
Query-Oriented Data Cleaning with Oracles

Moria Bergman 1 Tova Milo 1 Slava Novgorodov 1 Wang-Chiew Tan 2

1Tel-Aviv University 2UC Santa Cruz
1 {moriaben, milo, slavanov}@post.tau.ac.il 2 tan@cs.ucsc.edu

ABSTRACT
As key decisions are often made based on information contained
in a database, it is important for the database to be as complete
and correct as possible. For this reason, many data cleaning tools
have been developed to automatically resolve inconsistencies in
databases. However, data cleaning tools provide only best-effort
results and usually cannot eradicate all errors that may exist in a
database. Even more importantly, existing data cleaning tools do
not typically address the problem of determining what information
is missing from a database.

To overcome the limitations of existing data cleaning techniques,
we present QOCO, a novel query-oriented system for cleaning data
with oracles. Under this framework, incorrect (resp. missing) tu-
ples are removed from (added to) the result of a query through edits
that are applied to the underlying database, where the edits are de-
rived by interacting with domain experts which we model as oracle
crowds. We show that the problem of determining minimal inter-
actions with oracle crowds to derive database edits for removing
(adding) incorrect (missing) tuples to the result of a query is NP-
hard in general and present heuristic algorithms that interact with
oracle crowds. Finally, we implement our algorithms in our pro-
totype system QOCO and show that it is effective and efficient
through a comprehensive suite of experiments.

1. INTRODUCTION
Databases are accessed for the information they contain and key

decisions are often made based on the results that are returned. Re-
gardless of the query interface that is provided for accessing in-
formation (e.g., free-text search in an internet bookstore or form-
based filters for choosing travel destinations in travel agency web-
site), users naturally expect to obtain correct and complete results
to a query that is posed against the database. In practice, however,
the expectation of always obtaining correct and complete results
is difficult to realize since many of the databases are constructed
by (semi-)automatically aggregated data from different sources and
are likely to contain some inaccuracies and inconsistencies even if
individual sources are free of errors.

Even though data cleaning is a long standing problem that has at-
tracted significant research efforts (e.g., see [20, 28, 52]) for a num-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright © 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2737786.

ber of years, the state-of-the-art data cleaning techniques that have
been developed cannot usually eradicate all errors in a database.
YAGO [57] ontology is one such example of a database that was
built by automatically extracted data from Wikipedia and other sources.
Data cleaning techniques have been applied to the YAGO dataset
and achieved an accuracy of about 95%, namely leaving 5% still
erroneous [57]. Even highly curated databases [7] (i.e., databases
that were constructed through extensive human effort of verifying
and aggregating existing sources) such as Uniprot [60] and the CIA
world fact book [13] are unlikely to be completely void of errors.
At the same time, the sheer volume of such databases also makes
it impossible to manually examine each piece of data for its cor-
rectness. Even more importantly, existing data cleaning tools do
not usually address the problem of determining what information
is missing from a database.

To complement the efforts and overcome the limitations of ex-
isting data cleaning techniques, we propose a novel query-oriented
data cleaning approach with oracle crowds. In our framework, ma-
terialized views (i.e., views which are defined through user queries)
are used as a trigger for identifying incorrect or missing informa-
tion. Our premise is that users’ queries (and their corresponding
materialized views) provide relevant and focussed perspectives of
the underlying database and hence, facilitates the discovery of er-
rors. If an error (i.e., a wrong tuple or missing tuple) in the mate-
rialized view is detected, our system will interact minimally with a
crowd of oracles by asking only pertinent questions. Given a view,
we assume the crowd are relevant domain experts (hence, the name
“oracle crowds1”) who are likely to answer questions posed by our
system correctly. The answers to the questions will help to identify
how to clean the underlying database in order to correct the error
in the materialized view. More precisely, the answers to a question
will help to identify the next pertinent questions to ask and ulti-
mately, a sequence of edits is derived and applied to the underlying
database. The edits will bring the database closer to the state of the
ground truth and, at the same time, correct the error in the materi-
alized view. As we will describe, our algorithms effectively prune
the search space and minimize the amount of interaction with the
crowd while, at the same time, maximize the potential “cleaning
benefit” derived from the oracles’ answers.

Our algorithms are implemented in QOCO system. We empha-
size that even though QOCO can be used as a standalone system
for data cleaning, it can also be used to complement existing data
cleaning techniques. Specifically, after the data is cleaned with tra-
ditional techniques, QOCO can be activated to monitor the views
that are served to users/applications. Whenever an error is reported

1Even though there may not always be oracle crowds for every
dataset, it is reasonable to assume that every important or curated
dataset will have some domain experts who will be the oracles.

Date Winner Runner-up Stage Result

13.07.14 GER ARG Final 1:0

11.07.10 ESP NED Final 1:0

09.07.06 ITA FRA Final 5:3

30.06.02 BRA GER Final 2:0

12.07.98 ESP NED Final 4:2

17.07.94 ESP NED Final 3:1

08.07.90 GER ARG Final 1:0

11.07.82 ITA GER Final 4:1

25.06.78 ESP NED Final 1:0

Country Continent

GER EU

ESP EU

BRA EU

NED SA

ITA EU

Name Team Birth year Birth place

Mario Götze GER 1992 GER

Andrea Pirlo ITA 1979 ITA

Francesco Totti ITA 1976 ITA

Name Date

Mario Götze 13.07.14

Andrea Pirlo 09.06.06

Francesco Totti 09.06.06

Games Teams

Players Goals

Figure 1: World Cup Games database

in a view, QOCO can take over to clean the underlying database by
interacting with the crowd.

An overview example Next, we illustrate the key ideas behind
QOCO with an example database of World Cup Games. Assume
that the data was extracted from some sport websites (e.g., [64,
63] and is therefore partially incorrect and incomplete due to er-
rors in the automatic website scraping tools. Although one could
argue that some of the errors in the data could be cleaned with pre-
vious automatic techniques (e.g., by comparing to FIFA official
data [24]), the choice of this dataset for our running examples is
deliberate. The true facts about World Cup Games are well-known,
and it makes it easy for us to illustrate our key ideas without the
need to delve heavily into the data. This choice also makes it easy
for the reader to play the role of the crowd and/or user of QOCO.

We use 𝐷 to denote the given dirty database and 𝐷𝐺 to denote
the correct ground truth database. A small sample of the World Cup
Games dataset is depicted in Figure 1, which shows portions of four
relations: Games lists the World Cup Games and stores the date,
playing teams, stage of the tournament and the final score of each
game. Teams records the teams’ names and continents for teams
that participated in various World Cup Games. Players records
players who participated in the World Cup Games, including their
team’s name, birth year and birth place. Finally, Goals shows each
player’s name and a date of a game in which this player scored a
goal. In the figure, the dark gray tuples are the wrong tuples in 𝐷
(i.e., tuples that do not belong to the ground truth database 𝐷𝐺).
The light gray tuples are the tuples that are missing from 𝐷 (i.e.,
tuples that are in 𝐷𝐺 but do not appear in 𝐷). All other tuples
(marked in white) are correct (i.e., they belong to both 𝐷 and 𝐷𝐺).

Consider a user query 𝑄1, defined below, which searches for
European teams that won the World Cup at least twice.

(𝑥) :- Games(𝑑1, 𝑥, 𝑦, 𝐹 𝑖𝑛𝑎𝑙, 𝑢1),Games(𝑑2, 𝑥, 𝑧, 𝐹 𝑖𝑛𝑎𝑙, 𝑢2),
Teams(𝑥,𝐸𝑈), 𝑑1 ̸= 𝑑2.

When 𝑄1 is evaluated against the database 𝐷, the query re-
sult 𝑄1(𝐷) (i.e., materialized view of 𝑄1) consists of two tuples
{(𝐺𝐸𝑅), (𝐸𝑆𝑃)}. This output contains wrong answers such as
Spain as well as missing ones such as Italy.

Note that in the absence of any knowledge about the ground truth
(𝐷𝐺), there are multiple ways to update 𝐷 so that the wrong an-
swers will no longer be part of the result. For example, to remove
(𝐸𝑆𝑃) from 𝑄1(𝐷), one can remove (𝐸𝑆𝑃,𝐸𝑈) from Teams,
or two of the four facts in Teams that represent a winning game of
Spain. To add the missing tuple (𝐼𝑇𝐴) to the result, one can add
the tuple (𝐼𝑡𝑎𝑙𝑦, 𝐸𝑢𝑟𝑜𝑝𝑒) to Teams.

QOCO could ask the crowd whether Spain is in Europe, or if
the tuples representing the World Cup finals in 1978, 1994, 1998,
or 2010 are correct. Similarly, QOCO could ask the crowd whether
there are tuples missing from the query result. Their replies would
help QOCO correct the database.

In this simple example, it happens that there is a small number of
tuples to verify for its correctness and hence, one or two questions
would suffice. However, in general, the space of potential fixes may
be large, and hence examining all of them may be prohibitively ex-
pensive. Our system employs an efficient novel algorithm to effec-
tively prune the search space by carefully considering the order in
which tuples should be examined. This way, the cleaning process
is accelerated and the number of crowd questions is minimized.

Contributions. This paper makes the following contributions:

1. We formulate and present a novel query-oriented framework
for data cleaning with oracle crowds. Under this framework, an
incorrect (resp. missing) answer is removed from (added to) the
result of a query through edits that are derived and applied to
the underlying database. These edits are derived by minimally
interacting with crowd oracles.

