Algorithm 1)

2 Reduce to𝑊𝑆𝐶

3 Run the greedy algorithm for𝑊𝑆𝐶 [6]

4 Run the LP-based algorithm for𝑊𝑆𝐶 [50]

5 Select the least costly of the two outputs and return the

corresponding classifiers

case values for these parameters in our setting, and combin-

ing these two algorithms, we get an approximation guarantee

of min{ln 𝐼 + ln (𝑘 − 1) + 1, 2𝑘−1}.
The reduction to𝑊𝑆𝐶 followed by this compound algo-

rithm is the core of our solution approach, along with the

preprocessing procedure. Note that the 2
𝑘−1

factor, while

exponential in 𝑘 , for small values of 𝑘 which are relevant in

practice, is likely to be the dominating guarantee.

Putting it all together. Our full algorithm is depicted in

Algorithm 3. It first runs our preprocessing procedure (line

1), followed by the reduction to𝑊𝑆𝐶 (line 2), and then, finally,

runs both the greedy algorithm or the LP-based algorithm

for𝑊𝑆𝐶 (lines 3 and 4). The output is the set of classifiers

corresponding to the collection of sets produced by the𝑊𝑆𝐶

algorithm with the least costly output (line 5).

As the preprocessing procedure does not affect the con-

ditions necessary for the approximation guarantees to hold,

we have the following theorem.

Theorem 5.3. Algorithm 3 provides an approximation guar-
antee of min{ln 𝐼 + ln (𝑘 − 1) + 1, 2𝑘−1} for the𝑀𝐶3 problem.

We remark that there are other approximation bounds

for𝑊𝑆𝐶 that combine the frequency and degree parameters

(see, e.g., [42]), however, as somewhat improved bounds are

possible in only very specific parameter ranges, such level

of granularity is arguably not pragmatic to discuss here, and

hence omitted.

The time complexity of Algorithm 3 is dominated by the

LP-solver, which is in the worst case polynomial, and as

we show in our experiments runs in reasonable time. All

other steps have running time𝑂 (𝑛) for constant 𝑘 , following
the complexity discussions in Sections 2 and 3 along with

the linear complexity of the reduction to 𝑊𝑆𝐶 . We note

that while running both𝑊𝑆𝐶 algorithms, instead of only

the one with the better worst-case guarantees, we sacrifice

running time for potentially improved quality, which in our

motivating setting is more important.

5.3 Special Cases and Generalizations
We now consider important extensions of our model, which

capture common real-world settings. We explain how we

adapt our approach to solve these variations (and analyze

how we can potentially even improve our bounds), or, for

a specific generalization, demonstrate why this cannot be

done, requiring a different approach altogether. Finally, note

that the special case where almost all queries are of length

at most 2 is discussed in Section 4.

Bounded classifiers. As mentioned in Section 2, in practice

when the number of theoretically possible classifiers is too

large, some are not considered. In particular, a prevalent

approach is to consider only classifiers of length at most 𝑘 ′ <
𝑘 , which is often 𝑘 ′ = 2. While Theorem 5.1 proves that our

hardness results hold even when all classifiers are of length

exactly 2, we can nevertheless ameliorate the gap between

these bounds and our approximation guarantees, as in our

reduction to𝑊𝑆𝐶 we get improved parameters. Specifically,

the frequency becomes at most 𝑓 ≤ ∑𝑘′−1
𝑖=0

(
𝑘−1)
𝑖

)
= 2

𝑘′−1
(a

classifier must include the property which corresponds to

the element, along with any subset of size at most (𝑘 ′ − 1)
of the remaining (𝑘 − 1) properties in the query), which

in general can be approximated using various bounds for

sums of binomial coefficients for specific ranges of 𝑘 ′
and 𝑘 .

Importantly, for 𝑘 ′ = 2 we get 𝑓 ≤ 𝑘 . Note that for 𝑘 ′ = 𝑘

this sum is well-known to equal 2
𝑘−1

(which is consistent

with our analysis for the general case). As for the degree, it

is now bounded by Δ ≤ (𝑘 ′ − 1) · 𝐼 (compared to (𝑘 − 1) · 𝐼
in general), following the same reasoning as in the analysis

of the general case.

Multi-valued classifiers. As mentioned in the Introduction,

while binary classifiers are often preferred in practice for

higher precision, our model can be extended to represent

multi-valued classifiers as well. A multi-valued classifiers

acts as the union of all binary classifiers for properties which

pertain to values of the same attribute. For example, consider

the properties 𝑥 and 𝑦 where 𝑥 is “color = red” and 𝑦 is

“color = blue”. We can merge the two properties into a “color”

property 𝑐 and consider a dedicated multi-valued classifier

𝐶 for 𝑐 . Such a classifier can determine the color of any item,

and therefore acts as a binary classifier for any color property,

in particular 𝑥 and 𝑦.

If we consider in our model, instead of binary classifiers,

only multi-valued classifiers, then by merging all properties

belonging to the same attribute, we end up with the same

abstract𝑀𝐶3
problem (even though any concrete instance

is reduced in input size following the transformation). For

instance, continuing with Example 1.1, suppose we have the

same two search queries, where the first asks for a “team =

Juventus, color = white, brand = Adidas” soccer shirt (𝑞1), and

the second for a “team =Chelsea, brand =Adidas” soccer shirt

(𝑞2). These queries contain 4 properties corresponding to 3

attributes: team, color and brand (note that the attributes in-

duce an equivalence relation over the properties). Therefore,

in a setting with only multi-valued classifiers, the properties



Table 1: The datasets used in the experiments

Dataset # of queries Max cost Max length
BestBuy (BB) 1000 1 4

Private (P) 10,000 63 5

Synthetic (S) 100,000 50 10

are now the attributes 𝑏 (brand), 𝑐 (color) and 𝑡 (Team), with

the queries being 𝑞1 = 𝑡𝑐𝑏 and 𝑞2 = 𝑡𝑏 (the original queries

are of course also retained, but are omitted from the abstract

model). The classifiers are 𝐵, 𝐶 and 𝑇 (for example, 𝑇 can

determine whether the team associated with a given soccer

shirt is “Juventus”, “Chelsea”, or any other team relevant

to the entire query load, if more queries are provided). The

weights of these classifiers are provided based on external

estimations of their training cost. We, thus, end up transform-

ing the original𝑀𝐶3
instance into a different𝑀𝐶3

instance,

adhering to exactly the same model.

Furthermore, one can also consider multi-valued classi-

fiers alongside binary classifiers. The multi-valued classifiers

here make sense only when their cost is less than the sum

of costs of the corresponding binary classifiers (as otherwise

they are not necessary for an optimal solution and can be

pruned). We can extend our reduction to𝑊𝑆𝐶 by adding

sets to represent these classifiers, which then cover the corre-

sponding elements (that correspond to properties pertaining

to different values of the same attribute for which this classi-

fier pertains). For example, continuing with the soccer shirts

example, a classifier 𝑇 (team) would transform into a set 𝑇

which covers elements corresponding to the 𝑐 (Chelsea) and

𝑗 (Juventus) properties. The analysis of this extended𝑊𝑆𝐶

instance then follows along the same lines as the analysis

for the strictly binary classifiers.

Partial cover. As mentioned in the introduction, a possible

variant of our problem is one where weights are assigned

to queries, reflecting their importance, and the goal is to

find a solution which maximizes the combined weight of the

covered queries, given some budget constraint on the overall

costs of classifiers. Observe that our reduction to𝑊𝑆𝐶 no

longer works for this variant. While the reduction to𝑊𝑆𝐶

creates an equivalent instance to the original 𝑀𝐶3
instance,

when one asks for a complete cover, this equivalency does

not extend to partial covers. For example, for a single query

𝑥𝑦𝑧, covering only the elements 𝑥 and 𝑦 increases the cover

in the 𝑊𝑆𝐶 setting, however does not cover the original

query (research shows that only partially conforming to

search criteria can in some cases even have a worse effect

on user satisfaction than not conforming at all [23]). We,

therefore leave this variant for future work, and only note

here that, in fact, one can show that this problem is much

harder to approximate.