2. To assess the difficulty of the problem we first study two impor-
tant special cases; determine the minimal interactions needed to
derive a set of database edits to remove a tuple from a view, and
resp. to add a tuple to the view. We show that these problems
are NP-hard to solve even in these special settings.

3. We present heuristic algorithms for these special cases and show
how these algorithms can be combined to arrive at a solution
for the general query-oriented approach to data cleaning. Our
algorithm for answer removal uses a greedy approach that is re-
peatedly applied until the right sequence of database edits can
be completely determined. Our algorithm for answer addition
exploits the fact that typically most relevant data does reside in
the database. It greedily splits the query to identify, with the
help of the crowd, where data is missing. To highlight the key
ingredients of our solution we first consider a simplified setting
using a single oracle who always answers correctly, then adapt
the algorithm to support scenarios where there may be multiple
crowd members who may not always provide correct answers.

4. We have implemented our solution in the QOCO prototype sys-
tem and applied it on real use cases, demonstrating the effi-
ciency of our query-oriented, oracle-based approach. We per-
formed experimental evaluations on real datasets with both real
and simulated crowd, that showed how our algorithms consis-
tently outperformed alternative baseline algorithms, and effec-
tively cleaned the data while asking fewer questions.

Outline of paper. Section 2 contains our preliminaries. We
formalize and present our model and basic architecture in Section 3.
Sections 4 and 5 examine two special cases of the query-oriented
data cleaning problem, where hardness results along with heuristic
algorithms are presented. The general algorithms is then presented
in Section 6. The implementation of QOCO prototype system, as
well as experimental results, are described in Section 7. Related
work is in Section 8, and we conclude in Section 9.

2. PRELIMINARIES
Database and Queries We assume a relational schema S to be a
finite set {𝑅1, . . . , 𝑅𝑚} of relational symbols, each with a fixed
arity. A database instance 𝐷 of S is a set {𝑅𝐷

1 , . . . , 𝑅𝐷
𝑚}, where

𝑅𝐷
𝑖 is a finite relation of the same arity as 𝑅𝑖. We use 𝑅𝑖 to denote

both the relation symbol and the relation 𝑅𝐷
𝑖 that interprets it. We

refer to a tuple 𝑡 of a relation 𝑅 or a fact 𝑅(𝑡) interchangeably.
Let 𝒱 be a fixed set of variables and 𝒞 be a fixed set of con-

stants called the underlying vocabulary. A query 𝑄 over a relational
schema S is an expression of the form

𝐴𝑛𝑠(�̄�0) :- 𝑅1(�̄�1), ..., 𝑅𝑛(�̄�𝑛), 𝐸1, ..., 𝐸𝑚

where
∙ 𝑅1, ..., 𝑅𝑛 are relation symbols in S, 𝐴𝑛𝑠 is a relation symbol

not in S.

∙ �̄�𝑖 is a vector (𝑙1, ..., 𝑙𝑘), where ∀𝑗 ∈ {1, ..., 𝑘}, we have 𝑙𝑗 ∈
𝒱 ∪ 𝒞 and 𝑘 is the arity of 𝑅𝑖.

∙ 𝐸𝑖 is an expression of the form 𝑙𝑗 ̸= 𝑙𝑘, where 𝑙𝑗 ∈ 𝒱 and
𝑙𝑘 ∈ 𝒱 ∪ 𝒞, and 𝑙𝑗 (resp. 𝑙𝑘) occurs in some 𝑅𝑖(�̄�𝑖).

∙ for every 𝑙 ∈ �̄�0, there exists some 0 < 𝑖 such that 𝑙 ∈ �̄�𝑖.
In other words, 𝑄 is a conjunctive query with inequalities. 𝐴𝑛𝑠

(�̄�0) is the head of 𝑄, denoted by ℎ𝑒𝑎𝑑(𝑄). The set 𝑅1(�̄�1), . . . ,
𝑅𝑛(�̄�𝑛), 𝐸1, ..., 𝐸𝑚 is the body of 𝑄, denoted by 𝑏𝑜𝑑𝑦(𝑄). We
will omit 𝐴𝑛𝑠 and simply write (�̄�0) for ℎ𝑒𝑎𝑑(𝑄). The variables
and constants in 𝑏𝑜𝑑𝑦(𝑄) are denoted by 𝑉 𝑎𝑟(𝑄) and 𝐶𝑜𝑛𝑠𝑡(𝑄),
respectively. Our results in this paper extend to unions of conjunc-
tive queries with inequalities. However, for simplicity, we will only
describe our results for conjunctive queries with inequalities.

EXAMPLE 2.1. Consider again query 𝑄1 that finds the Euro-
pean teams that won the World Cup at least twice; i.e., (𝑥) :-
Games(𝑑1, 𝑥, 𝑦, 𝐹 𝑖𝑛𝑎𝑙, 𝑢1),Games(𝑑2, 𝑥, 𝑧, 𝐹 𝑖𝑛𝑎𝑙, 𝑢2),Teams
(𝑥,𝐸𝑈); 𝑑1 ̸= 𝑑2. Notice that 𝑉 𝑎𝑟(𝑄1) = {𝑑1, 𝑑2, 𝑥, 𝑦, 𝑢1, 𝑢2}
and 𝐶𝑜𝑛𝑠𝑡(𝑄1) = {𝐹𝑖𝑛𝑎𝑙, 𝐸𝑈}. The result, 𝑄1(𝐷), contains
two answers {(𝐺𝐸𝑅), (𝐸𝑆𝑃)}.

Assignments and Results An assignment 𝛼 : 𝑉 𝑎𝑟(𝑄) → 𝒞 for
a query 𝑄 is a mapping from the variables of 𝑄 to constants. An
assignment for 𝑄 is valid w.r.t. database 𝐷 if for every relational
atom 𝑅(�̄�) in 𝑏𝑜𝑑𝑦(𝑄), it is the case that 𝑅(𝛼(�̄�)) is a fact in 𝐷
and for every inequality atom 𝐸 in 𝑏𝑜𝑑𝑦(𝑄), 𝛼(𝐸) is true.

A partial assignment for 𝑄 is an assignment which may not be
total. We say a partial assignment 𝛼 for 𝑄 is satisfiable w.r.t. 𝐷
if there is an extension of 𝛼 to a total assignment 𝛼′ for 𝑄 that is
valid w.r.t. 𝐷.

Given a (partial) assignment 𝛼, the notation 𝛼(ℎ𝑒𝑎𝑑(𝑄)) refers
to the tuple obtained from ℎ𝑒𝑎𝑑(𝑄) by replacing each occurrence
of a variable 𝑙 in ℎ𝑒𝑎𝑑(𝑄) by 𝛼(𝑙). We denote by 𝛼(𝑏𝑜𝑑𝑦(𝑄)) the
set of tuples and inequalities that are obtained by replacing every
variable 𝑙 in 𝑏𝑜𝑑𝑦(𝑄) with 𝛼(𝑙).
Witness Let 𝛼 be an assignment for 𝑄 that is valid w.r.t. database
𝐷. A witness for 𝛼 consists of all facts in 𝛼(𝑏𝑜𝑑𝑦(𝑄)).

The set of all valid assignments for a query 𝑄 w.r.t. database 𝐷
is denoted by 𝐴(𝑄,𝐷), and the result of evaluating a query 𝑄 on
𝐷, denoted by 𝑄(𝐷), is the set ∪𝛼∈𝐴(𝑄,𝐷) 𝛼(ℎ𝑒𝑎𝑑(𝑄)). Given
a tuple 𝑡 ∈ 𝑄(𝐷), we write 𝐴(𝑡, 𝑄,𝐷) to denote the set of all
valid assignments of 𝑄 w.r.t. 𝐷 that yields 𝑡, {𝛼 ∈ 𝐴(𝑄,𝐷) |
𝑡 = 𝛼(ℎ𝑒𝑎𝑑(𝑄))}. We refer to the witnesses for the assignments
in 𝐴(𝑡, 𝑄,𝐷) as witnesses for 𝑡. Observe that a witness can in fact
be extracted from a semiring of polynomials [30]. However, we
use the term witness and witness set since we do not require the
full generality of a provenance semiring.

Note that each tuple 𝑡 ∈ 𝑄(𝐷) induces a unique (partial) assign-
ment that maps the variables in ℎ𝑒𝑎𝑑(𝑄) to the respective constants
of 𝑡. With abuse of notation we refer to 𝑡 also as a partial assign-
ment, which is by definition satisfiable for 𝐷.