6 EXPERIMENTAL STUDY
In this section we present the experimental evaluation per-

formed on various datasets, including synthetic and real

world data.

6.1 Experimental Setup
Our algorithms were implemented using Python, and we ran

the experiments on a server with 128GB RAM and 32 cores.

To evaluate our solution, we have performed a set of exten-

sive experiments on a publicly available real-world dataset,

a larger (private) dataset provided by a large e-commerce

company
3
(which consists of several datasets pertaining to

different product categories), and a synthetically generated

dataset.

Datasets. As noted above, we performed our evaluation on

three datasets. First, we used a small, publicly available,

dataset from BestBuy, which had been used by [13] for their

evaluation. The dataset consists of about 1000 queries from

the electronics domain. It has uniformweights, and 95% of its

queries have up to 2 properties specified. The second dataset

is private and comes from a large e-commerce company. It

consists of 10,000 popular queries of various lengths (1 to

6 properties specified) and varying costs for classifiers (1

to 63). These costs represent a normalization by a factor of

𝑁 , which is an internal measure of the e-commerce com-

pany, of the estimated number of labeled examples experts

must annotate in order to train the corresponding classifier

to the required precision. Importantly, the monetary cost is

linearly correlated with these specified costs (i.e. annotating

one example costs a fixed amount of dollars). This dataset

is in fact a union of several sub-datasets pertaining to dif-

ferent categories of products (Electronics, Fashion, Home

& Garden). We note that in the fashion category there are

roughly 1000 queries, 96% of which are of size at most 2, and

for this quality we run separate experiments on it as well.

The third dataset is generated synthetically, and consists of

𝑛 = 100, 000 queries. The costs are drawn from a uniform

distribution over the range [1, 50]. The length of any gener-

ated query equals 𝑙 > 1 with a probability
1

2
𝑙−1 , i.e. half of the

queries are of length two, quarter of the queries are of length

three, and so on. This corresponds to the common real life

inverse correlation of queries length and frequency. Queries

generated with length exceeding 10 are omitted, because

such long queries are rare in practice [21] (hence compa-

nies do not invest money in corresponding classifiers). Into

each query we select properties uniformly from a pool of 𝑛/𝑡
properties, when 𝑡 is uniformly selected to be in [2,

√
𝑛]. This

dataset is regenerated for each separate experiment. Table 1

depicts a summary of all the datasets.

3
Company name omitted due to privacy considerations.



Algorithms. We compare 4 different algorithms for short

queries (up to two properties) and 5 different algorithms

for general length queries. The experiments are performed

separately for each of these two problem settings.

We first present the following algorithms we have tested for

short queries:

• 𝑀𝐶3
[S] - Our main proposed algorithm for 𝑘 = 2

(Algorithm 2).

• Property-Oriented - This algorithm selects all the

singletons classifiers (and nothing else).

• Query-Oriented - This algorithm selects all the classi-

fiers that correspond to entire queries (i.e. one classifier

per each query).

• Mixed - The algorithm proposed in [13], for the case

with uniform costs, which we accordingly use only for

the 𝐵𝐵 dataset.

As discussed in Section 4, our proposed algorithm uses as

a sub-component an algorithm for the Max-Flow problem

over a bipartite graph. We have tested the algorithms in [1]

which focused on optimizations for bipartite graphs (mostly

improved analysis for already existing algorithms). As all

examined algorithms turned out to be highly scalable, we

omit here a detailed description of the small performance dif-

ferences we have observed. We report the best performance

was consistently achieved by [10], which is the algorithm we

have chosen in all other experiments as part of Algorithm 2.