EXAMPLE 2.2. Using the same query and notations from Ex-
ample 2.1, recall that 𝑄1(𝐷) = {(𝐺𝐸𝑅), (𝐸𝑆𝑃)}. Answer 𝑡 =

(𝐺𝐸𝑅) has two assignments, {𝛼1, 𝛼2}, where 𝛼1 = {𝑥 ↦→ 𝐺𝐸𝑅,
𝑦, 𝑧 ↦→ 𝐴𝑅𝐺, 𝑑1 ↦→ 13.7.14, 𝑑2 ↦→ 8.7.90, 𝑢1 ↦→ 1:0, 𝑢2 ↦→
1:0}, and 𝛼2 is similar except that 𝑑1 and 𝑑2 switches. Answer 𝑡
uniquely defines the partial assignment 𝑡 = {𝑥 ↦→ 𝐺𝐸𝑅} and 𝑡
can be extended into all valid assignments in 𝐴(𝑡, 𝑄1, 𝐷). The
assignment {𝑥 ↦→ 𝐺𝐸𝑅, 𝑦 ↦→ 𝐴𝑅𝐺, 𝑑1 = 𝑑2 ↦→ 13.7.14, 𝑢1 ↦→
1:0, 𝑢2 ↦→ 1:0} is invalid only because it does not satisfy the in-
equality 𝑑1 ̸= 𝑑2. Partial assignment 𝛽 = {𝑥 ↦→ 𝐼𝑇𝐴, 𝑦 ↦→
𝐹𝑅𝐴} is non-satisfiable because it cannot be extended into a valid
assignment w.r.t. 𝐷.

3. PROBLEM DEFINITION
We now present the formal model and problem statements be-

hind our framework for query-driven interactive data cleaning.

3.1 Model and Problem
Let 𝐷 be our underlying database. Under the open world as-

sumption, a fact that is in 𝐷 is true and a fact that is not in 𝐷 can
be true or false. To model real-world data, we adopt the truly open
world assumption where a fact that is in 𝐷 can also be true or false,
in addition to the assumption that a fact that is not in 𝐷 can be
true or false. In other words, we assume that a given database can
contain mistakes, in addition to being incomplete. The truth of a
tuple is given by the ground truth database 𝐷𝐺 that contains all
true tuples and only them. Hence, a database 𝐷 is dirty w.r.t. 𝐷𝐺

if 𝐷 ̸= 𝐷𝐺. The database 𝐷𝐺 determines the true answers and
true result of any query. The two databases 𝐷 and 𝐷𝐺 together
determine the set of missing/wrong answers w.r.t. a given query.

DEFINITION 3.1. Types of answers:
∙ (True Answer, True Result) A tuple 𝑡 is a true answer to a query

𝑄 and database 𝐷 if 𝑡 ∈ 𝑄(𝐷) and 𝑡 ∈ 𝑄(𝐷𝐺). We call
𝑄(𝐷𝐺) the true result of 𝑄.

∙ (Missing Answer) A tuple 𝑡 is a missing answer to a query 𝑄
and database 𝐷 if 𝑡 ∈ (𝑄(𝐷𝐺)−𝑄(𝐷)).

∙ (Wrong Answer) A tuple 𝑡 is a wrong answer to a query 𝑄 and
database 𝐷 if 𝑡 ∈ (𝑄(𝐷)−𝑄(𝐷𝐺)).

As in interactive systems such as data cleaning systems (e.g., [53,
21]) and mapping-design systems (e.g., [45]), we assume that a
(domain expert) member has at least some knowledge about the
ground truth. Hence, in our context, the crowd member could point
out missing answers or wrong answers. Whenever a crowd member
determines that a set of tuples is missing or wrong, the database 𝐷
will be cleaned, with the help of the crowd, only as much as needed
to obtain 𝐷′ so that the missing answers occur in 𝑄(𝐷′) and the
wrong answers no longer occur in 𝑄(𝐷′).

In our framework, the database 𝐷′ is achieved through a se-
quence of updates that are generated through answers to questions
posed to the crowd. Each question-and-answer is an interaction
with the crowd and each update is called an edit. An insertion edit
𝑅(�̄�)+ inserts the tuple �̄� into relation 𝑅 in the database, while
a deletion edit 𝑅(�̄�)− removes the tuple �̄� from 𝑅. An update
to an existing tuple can be modeled by a deletion followed by an
insertion. The result of updating 𝐷 with an edit 𝑒 is denoted by
𝐷 ⊕ 𝑒. We assume idempotent edits, that is, if 𝑅(�̄�) exists in 𝐷
then 𝐷⊕𝑅(�̄�)+ = 𝐷 and the same for deletion, if 𝑅(�̄�) is missing
from 𝐷 then 𝐷 ⊕𝑅(�̄�)− = 𝐷. The minimization problem that we
wish to solve is the following.

PROBLEM 3.2. (EDIT GENERATION PROBLEM) Given a data-
base instance 𝐷, a ground truth database 𝐷𝐺, and a query 𝑄,

interact with the crowd minimally to derive a sequence 𝑒1, . . . , 𝑒𝑘
of edits such that 𝑄(𝐷′) = 𝑄(𝐷𝐺), where 𝐷′ = 𝐷⊕𝑒1⊕. . .⊕𝑒𝑘.

Observe that we may have 𝑄(𝐷′) = 𝑄(𝐷𝐺) even though 𝐷′ ̸=
𝐷𝐺. In other words, the database 𝐷′ may produce the same query
result as 𝑄(𝐷𝐺) even when 𝐷′ is still incomplete and/or dirty.

As we shall describe more precisely in subsequent sections under
the special cases where a tuple in the output is to be removed or
inserted, an interaction can be a boolean question with YES/NO
answer. In general, however, the number of edits that is derived
may not correspond to the number of interactions with the crowd
as multiple edits may be derived with one, or even no questions.
Our results show that even in these special cases, Problem 3.2 is
intractable. Furthermore, the hardness holds under the assumption
that a crowd member has full knowledge of the ground truth DB
and every question yields exactly one correct edit on the dirty DB.

3.2 Basic Architecture
As mentioned above, we start by examining two special cases of

Problem 3.2. The first case is when there is a single wrong answer.
The goal here is to find a list of deletion edits to apply on 𝐷 so that
the resulting database 𝐷′ will not yield the wrong answer under 𝑄.
The second case deals with a single missing answer. The goal here
is to find a list of insertion edits so that the resulting database 𝐷′

will yield the missing answer. We start by considering the follow-
ing simple architecture (to be extended later).

Target actions There are two possible target actions that a user
can specify: (1) remove a wrong answer from 𝑄(𝐷) or, (2) add a
missing answer to 𝑄(𝐷).

Crowd In what follows, we assume there is a single crowd member
who is a perfect oracle. A perfect oracle always speaks the truth
and knows about 𝐷𝐺. Our techniques will be extended to multiple
crowd members who may provide incorrect answers in Section 6.2.

Questions to crowd members We first consider a boolean ques-
tion where we solicit YES or NO answers from the crowd to de-
termine whether or not a tuple in 𝐷 should be inserted or deleted.
In the next sections, we will consider interactions with the crowd
members through other types of questions. For now, every question
posed to the crowd is of the form TRUE(𝑅(�̄�))?, which means “Is
𝑅(�̄�) true?”. A YES answer will generate an insertion edit 𝑅(�̄�)+

and a NO answer will generate a deletion edit 𝑅(�̄�)−. The result
of updating 𝐷 according to the answer for question 𝑞 is denoted
by 𝐷 ⊕ ans(𝑞), where ans(𝑞) is the edit that is generated respec-
tively to the answer for 𝑞. Note that in general one may infer further
edits based on the given answers and we will see some important
examples for this later. But let us first assume for simplicity that
no such inference is done and thus the length of the generated edit
sequence equals to the number of questions asked. Hence, under
these assumptions, minimizing the number of asked questions is
the same as minimizing the number of edits.

Workflow The workflow that our system, called QOCO, follows
can be intuitively described as follows. For now we assume that
QOCO starts by receiving a target action on 𝑄(𝐷0), where 𝐷0 is
the initial database instance. QOCO will then generate a question
and pose it to the crowd, and generate an edit based on the answer
it receives from the crowd. The edit is then applied on 𝐷0 to ob-
tain a new database 𝐷1. The question-answer-edit generation is
repeated until QOCO determines that the desired target action can
be achieved. The final database 𝐷𝑘, for some 𝑘 > 0, is such that
the target action is achieved with 𝑄(𝐷𝑘).

At this point, a natural question is whether a strategy for gener-
ating questions to achieve a desired target action always exists. We

first show that every edit on a database 𝐷 tends to bring 𝐷 “closer”
to 𝐷𝐺. Formally, the distance between two database instances 𝐷
and 𝐷′, denoted by |𝐷 −𝐷′|, is defined to be the size of the sym-
metric difference between 𝐷 and 𝐷′ (|𝐷−𝐷′| = |𝐷′−𝐷|). Since
the ground truth database is finite, and the perfect oracle provides
only correct answers, there exists a naïve strategy that guarantees
that the workflow described above always converges for a specific
target action, as long as questions are never repeated and values of
the domain can be systematically enumerated. The following two
propositions can then be easily proved (see Appendix).

PROPOSITION 3.3. Let 𝑒 be an edit that is generated based on
the oracle’s answer to a question. We have |(𝐷 ⊕ 𝑒) − 𝐷𝐺| ≤
|𝐷 −𝐷𝐺|.

PROPOSITION 3.4. Let 𝐷𝐺 be a finite database instance that
represents the ground truth, 𝐷 be a database instance, 𝑄 be a
query, and 𝑡 be a target action. If the domain is ordered, then there
is a finite number of questions 𝑞1, . . . , 𝑞𝑘 s.t. 𝑄(𝐷 ⊕ ans(𝑞1) ⊕
. . .⊕ ans(𝑞𝑘)) achieves the desired target action.

A naïve strategy that systematically enumerates all possible tu-
ples in the domain, is of course too expensive to be practical. Hence,
a more efficient solution is required. To illustrate the main princi-
ple of our algorithm, let us assume first, for simplicity, that there is
just one wrong answer in the query result, and then that there is just
one missing answer. We next describe our solutions to two sub-
problems that correspond to the target actions of removing a wrong
answer or adding a missing answer. These will form the essence of
our solution to the general problem.

4. REMOVING A WRONG ANSWER
The first sub-problem of Problem 3.2 corresponds to the target

action of removing a wrong answer (i.e., delete a tuple 𝑡 ∈ 𝑄(𝐷)
and 𝑡 ̸∈ 𝑄(𝐷𝐺)). The problem of identifying a set of 𝑘 corrective
updates that need to be performed for removing a wrong tuple from
the query result can be formalized as follows.

PROBLEM 4.1. (Deletion Question Search Problem) Given 𝐷,
𝐷𝐺, 𝑄, 𝑡 ∈ (𝑄(𝐷) − 𝑄(𝐷𝐺)), generate at most 𝑘 questions
𝑞1, ..., 𝑞𝑘 of the type TRUE(𝑅(�̄�))? s.t. 𝑡 ̸∈ 𝑄(𝐷 ⊕ ans(𝑞1) ⊕
...⊕ ans(𝑞𝑘)).

THEOREM 4.2. Problem 4.1 is NP-hard.
We prove the theorem by showing that the corresponding deci-

sion problem is NP-hard. For that we use reduction from a well
known NP-hard problem, called the Hitting Set Problem [40] (See
Appendix). The above result suggests that, in general, heuristics
are needed in the design of an efficient algorithm for generating the
right questions for removing a wrong answer from the output.

Before presenting our algorithm, we give some intuition for the
solution. Recall that we have a wrong answer 𝑡 ∈ (𝑄(𝐷) −
𝑄(𝐷𝐺)), which we wish to delete. This answer is supported by
a set of witnesses in 𝐷, {𝑤1, 𝑤2, ...𝑤𝑛}, each 𝑤𝑖 is the set of facts
in 𝛼𝑖(𝑏𝑜𝑑𝑦(𝑄)) where 𝛼𝑖 is a valid assignment in 𝐴(𝑡, 𝑄,𝐷)).
Since 𝑡 is a wrong answer, at least one tuple in each 𝑤𝑖 must be
false. We will use the crowd oracles to identify these false tuples.
The challenge is thus to identify those false tuples with the fewest
possible crowd questions. A minimal set of false tuples that covers
all the witnesses is a minimal hitting set, defined below.

DEFINITION 4.3 (HITTING SET). Consider the pair (𝑈, 𝑆)
where 𝑈 is a universe of elements and 𝑆 is a set of subsets of 𝑈 . A
set 𝐻 ⊆ 𝑈 is a hitting set if 𝐻 hits every set in 𝑆. In particular,
𝐻 ∩ 𝑆′ ̸= ∅ for every 𝑆′ ∈ 𝑆. A minimal hitting set 𝐻 , is s.t.
∀𝑒 ∈ 𝐻 . 𝐻 ∖ {𝑒} is not a hitting set.

Algorithm 1: CrowdRemoveWrongAnswer
Input: A query 𝑄, a database 𝐷 and a wrong tuple 𝑡.
Output: A list of deletion edits.
Init: DeletionEdits = ∅, 𝑆 = 𝑤𝑖𝑡(𝐴(𝑡, 𝑄,𝐷))

1: while S ̸= ∅ do
2: foreach Singleton 𝑠 = {𝑅′(�̄�′)} in 𝑆 do
3: DeletionEdits← 𝑅′(�̄�′)−

4: Remove from 𝑆 all sets that contain 𝑅′(�̄�′)

5: if S ̸= ∅ then
6: 𝑅(�̄�) = MostFrequentTuple(𝑆)
7: if CrowdVerify(𝑅(�̄�)) then
8: 𝑆 = {𝑠 ∖ {𝑅(�̄�)} | 𝑠 ∈ 𝑆}
9: else

10: Remove from 𝑆 all sets that contain 𝑅(�̄�)

11: DeletionEdits← 𝑅(�̄�)−

12: return DeletionEdits

Consider a minimal hitting set where the universe 𝑈 is exactly
the facts in 𝐷 and the sets in 𝑆 are the witnesses for answer 𝑡.
In general cases, there may exist more than one minimal hitting
set for the witness set. Finding those hitting sets that contain only
false tuples is not trivial, nor is identifying the smallest one among
them (see the proof of Theorem 4.2). However, in certain cases,
when there exists just one unique minimal hitting set, things be-
come simpler: if there exist a unique minimal hitting set, all other
hitting sets contain this set. Hence, it must be a set of false tuples
which is safe to remove and no crowd questions are needed.

EXAMPLE 4.4. Consider two witnesses {𝑡1} and {𝑡1, 𝑡2} for
some false answer. {𝑡1} is a unique minimal hitting set, and thus it
must be the case that 𝑡1 is false. In contrast, the witnesses {𝑡1, 𝑡2}
and {𝑡1, 𝑡3} have two minimal hitting sets; {𝑡1} and {𝑡2, 𝑡3}. Hence,
no unique minimal hitting set exists, and to determine which are the
false tuples the crowd must be consulted .

The following theorem proves that it is not hard to identify when
a unique minimal hitting set exists, and it shows how to find it.
(The proof is given in the Appendix.) Our algorithm will use this
technique to reduce the number of crowd questions.

THEOREM 4.5. Given a pair (𝑈, 𝑆), as described in Defini-
tion 4.3, a unique minimal hitting set exists if and only if the el-
ements of the singleton sets of 𝑆 forms a hitting set for 𝑆.

Greedy deletion algorithm Our algorithm employs a greedy heuris-
tic, asking the crowd first about tuples that occurs in the highest
number of witnesses. This heuristic could be replaced by others,
such as asking the crowd first about influential tuples [38] or, tuples
with high causality/responsibility [44], or tuples which are least
trustworthy (assuming that they have trust scores).

Out algorithm asks the crowd first about tuples that hit the largest
number of witnesses. Intuitively, if a frequent tuple is indeed incor-
rect, deleting it from the database will eliminate all the witnesses in
which it appears at once, whereas if found to be correct, it will pro-
vide a negative indication about the other tuples in those witnesses.
This heuristic is repeatedly applied until either a unique minimal
hitting set exists (and hence false tuples can be determined auto-
matically), or all witnesses has been destroyed. This approach is
described in Algorithm 1.

At the beginning of each iteration (lines 2-4), all tuples in the
singleton sets are added to the deletion list. Then, all sets in 𝑆
that contain these singleton tuples are eliminated from 𝑆. This rou-
tine (lines 2-4) guarantees, according to Theorem 4.5, that our al-
gorithm will not pose questions to the crowd once there exists a

unique minimal hitting set. Then, our algorithm greedily searches
for tuples that, if found false, can eliminate the largest number of
witnesses (lines 5-11). If the most frequent tuple is identified as
correct, the algorithm removes it from all sets in 𝑆 (line 8), oth-
erwise it is added to the deletion list (line 11) and all sets in 𝑆
containing this tuple are removed (line 10). Finally, the algorithm
returns the list of deletion edits.

EXAMPLE 4.6. To exemplify, consider the same query 𝑄1 that
finds the European teams that won the World Cup at least twice.
Assume that our expert crowd member examines the answers for
the query and finds the answer (ESP) to be wrong. Note that this
answer is supported by six witnesses, 𝑤1, 𝑤2, . . . , 𝑤6, in 𝐷.

Tuples of the witness

𝑤1

𝑡1 = Games(11.7.10, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 1:0)
𝑡2 = Games(12.7.98, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 4:2)
𝑡3 = Teams(𝐸𝑆𝑃,𝐸𝑈)

𝑤2

𝑡2 = Games(12.7.98, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 4:2)
𝑡4 = Games(11.7.94, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 3:1)
𝑡3 = Teams(𝐸𝑆𝑃,𝐸𝑈)

𝑤3

𝑡4 = Games(11.7.94, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 3:1)
𝑡1 = Games(11.7.10, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 1:0)
𝑡3 = Teams(𝐸𝑆𝑃,𝐸𝑈)

𝑤4

𝑡1 = Games(11.7.10, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 1:0)
𝑡5 = Games(25.06.78, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 1:0)
𝑡3 = Teams(𝐸𝑆𝑃,𝐸𝑈)

𝑤5

𝑡2 = Games(12.7.98, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 4:2)
𝑡5 = Games(25.06.78, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 1:0)
𝑡3 = Teams(𝐸𝑆𝑃,𝐸𝑈)

𝑤6

𝑡4 = Games(11.7.94, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 3:1)
𝑡5 = Games(25.06.78, 𝐸𝑆𝑃,𝑁𝐸𝐷,𝐹 𝑖𝑛𝑎𝑙, 1:0)
𝑡3 = Teams(𝐸𝑆𝑃,𝐸𝑈)

No singletons exist in the witness set and hence we jump to lines
6-11. Tuple 𝑡3 is most frequent, appearing in all witnesses, and so
the algorithm poses the question TRUE(𝑡3)? to the crowd (line 7).
Since 𝑡3 is correct (𝑡3 ∈ 𝐷𝐺), the expert answers YES. True tuple
𝑡3 = Teams(𝐸𝑆𝑃,𝐸𝑈) is removed from each set (line 8). The
remaining tuples in the witness set are now, respectively,