The following are the algorithms for the general case:

• 𝑀𝐶3
[G] - Our proposed algorithm for the general case

(Algorithm 3).

• Short-First - This algorithm (which we have men-

tioned in Section 4) combines all our algorithms. It

first considers only the queries of size at most 2 and

runs Algorithm 2 over these queries, and then runs Al-

gorithm 3 over the residual problem (covering longer

queries).

• Property-Oriented - This algorithm selects all the

singletons classifiers (and nothing else).

• Query-Oriented - This algorithm selects all the classi-

fiers that correspond to entire queries (i.e. one classifier

per each query).

• Local-Greedy - This iterative greedy algorithm finds

the least costly cover (taking into account previous

selections) of a single query over all queries, and se-

lects the classifiers in that cover. I.e. for each query it

inspects all cover options, (there are𝑂 (1) such options
for constant 𝑘). After finding the minimal cover of each

query, it chooses the minimum of these minimums,

thus covering (at least) one query at each iteration.

Evaluation Outline. We have compared the algorithms listed

above over our datasets, both in terms of the overall cost

of the selected classifiers and the overall execution time. In

addition, we have examined the effect of our preprocess-

ing step (Algorithm 1, described in Section 3) both on the

running time of the algorithms and the solution quality. To

better capture practical settings where the size of the query

load varies according to different budget quotas, for each

inspected dataset, along with running the experiments on

its entire query load, we also randomly select subsets of

this query set of different cardinalities and run the algo-

rithms over these corresponding sub-instances. Accordingly

in Figure 3 the 𝑥 axis displays these varying cardinalities of

different query subsets.

6.2 Evaluation Results
We next present our experimental study results. We start

with the results for the short queries (up to two properties).

Comparison to previous work. The Mixed algorithm intro-

duced in [13] works on short queries with uniform classi-

fiers cost. Due to these restrictions, we compare it to our

algorithm, and the other baselines, over the 𝐵𝐵 dataset. The

Property-Oriented and Query-Oriented competitors also pro-

posed in [13]. Figure 3a depicts the classifiers construction

costs achieved by all the competitors. Our algorithm and

the Mixed algorithm are both optimal, afterwards comes the

Query-Oriented algorithm and finally Property-Oriented al-

gorithm. This experiment demonstrates applicability of our

approach to the restricted version of the problem, subsuming

the applicability of our predecessor.

Short queries with varying cost. Next, we evaluate the con-
struction costs of our approach compared to all applicable

baselines over the 𝑃 dataset, restricted to only short queries

(80% of the data). Since this dataset includes varying costs, the

Mixed algorithm is not applicable in this experiment. Figure

3b depicts the solution costs achieved by all the competi-

tors. As expected 𝑀𝐶3
[S] achieves the optimal results and

outperforms both Query-Oriented and Property-Oriented al-

gorithms by 30%, demonstrating that naive/simple solutions

are far from optimal.

Running time & Preprocessing effect. Finally, we focus on
𝑀𝐶3

[S], the best performing algorithm cost-wise, and exam-

ine its running time, and the effect of the preprocessing on

the running time. This evaluation is performed on the syn-

thetically generated dataset. The preprocessing step has no

effect on the optimal solution cost, hence we do not present it.

Figure 3c depicts the running time before and after applying

the preprocessing. The running time for the algorithm varies

from 4 seconds for 1000 queries to 142 seconds for 100,000

queries. The preprocessing step saves 85% of the running

time, yielding an execution time of 20 seconds for 100,000

queries. These fast running times demonstrate the scalability
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Figure 3: Experimental results

of our algorithm. The running time on real-life datasets was

similar to that of the synthetic of similar size, hence omitted.

Next, we present the results for the general 𝑀𝐶3
problem,

where the length of the queries may exceed two.