{𝑡1, 𝑡2}, {𝑡2, 𝑡4}, {𝑡4, 𝑡1}, {𝑡1, 𝑡5}, {𝑡2, 𝑡5}, {𝑡4, 𝑡5}
As all tuples occur equally often in the witnesses, QOCO will
choose randomly between them. Suppose QOCO first poses the
question TRUE(𝑡5)? (line 7). Since 𝑡5 is a false tuple (𝑡5 ̸∈ 𝐷𝐺),
the expert answers NO. Consequently, all witnesses that contain
tuple 𝑡5 are removed from the witness set, and 𝑡5 is added to the
deletion list (lines 10-11). The remaining witnesses and candidate
tuples are now, respectively,

{𝑡1, 𝑡2}, {𝑡2, 𝑡4}, {𝑡4, 𝑡1}
All tuples are again equally frequent, so suppose that QOCO

now chooses to pose the question TRUE(𝑡1)? (line 7), and hence
our expert answers YES. At this point, the sets in 𝑆 are reduced to:

{𝑡2}, {𝑡2, 𝑡4}, {𝑡4}
and there exists a unique minimal hitting set {𝑡2, 𝑡4}. The remain-
ing deletions can be automatically determined, without posing fur-
ther questions to the crowd. Indeed, QOCO adds the tuples in the
singletons to the deletion list and removes all sets that contain these
tuples (lines 2-4). This step eliminates all remaining sets, and the
algorithm terminates and the deletion list of false tuples is returned.

The list of deletion edits consists of false tuples that form a hit-
ting set for the set of witnesses. In this example it is also a minimal
hitting set, but generally, due to the greedy nature of the algorithm,
this is not guaranteed. Note however that even when the set is not
minimal the extra work is not wasted - the elimination of the re-
dundant tuples does improve the correctness of the database, even

if not essential to the removal of the given wrong answer. More
generally, observe that the set of questions being asked may not be
minimal. For example, we asked the expert here about tuple 𝑡3,
that turned out to be correct and thus not added to the deletion list.
Any algorithm that can be devised for this problem would confront
the same issue (i.e., that a tuple picked by the algorithm as a candi-
date for deletion may be verified by the crowd to be correct), as the
optimal strategy depends on 𝐷𝐺 which is unknown.

5. ADDING A MISSING ANSWER
The second sub-problem of Problem 3.2 corresponds to the target

action of inserting a missing answer to the output. Analogously, we
formalize the problem of identifying a set of 𝑘 corrective updates to
be performed for adding a missing tuple to a query result as follows.

PROBLEM 5.1. (Insertion Question Search Problem) Given 𝐷,
𝐷𝐺, 𝑄, 𝑡 ∈ (𝑄(𝐷𝐺) − 𝑄(𝐷)), generate at most 𝑘 questions
𝑞1, ..., 𝑞𝑘 of the type TRUE(𝑅(�̄�))? s.t. 𝑡 ∈ 𝑄(𝐷 ⊕ ans(𝑞1) ⊕
...⊕ ans(𝑞𝑘)).

THEOREM 5.2. Problem 5.1 NP-hard.

To prove this we use reduction from another known NP-hard
problem named One-3SAT [40], see Appendix. Similarly to the
case of removing a wrong answer, the above result suggests that,
even if we had access to the ground truth database 𝐷𝐺, heuristics
are needed in the design of an efficient algorithm for generating the
right questions to insert the relevant tuples to the database. To ad-
dress this we will leverage the crowd’s knowledge of 𝐷𝐺 and ask
them more general questions than the simple boolean ones we have
used so far. We approach crowd oracles to directly identify some
of the true tuples that should be inserted to the database to add a
missing answer to the output.

A naïve approach could be asking an oracle to provide the facts
in a witness of the missing answer. Recall that given a missing
answer 𝑡 we abuse the notation and 𝑡 is also the induced partial
assignment which maps the variables in ℎ𝑒𝑎𝑑(𝑄) to 𝑡. So, simply
presenting to the crowd member 𝑡(𝑏𝑜𝑑𝑦(𝑄)), and asking her to
complete it into a witness for 𝑡, seems a possible solution. This way,
the facts in this new witness can be inserted to 𝐷, and 𝑡 becomes
an answer in the output 𝑄(𝐷).

For that, we define another crowd question2, additional to the
crowd question defined in Section 3.2. Given a partial assignment
𝛼 for query 𝑄, QOCO may ask the crowd COMPL(𝛼,𝑄), which
means: if 𝛼 is satisfiable, complete 𝛼(𝑏𝑜𝑑𝑦(𝑄)) into a witness
through a total valid assignment 𝛼′ that extends 𝛼. Otherwise, do
nothing. If an extended assignment 𝛼′ is found, QOCO will inter-
pret the facts in 𝛼′(𝑏𝑜𝑑𝑦(𝑄)) that are not in 𝐷 as insertion candi-
dates, and QOCO will create the compatible edit list of insertions.

In general, given a missing answer 𝑡, the number of tuples in
𝑡(𝑏𝑜𝑑𝑦(𝑄)) which we ask the crowd member to complete (i.e., map
the variables in those tuples), may be large. Note however that if the
underlying database 𝐷 is nearly clean and complete, most tuples in
𝑡(𝑏𝑜𝑑𝑦(𝑄)) may exist in 𝐷, and hence only minor changes and
small amount of mappings are in fact needed so that 𝑡 will appear
in the output. Hence, the crowd may be asked to do more work than
needed in terms of the number of new tuples generated in the task.
To avoid this we pursue the following approach.

5.1 Query split
It is well-known that crowdsourcing works best when tasks can

be broken down into simpler pieces. An entire witness generation
2Although strictly speaking, this is not a question but a task.

may be a too large task for the crowd. Hence, we suggest an ap-
proach that exploits both the crowd and the underlying database 𝐷
which is likely to work well if the underlying database is mostly
correct and complete w.r.t. the query 𝑄. The goal is to help the
crowd members by directing them with facts existing in the un-
derlying database 𝐷. For that we present the notion of splitting a
query. Before continuing we define a subquery for a given query.

DEFINITION 5.3 (SUBQUERY). Let 𝑄′ be the following query
𝑎𝑛𝑠(𝑢′

0) :- 𝑅′
1(𝑢1), ..., 𝑅′

𝑘(𝑢𝑘), 𝐸′
1, ..., 𝐸

′
𝑓 and 𝑄 be the query

𝑎𝑛𝑠(𝑢0) :- 𝑅1(𝑢1), ..., 𝑅𝑛(𝑢𝑛), 𝐸1, ..., 𝐸𝑚. We say that 𝑄′ is a
subquery of 𝑄, denoted by 𝑄′ ≤ 𝑄, if the following hold.
∙ 𝑅′

1(𝑢1), ..., 𝑅′
𝑘(𝑢𝑘) ⊆ 𝑅1(𝑢1), ..., 𝑅𝑛(𝑢𝑛)

∙ 𝐸′
1, ..., 𝐸

′
𝑓 ⊆ 𝐸1, ..., 𝐸𝑚

Splitting a query means decomposing the query into two or more
subqueries where every relational atom in the body of the original
query appears in the body of at least one subquery. We assume that
the head of each subquery contains all the variables that appears in
its body (i.e., no projection).

The intuition behind splitting a query into subqueries is to seek
partial assignments for 𝑄 using assignments of its subqueries. These
partial assignments are good candidates for being extended into a
valid assignment (if satisfiable), and can be used to reduce the num-
ber of tuples we ask the crowd to complete. We next illustrate with
an example, how splitting queries can be used to potentially reduce
the required crowd work.

Before that, we define how we embed a given missing answer
into the query 𝑄, and thus obtain a new query. Given a query 𝑄
and a missing answer 𝑡, we denote by 𝑄|𝑡 the query whose body is
𝑡(𝑏𝑜𝑑𝑦(𝑄)) and its head consists of all the variables that appear in
𝑡(𝑏𝑜𝑑𝑦(𝑄)). Our goal is to complete 𝑡(𝑏𝑜𝑑𝑦(𝑄)), which amounts
to finding a valid assignment for 𝑄

EXAMPLE 5.4. Consider the query 𝑄2, that finds all European
players who scored a goal in a World Cup final game; formally it is
(𝑥) :- Players (𝑥, 𝑦, 𝑧, 𝑤),Goals(𝑥, 𝑑),Games(𝑑, 𝑦, 𝑣, 𝐹 𝑖𝑛𝑎𝑙, 𝑢),
Teams(𝑦,𝐸𝑈). Notice that tuple (𝐼𝑇𝐴,𝐸𝑈) is missing from
𝐷 (but is in 𝐷𝐺), and hence all Italian players are missing from
the output. For our discussion we look at missing answer 𝑡 =
(𝑃𝑖𝑟𝑙𝑜) which defines the partial assignment {𝑥 ↦→ 𝑃𝑖𝑟𝑙𝑜}. Con-
sider query 𝑄2|𝑡 that is (𝑧, 𝑤, 𝑑, 𝑣, 𝑢) :- Players(𝑃𝑖𝑟𝑙𝑜, 𝑦, 𝑧, 𝑤),
Goals(𝑃𝑖𝑟𝑙𝑜, 𝑑), Games(𝑑, 𝑦, 𝑣, 𝐹 𝑖𝑛𝑎𝑙, 𝑢), Teams(𝑦,𝐸𝑈). We
split 𝑄2|𝑡 into two subqueries