Solution quality. We evaluate the construction costs of

the classifiers selected by our algorithm for the general case

compared to that of all the specified baselines, over the 𝑃

dataset. For the smallest subset of the 𝑃 dataset consisting of

1000 queries, 𝑆𝐹 is the best performing and 𝑀𝐶3
[G] is the

second best. This subset includes only queries pertaining to

the fashion category (and not a random subset of queries). As

mentioned, 96% of its queries are of size at most 2, hence it is

not surprising that our secondary algorithm, 𝑆𝐹 , is the best

choice in this setting.𝑀𝐶3
[G] achieves the best results over

all of the other dataset sizes (recall that we randomly select

different subsets of varying cardinalities of the entire dataset,

and run the algorithm over these restricted subsets, which

of course also includes the entire dataset) and outperforms

its closest competitor algorithm by 12%.

Running time & Preprocessing effect - the general case. Next,
we present the running time of the𝑀𝐶3

[G] algorithm and

the effect of the preprocessing both on the running time and

the solution cost. This evaluation is performed over the syn-

thetically generated dataset, which is much larger. Figure 3e

depicts the construction cost before and after applying the

preprocessing. The preprocessing saves 35% of construction

cost. Figure 3f depicts the running time before and after ap-

plying the preprocessing. The running time for the algorithm

varies from 89 seconds for 1000 queries to 3135 seconds for

100,000 queries. The preprocessing step saves 50% of the

running time, yielding an execution time of 1620 seconds for

100,000 queries. Both the running times and the construction

costs over the real-life datasets were similar to those over

the synthetic datasets of the same size, and hence omitted.

7 RELATEDWORK
Supervised machine learning is a key solution for many

real world problems, from detecting spam to facilitating au-

tonomous vehicles. Humans are widely employed for various

tasks to support supervised ML models, e.g., feature selec-

tion [38], learning of semantic attributes [48], image tagging

[47], and in many modern hybrid systems [5, 27, 43, 46]. As

the human component is the most costly and error prone,

many works studied minimization of interactions with hu-

man workers, to reduce the error rate or the overall cost [52].

Our current work falls under latter category. Previous work

[13] considered a simplified model where all classifiers had

the same cost and the queries included at most two proper-

ties. We remove these restrictions and prove the generalized

model to principally differ from its restricted predecessor in

terms of computational complexity and required algorithmic

solutions.

A problem close to ours in spirit is the Minimum Substring

Cover problem (𝑀𝑆𝐶) [4, 24], where, in high-level, given a

set of strings S, one needs to find a subset of strings 𝑆 of

minimal cost, such that all strings in S can be constructed by

concatenating strings in 𝑆 . There are, however, several crucial

differences to our model, which result in a much different

theoretical problem. Most notably, we combine classifiers by

logical conjunction as opposed to the string concatenation.

This distinction (along with other distinctions to different

variations of𝑀𝑆𝐶) leads to entirely different algorithms for

𝑀𝐶3
, and different technical characteristics.



Another related line of work is materialized view selection

in data warehouses (MVS) [20, 32, 35], where one materi-

alizes a set of queries that enable to answer an expected

query workload. In such a scenario however the material-

ized objects are relations, rather than binary classifiers, the

query language is richer, including, e.g. joins, and an impor-

tant objective is optimizing the query workload execution

time. Partial query answers are also often tolerable [3], in

contrast to our setting where each query must be covered.

Similar to our setting, MVS problems can be modeled as

cover problems, however the combinatorial characteristics

of the covering patterns often greatly differ. For instance,

the notable work [22] examines a problem where queries

are covered by a single covering element (view) unlike in

our setting where in most cases, multiple covering elements

(classifiers) are combined to cover a query. As shown in [28]

the MVS problem studied in [22], and consequently its vari-

ous extensions (e.g., [19]) are NP-hard to approximate below

a 𝑛1−𝑜 (1) factor. To our knowledge, neither our algorithms

nor our approximation guarantees can be derived from any

previous MVS results for models that generalize ours.