Subquery Head Body

𝑄′
(𝑦, 𝑧, 𝑤, 𝑑, 𝑢, 𝑣) Players(𝑃𝑖𝑟𝑙𝑜, 𝑦, 𝑧, 𝑤)

Goals(𝑃𝑖𝑟𝑙𝑜, 𝑑)
Games(𝑑, 𝑦, 𝑣, 𝐹 𝑖𝑛𝑎𝑙, 𝑢)

𝑄′′ (𝑦) Teams(𝑦,𝐸𝑈)

Notice there is one valid assignment for 𝑄′ w.r.t. 𝐷:
𝛼1 = {𝑦 = 𝑤 ↦→ ITA, 𝑧 ↦→ 1979, 𝑑 ↦→ 9.6.06, 𝑣 ↦→ FRA, 𝑢 ↦→ 5:3 },
and 3 valid assignment for 𝑄′′ w.r.t. 𝐷:
𝛼2 = {𝑦 ↦→ GER}, 𝛼3 = {𝑦 ↦→ ESP}, 𝛼4 = {𝑦 ↦→ BRA}.
Evaluating 𝑏𝑜𝑑𝑦(𝑄2|𝑡) under assignment 𝛼1, induces four tuples:
Players(𝑃𝑖𝑟𝑙𝑜, 𝐼𝑇𝐴, 1979, 𝐼𝑇𝐴), Goals(𝑃𝑖𝑟𝑙𝑜, 9.6.06)
Games(9.6.06, 𝐼𝑇𝐴, 𝐹𝑅𝐴,𝐹 𝑖𝑛𝑎𝑙, 5 : 3), Teams(𝐼𝑇𝐴,𝐸𝑈).

Notice that 𝛼1 is a total assignment for 𝑄2|𝑡 (and not just for
𝑄′). QOCO system presents to the crowd members 𝛼1(𝑏𝑜𝑑𝑦(𝑄2|𝑡)),
and the crowd members affirm that 𝛼1 is a valid assignment w.r.t.
𝐷𝐺. Hence, QOCO concludes that the tuples in 𝛼1(𝑏𝑜𝑑𝑦(𝑄2|𝑡))
need to exist in 𝐷 to make (𝑃𝑖𝑟𝑙𝑜) an answer. On the other hand,
𝛼2, 𝛼3, 𝛼4 are non satisfiable partial assignments for 𝑄2|𝑡 w.r.t.
𝐷. Hence, when QOCO system presents to the crowd 𝛼𝑖(𝑏𝑜𝑑𝑦(𝑄2|𝑡))

for 𝑖 = 1, 2, 3, they answer that these assignments are non-satisfiable.
This is due to tuples such as Players(𝑃𝑖𝑟𝑙𝑜,𝐺𝐸𝑅, 𝑧, 𝑤) which oc-
curs in 𝛼2(𝑏𝑜𝑑𝑦(𝑄2|𝑡)) or Players(𝑃𝑖𝑟𝑙𝑜, 𝐸𝑆𝑃, 𝑧, 𝑤) which occurs
in 𝛼3(𝑏𝑜𝑑𝑦(𝑄2|𝑡)), that cannot be completed into a fact of 𝐷𝐺.

If we consider the naïve approach a user would have to complete
all 4 tuples in query 𝑄2 through binding 6 variables. On the other
hand, Example 5.4 showed that the crowd task can be reduced to a
question whether a given assignment is valid or satisfiable, and ask
for its completion, if possible. Consequently, in this example, the
tuples in 𝛼1(𝑏𝑜𝑑𝑦(𝑄|𝑡)) are verified as true tuples, and QOCO can
automatically conclude that Teams(𝐼𝑇𝐴,𝐸𝑈) should be inserted
to 𝐷 in order to add (𝑃𝑖𝑟𝑙𝑜) to the output 𝑄2(𝐷).

In this example we showed how a specific query split helped to
reduce the amount of work done by the crowd and helped them to
provide a witness for the missing answer. However, it can be tricky
in general to decide how to split the query, and how to evaluate the
subqueries to obtain a partial satisfiable assignment. Ideally, we
should consider all subqueries of the query, but the number of sub-
queries is exponential, and so the amount of work required from
the crowd is infeasible. We propose a greedy approach for splitting
the query, which splits the query into two subqueries (see Subsec-
tion 5.2), evaluate each one of them and present to the crowd their
partial assignments. The crowd is asked to verify if the partial as-
signment is also a valid total assignment, or complete the assign-
ment if possible. We continue to split those subqueries recursively
until a witness for the missing answer is found. If a valid assign-
ment is not found through this process, we fall back to the naïve
approach that asks the crowd to provide all tuples in the witness.

The assignments for subqueries of 𝑄|𝑡 w.r.t. 𝐷 can result in one
of the cases: (Case 1) A total valid assignment (e.g., 𝛼1 Exam-
ple 5.4) or a total invalid assignment. In this case, the crowd needs
to answer a simple true and false questions whether it is valid or
not w.r.t. 𝑄|𝑡 and 𝐷𝐺. (Case 2) A partial unsatisfiable assignment
(e.g., 𝛼2 Example 5.4). Such assignments can never be completed
into one that “fits” 𝐷𝐺 and hence, effectively useless. (Case 3) A
partial satisfiable assignment. In this case, the crowd will be asked
to complete the partial assignment into a valid assignment.

As we will show in Section 7, under our assumptions that 𝐷 is
mostly clean and complete, this heuristic is effective in helping the
crowd to provide a valid assignment for the missing answer.
Greedy insertion algorithm We are now ready to describe our
algorithm that uses the crowd as oracles to access 𝐷𝐺 for the goal
of adding a missing answer to the output.

Algorithm 2 uses two helper methods. CrowdVerify(𝑋) is a
crowdsourcing function that takes as input a set of tuples and in-
equalities. It verifies against crowd members whether facts (i.e.,
tuples with no variables) are true or false. It returns false if at least
one of the tuples in the input is false, or if one of the inequalities is
incorrect. CrowdComplete(𝛼,𝑄) is another crowdsourcing func-
tion that takes as input a query 𝑄 and a partial assignment 𝛼 for 𝑄
w.r.t. 𝐷. This method asks the crowd COMPL(𝛼,𝑄). If 𝛼 is satisfi-
able w.r.t. 𝑄 and 𝐷𝐺, the crowd member completes 𝛼(𝑏𝑜𝑑𝑦(𝑄)) to
a valid assignment 𝛼′, and then, CrowdComplete() method returns
the corresponding list of insertion edits according to the witness
𝛼′(𝑏𝑜𝑑𝑦(𝑄)). Otherwise, it returns null.

The algorithm starts by splitting the input query and adding the
subqueries to a queue (line 3). The main loop continues until a valid
assignment for the missing answer is found, or if the subqueries
queue is empty (line 4). At each iteration we pop a subquery from
the queue (line 5). We evaluate the current subquery (line 6) and
verify against the crowd whether it is a valid total assignment for
the input query 𝑄 (lines 8-10) or a partial assignment that should

Algorithm 2: CrowdAddMissingAnswer
Input: A query 𝑄, a database 𝐷 and a missing tuple 𝑡.
Output: void
Init: Queries = ∅, InsertionActions = ∅

1: TrueTuples = {𝑅(�̄�)+ | 𝑅(�̄�) ∈ 𝑏𝑜𝑑𝑦(𝑄|𝑡) ∧ �̄� consists of
only constants}

2: D = D ⊕ TrueTuples
3: Queries← Split(𝑄|𝑡)
4: while 𝑄|𝑡(𝐷) = ∅ && Queries ̸= ∅ do
5: 𝐶𝑢𝑟𝑟𝑄 = pop(Queries)
6: foreach Assignment 𝛼 in 𝐴(𝐶𝑢𝑟𝑟𝑄,𝐷) do
7: if CrowdVerify(𝛼(𝑏𝑜𝑑𝑦(𝑄|𝑡))) then
8: if 𝛼 is a total assignment of 𝑄|𝑡 then
9: D ⊕ {𝑅(�̄�)+ | 𝑅(�̄�) ∈ 𝛼(𝑏𝑜𝑑𝑦(𝑄|𝑡))}

10: return
11: else
12: InsertionActions = CrowdComplete(𝛼,𝑄|𝑡)
13: if InsertionActions ̸= ∅ then
14: D ⊕ InsertionActions
15: return

16: if body(CurrQ) has more than 1 tuple then
17: Queries← Split(𝐶𝑢𝑟𝑟𝑄)

18: InsertionActions = CrowdComplete(𝑄|𝑡, 𝑖𝑑)
19: D ⊕ InsertionActions
20: return

be completed with the crowd (lines 12-15). If not, we split the
current query (lines 16-17) and continue to the next iteration. If the
algorithm fails to find a partial assignment that can be extended into
a valid assignment for 𝑄 it posts to the crowd a question to provide
a witness for the missing answer (line 18). In line 19 the algorithm
executes the insertions of the true missing tuples.

5.2 Implementations of Split()
The Split() method, which appears in lines 3 and 17, is the heart

of our algorithm. This is the heuristic discussed before, which
breaks the input query into two subqueries.

Split() method can be implemented in different ways and we next
describe two approaches that we examined and experimented on.
Data-directed approach This approach exploits provenance meta-
data [12], when available, to split the query. If we have database
provenance for the query result, we can instrument methods similar
to the WhyNot? system in [58]. In that work, they try to provide
explanations to missing answers by identifying the manipulation
operation(s) in the query plan that are responsible for excluding the
missing answers. As opposed to WhyNot? we are not interested
in explaining why an answer is missing, or describing the possible
ways in which it potentially could be added but we wish to iden-
tify the correct edits to the underlying database that will add the
answer to the result. Nevertheless, we can still exploit the output
of WhyNot? system to wisely split a query. Our input to WhyNot?
system is a query with no projection and no answers (i.e., 𝑄|𝑡 or
one of its subqueries), and we ask “Why no answers?". When we
get the manipulation operation(s) that are responsible for excluding
the missing answer, we split accordingly. We omit here the details
for lack of space, but illustrate in Figure 2 (right) such a split. In
this example the WhyNot? mechanism outputs a join operation,
and QOCO splits the query atoms accordingly, further adding to
each subquery all the inequality involving its variables.
Query-directed approach In the absence of provenance informa-
tion that points to the missing data items, one can try to use the

Min-Cut

Resulted sub-queries:
𝒛, 𝒗 ≔ 𝑹𝟒 𝒛, 𝒗
𝒙, 𝒚, 𝒛, 𝒘 ≔ 𝑹𝟏 𝒙, 𝒚 , 𝑹𝟐 𝒚, 𝒛 ,

𝑹𝟑 𝒛,𝒘 ; 𝒛 ≠ 𝒙,𝒘 ≠ 𝒙

Input Query: 𝒙, 𝒚, 𝒛, 𝒘 ≔ 𝑹𝟏 𝒙, 𝒚 , 𝑹𝟐 𝒚, 𝒛 , 𝑹𝟑 𝒛,𝒘 , 𝑹𝟒 𝒛, 𝒗 ; 𝒛 ≠ 𝒙, 𝒘 ≠ 𝒙

WhyNot?

WhyNot? outputs a join operator of

𝑶𝟏 = {𝑹𝟏 𝒙, 𝒚 , 𝑹𝟐 𝒚, 𝒛 , 𝒛 ≠ 𝒙} and

𝑶𝟐 = {𝑹𝟑 𝒛,𝒘 , 𝑹𝟒 𝒛, 𝒗 }.

Both 𝑂1 and 𝑂2 has valid
assignments in 𝐷, but their join
filters out the missing answer 𝑡.

Resulted sub-queries:
𝒙, 𝒚, 𝒛 ≔ 𝑹𝟏 𝒙, 𝒚 , 𝑹𝟐 𝒚, 𝒛 ; 𝒛 ≠ 𝒙
𝒛,𝒘, 𝒗 ≔ 𝑹𝟑(𝒛,𝒘), 𝑹𝟒(𝒛, 𝒗);

𝑹𝟏 𝒙, 𝒚 𝑹𝟐 𝒚, 𝒛

𝑹𝟑 𝒛,𝒘𝑹𝟒 𝒛, 𝒗

𝟐

𝟐
𝟏

𝟏

𝟏

Figure 2: Example of split using different methods

structure of the query to guide the split. For example consider the
query as a weighted graph, described shortly. We may use this
graph to split the query in a manner that will produce two sub-
queries that their graphs are connected (up to certain limitations).
This way we are more likely to avoid situations where the same
variable appears in both subqueries, and avoid the loss of inequal-
ities (as happens in the WhyNot?-based split in Figure 2 (right),
where the inequality 𝑤 ̸= 𝑥 does not appear in the subqueries be-
cause variables 𝑤 and 𝑥 are divided into different subqueries).

In our graph, vertices represent tuples in the query’s body and
edges occur between vertices that represent tuples with joint vari-
ables, or tuples with variables that share an inequality. Moreover,
the edges of the graph are weighted with the number of variables
that appear in both relations represented by its adjacent nodes, plus
the number of inequalities that are relevant to the variables of those
same two nodes. On this graph we can look for a Min-Cut [18] that
will define how to split the query. Figure 2 (left) illustrates a split
of the query after finding a Min-Cut of the query graph.

As one can see in Figure 2, different split methods may result
with different subqueries. In the provenance approach we are more
likely to obtain subqueries that their evaluated results on the database
are not empty. In this example (right), we assumed a join oper-
ation was returned from WhyNot? (recall that we ask “Why no
answers?" for 𝑄|𝑡), which means that both subqueries has results
when evaluated on the database. In the query-directed split we are
more likely to have a small number of variables that appear in both
subqueries and a larger number of inequalities that are captured
within the subqueries. In the same example (left), the inequality
𝑤 ̸= 𝑥 appears in the second subquery, while it is meaningless for
both subqueries in the other split. This way, we can satisfy more
constraints in each subquery. One could also apply heuristic to keep
relational atoms with key-foreign key relationship together.

Interestingly, as shown in the experiments, since the ideal split
depends in practice on what data is missing, rather than on the
query structure, sophisticated structure-based analysis as the one
above often does not perform better than a simple random split.

6. THE GENERAL ALGORITHM
The principles described above extend naturally to handle mul-

tiple wrong/missing answers and multiple imperfect experts. We
detail these two extensions next.

6.1 Iterative Cleaning
In the general case our systems first needs to identify the set of

wrong answers (resp., multiple missing answers). Then it can con-
tinue to process the actions of deleting (resp., inserting) an answer

Algorithm 3: Main Algorithm
Input: A query Q, and an underlying database 𝐷
Output: A clean and complete database 𝐷 w.r.t. Q and 𝐷𝐺

Init: 𝑉 𝑒𝑟𝑖𝑓𝑖𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑠 = ∅, FirstIter = true
1: while FirstIter || Q(𝐷) ∖ VerifiedResults ̸= ∅ do
2:Del : foreach Tuple 𝑡 in 𝑄(𝐷) ∖ 𝑉 𝑒𝑟𝑖𝑓𝑖𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡𝑠 do
3: if CrowdVerify(𝑄(𝐷), 𝑡) then
4: VerifiedResults← 𝑡

5: else
6: 𝐷 ⊕ CrowdRemoveWrongAnswer(𝑄,𝐷, 𝑡)

7:Ins : foreach Tuple 𝑡 in CrowdComplete(𝑄(𝐷)) do
8: CrowdAddMissingAnswer(𝑄,𝐷, 𝑡)
9: VerifiedResults← 𝑡

10: FirstIter = false

11: return

using the suggested solutions of Problems 4.1 and 5.1. For that we
define two more crowd questions:

∙ TRUE(𝑄, 𝑡)?: Is the result tuple 𝑡 ∈ 𝑄(𝐷𝐺)?

∙ COMPL(𝑄(𝐷)): Complete 𝑄(𝐷) into 𝑄(𝐷𝐺).

A perfect oracle will answer YES to a question TRUE(𝑄, 𝑡)? if
and only if 𝑡 ∈ 𝑄(𝐷𝐺). An answer to a question COMPL(𝑄(𝑡)) is
a missing answer 𝑡 ∈ 𝑄(𝐷𝐺), or null if 𝑄(𝐷) ⊆ 𝑄(𝐷𝐺).

Note however that when both types of errors exist, fixing one
type (e.g., a wrong answer) may lead to the occurrence of new er-
rors of the second type (e.g., missing answers), and vice versa. For
example, the deletion of false tuples that were the cause of an incor-
rect answer in the output, may cause the deletion of correct answers
(that were previously there due some false tuples). Adding correct
witnesses for these answers may in turn generate other incorrect
answers (due to newly formed incorrect witness sets), and so on.

EXAMPLE 6.1. Consider again query 𝑄2 in Example 5.4, and
the missing answer (𝑃𝑖𝑟𝑙𝑜) ̸∈ 𝑄2(𝐷). QOCO needs to exe-
cute the insertion edit of {Teams(𝐼𝑇𝐴,𝐸𝑈)+} on database 𝐷
to add (𝑃𝑖𝑟𝑙𝑜) to 𝑄2(𝐷). Note that 𝐷 contains the false tuple
Goals(𝑇𝑜𝑡𝑡𝑖, 9.6.06). Thus, if we add true tuple Teams(𝐼𝑇𝐴,𝐸𝑈),
the wrong answer (𝑇𝑜𝑡𝑡𝑖) will be added to the output of 𝑄2, as a
side effect.

A key observation which goes back to Proposition 3.3, is that
each step in this tuple addition/deleting sequence brings the database
closer to the ground truth database, and thus our algorithm, that it-
eratively handles these newly generated wrong/missing answers, is
guaranteed to converge to the correct query result.