Our hardness bounds and algorithms for the general𝑀𝐶3

problem (Section 5) are based on reductions to and from

the classical Weighted Set Cover problem (𝑊𝑆𝐶). There is

a large body of work on this problem and its extensions

[7, 9, 11, 12, 30, 49]. All results which we have relied on in

our work are described in Section 2. Our lower and upper

approximation bounds correspond to𝑊𝑆𝐶 bounds, that are

functions of the frequency and degree parameters separately.

By examining additional bounds that combine frequency and

degree in the same factors [14, 39, 42] one gets additional

bounds for our problem based on the same reductions. The

same applies to works examining the hardness of𝑊𝑆𝐶 based

on the number of sets [37]. It is important to note that𝑊𝑆𝐶

with frequency 𝑓 is equivalent to the Weighted Vertex Cover

problem (𝑊𝑉𝐶) over hyper-graphs where hyper-edges are

of size at most 𝑓 . Many results for𝑊𝑆𝐶 are, in fact, studied

via the hypergraph𝑊𝑆𝐶 formulation [11, 15, 39]. Due to

the similarity demonstrated in our reduction between𝑊𝑆𝐶

and𝑀𝐶3
, generalizations of𝑊𝑆𝐶 may potentially aid in ex-

tending our model. These problems include the Set/MultiSet

MultiCover problems [25, 26, 41], where there are various

restrictions on the number of times each element can be

covered, and multisets are allowed.

Our exact solution for queries of size of at most 2 (Section

4) is based on a reduction from a special (PTIME) case of

𝑊𝑉𝐶 to the Max-Flow problem. This reduction is consid-

ered folklore, and is described, e.g., in [2]. The Max-Flow

problem has been extensively studied for decades, and many

efficient algorithms have been devised for it [17, 18, 31, 34].

In particular, our reduction results in a sparse graph, and

for this case [40] presented the best-known strongly poly-

nomial algorithm. There also exist incomparable algorithms

[34], whose complexity is based on the maximum capacity

of an edge. For practical running time, the algorithms with

the best theoretical complexity are often inferior to simpler

algorithms [33, 36, 51]. Optimized algorithms for bipartite

graphs have been studied in [1], and empirically compared

in [36]. In our experiments we employed the algorithms in

[1], with the choice of the concrete algorithm depending on

various problem parameters, as discussed in Section 6.

8 CONCLUSION AND FUTUREWORK
This paper introduced the𝑀𝐶3

problem, which aims to de-

vise effective algorithms to choose which classifiers to train

to address a given search query load, while minimizing the

training cost. Importantly, we extended the limited model in

[13], by allowing varying costs for different classifiers, and

also queries of arbitrary length, and presented novel solu-

tion techniques. For 𝑘 = 2 we provided an exact algorithm.

Whereas, for the general problem, we proved its approxima-

tion hardness in several respects, and provided an algorithm

with approximation guarantees. Moreover, our bounds use

granular parameters, capturing more precisely what can be

done in a practical setting. Our experiments were performed

over real-world and synthetic datasets, and demonstrate the

efficiency and effectiveness of our algorithms. In particular,

we devised a preprocessing procedure, which we have shown

to improve running time and solution quality.

Our model assumes that the construction costs of classi-

fiers are independent (see discussion of model characteristics

in Section 2.1). Therefore, a natural direction for future work

is considering a more general model, where there may be

some overlap in the work required for construction of dif-

ferent classifiers. This leads to a more complex cost model,

where the cost of constructing specific sets of classifiers may

be lower than the sum of their individual costs. Similarly, an

interesting problem would be to introduce into the model

accuracy levels of classification tasks, and integrate the trade-

off between construction cost and classification accuracy into

the problem setting. In our work the cost of each classifier is

fixed to match a predefined (implicit) accuracy threshold.

As mentioned at the end of Section 5, we are currently

pursuing work on a generalization of our problem to max-

imizing partial covers under budget constrains, which we

prove to be harder to approximate. Finally, we are working

on closing the gap between our hardness bounds and our

approximation guarantees.
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