The algorithm enters the outer loop (line 1) in one of two cases;
(1) during the first iteration, to cover the case when 𝑄(𝐷) is empty
but 𝑄(𝐷𝐺) is not. (2) when 𝑄(𝐷) ∖ VerifiedResults ̸= ∅, which
means that there are unverified answers in 𝑄(𝐷) that must be ver-
ified against the crowd. This algorithm is iterative. It first handles
wrong answers in the deletion part (lines 2-6). It identifies incor-
rect tuples in 𝑄(𝐷) by asking TRUE(𝑄, 𝑡)? (line 3) and then calls
CrowdRemoveWrongAnswer from Section 4 (line 6) to execute the
deletion algorithm on wrong answers. Afterwards, it continues to
the insertion part (lines 7-9). It uses the crowd to find tuples that
should be added to 𝑄(𝐷) using the method CrowdComplete(𝑄(𝐷))
(line 7) that poses questions of the type COMPL(𝑄(𝐷)) to the crowd.
Then it calls CrowdAddMissingAnswer from Section 5 (line 8) to
execute the needed insertion edits.

The helper method CrowdComplete(𝑄(𝐷)) (line 7), that poses
questions of the type COMPL(𝑄(𝐷)), needs to know when to stop

posting these questions (i.e., when 𝑄(𝐷) is complete). In [59] the
authors developed statistical tools to enable developers to reason
about query completeness. We use their technique as a black-box,
called enumeration black-box, to decide when the query result is
complete. This black-box notifies QOCO once posing additional
crowd questions asking to add missing answers is no longer neces-
sary, because the query result is complete with high probability.

6.2 Multiple Imperfect Experts
For simplicity, up to this point, we assumed a single perfect or-

acle. We next extend our framework to support multiple crowd
(imperfect) experts working in parallel. This extension has two dif-
ferent aspects; parallelism, and dealing with the fact that humans,
even if experts, are imperfect and may make mistakes.
Imperfect experts Recall that QOCO system has four types of
questions. Two boolean questions that verify tuples and answers,
and two open questions (tasks) that ask to complete partial assign-
ments of queries to complete the result sets of queries. To deal with
potential errors in boolean questions, we use below a simple esti-
mation method where each question is posed to a fixed-size sample
of the crowd members and the answers are averaged. More gen-
erally one could use any black-box (e.g., of [2, 47]) to determine
the number of users to be asked and how to aggregate their an-
swers (e.g., using majority vote). Regarding open questions, once
a single expert provides an answer, the system poses an additional
set of boolean questions to verify that the obtained answer is cor-
rect (using the black-box aggregator). More precisely, if tuple 𝑡
is an answer to COMPL(𝑄(𝐷)), the system will ask several ex-
perts the closed question TRUE(𝑄, 𝑡)?. If a set of tuples 𝑆 is the
answer to some question COMPL(𝛼,𝑄), the system poses the ques-
tion TRUE(𝑅(�̄�))? for each tuple 𝑅(�̄�) ∈ 𝑆. Note that the iterative
nature of our algorithm provides further protection against wrong
insterions/deletions: If some wrong (resp. correct) tuple was mis-
takenly inserted (deleted), it may be removed (added) in the next
iterations, if it caused for a new wrong/missing answer.
Parallelism Recall that Algorithm 3 consists of two components:
deletion (lines 2-6), and insertion (lines 7-9). It also has the outer
loop (lines 1-10) that iteratively runs deletion and insertion com-
ponents over and over again until termination. We would like to
be able to maximize the use of all available crowd members at any
point, to speed up the computation. Thus, we run the deletion and
insertion parts in parallel. To allow that, we need a dedicated vari-
able 𝑅𝑒𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 to hold the set of tuples in 𝑄(𝐷) at the time
when the insertion loop is done according to enumeration black-
box (line 7). We use this variable to add another condition 𝑄(𝐷)
̸= 𝑅𝑒𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 to the outer loop (line 7). It is necessary because
the deletion part, which is now executed simultaneously with the
insertion part, might delete correct answers. We further use paral-
lel foreach loops, in both deletion and insertion components. We
verify the correctness of all tuples in 𝑄(𝐷) at the same time (line
3), or post together multiple completion questions (line 7). For a
summarized list of the modifications to Algorithms 1, 2 and 3, pre-
viously discussed, see Appendix.

7. IMPLEMENTATION
We have implemented all the techniques described in the pre-

vious sections in QOCO. QOCO is implemented in PHP (back-
end), JavaScript (front-end) and uses MySQL as the database en-
gine. The system architecture is detailed in the Appendix.

Crowd members in popular crowdsourcing platforms such as
Amazon Mechanical Turk or CrowdFlower are not always experts
for the domains we use in our experiments. These platforms also
do not allow to dynamically compute the questions to the crowd

based on previously collected answers. We have thus implemented
our own system and recruited our crowd through the relevant so-
cial networks to ensure that they have the necessary expertise for
judging the truthfulness and completeness of the query results.

Our experiments are based on two different real-world datasets.
A smaller database used as a showcase for the usefulness of our
approach, and a larger dataset for comparing the performance to
alternative baseline algorithms w.r.t. varying parameters. In our
experiments we measured the efficiency of the algorithms in terms
of number of questions posed the crowd. We also measured the
running time required to select to next question. For our datasets
this was always not more than one or two seconds and negligible
for the user interaction, and we thus omit the exact measures here.

7.1 DBGroup database
The first database is our real-life DB group database (DBGroup),

recording information on our group members, their research activi-
ties, publications, academic events, achievements etc. This dataset
was created about 10 years ago and continuously maintained by
various group members since, and currently contains around 2000
tuples. The DBGroup database is used to generate reports about the
group’s research projects and achievements for various purposes,
e.g., to be included in periodic grant reports. Thus, each item in the
database has attributes that relate it to relevant grants and topics.

To showcase how QOCO can be used to effectively clean the
database we have launched it with queries used to generate past
reports, and were (positively) surprised by the results. Even though
we expected the database, being maintained and curated by past
and present members and extensively used for reports, to be correct,
QOCO helped to discover several unnoticed mistakes.

To illustrate we present four queries from the last grant report.

∙ Q1: Find all keynotes and tutorials on topics related to ERC.

∙ Q2: Find all current group members financed by ERC.

∙ Q3: Find all students who participated in conferences in the
past 30 months, where the travel was sponsored by ERC.

∙ Q4: Find all publications with the topic “crowdsourcing” pub-
lished in the last 30 months.

With QOCO, we ran the above queries and our group members
played the role of crowd experts. The black-box used for a de-
cision mechanism was simple: three users were required for de-
termining the correctness of an answer and the majority vote was
taken. The whole experiment for this report took less then one hour
from the posting of the call for participation in the group’s social
network. During the process, we discovered 5 wrong answers (1
wrong keynote and 4 wrong group members) and 7 missing an-
swers (1 missing keynote, 1 missing member, and 5 missing con-
ferences). Consequently, QOCO cleaned the DBGroup database
and removed 6 wrong tuples and added 8 missing tuples, which we
have later manually verified to be all indeed correct edits.

7.2 Soccer database
The second database we experimented on is about Soccer games,

including in particular the World Cup games. The Soccer database
contains data about the games, goals, players, teams (national),
clubs, etc. and consists of around 5000 tuples. This is a real-
life database derived using automatic website scraping tools from
sites [63, 64]. We first cleaned the Soccer database by comparing
the data with reference data from FIFA official data [24] and used
this as our ground truth, then added to the dataset some controlled
noise (to be explained in Section 7.2). Our experiments were car-
ried out with 3 different notions of crowd; (1) a simulated perfect

7 7 7 10 10 10
24 24 24 2 2 8 5 6

21

37 42

107

8 8
2

23 22
7

79 74

9

0

30

60

90

120

150

QC QC-
(Q1)

Rand QC QC-
(Q2)

Rand QC QC-
(Q3)

Rand

avoided

questions

results

(a) Deletion - multiple queries

5 5 5 5 5 5 5 5 5

19
30 30

13
19

28

17

32
26

26
15 15

27
21

12 38

23
29

0

24

48

72

Prov MC
(Q3)

Rand Prov MC
(Q4)

Rand Prov MC
(Q5)

Rand

avoided

questions

missing

(b) Insertion - multiple queries

12 12 12 15 15 15
29 29 29 12 12 18 19 20

32

46 51

116

8 8
2

23 22 7

79 74

9

0

40

80

120

160

QC QC-
(Q1)

Rand QC QC-
(Q2)

Rand QC QC-
(Q3)

Rand

avoided

questions

results +
missing

(c) Mixed - multiple queries

21 21 21 24 24 24 29 29 29
15 17

43 37 42

107
73 80

203

32 30

4

79 74

9

157 150

27

0

54

108

162

216

270

QC QC-
(2)

Rand QC QC-
(5)

Rand QC QC-
(10)

Rand

avoided

questions

results

(d) Deletion - varying # of wrong answers (𝑄3)

2 2 2 5 5 5 10 10 10
9 16 17

19
30 30

37

68 69

27
20 19

26
15 15

55

24 23

0

35

70

105

Prov MC
(2)

Rand Prov MC
(5)

Rand Prov MC
(10)

Rand

avoided

questions

missing

(e) Insertion - varying # of missing answers (𝑄3)

21 25 29
15

37

73

11

24

65

0

30

60

90

120

150

180

QOCO
(2 missing, 2 wrong)

QOCO
(5 missing, 5 wrong)

QOCO
(10 missing, 10 wrong)

Fill Missing

Verify Tuples

Vefify Answers

(f) Mixed - Types of questions (𝑄3)

Figure 3: Results with a simulated oracle. Notation: QOCO (QC), QOCO− (QC-), Random (Rand), Provenance (Prov), Min-Cut (MC).

oracle, namely an implemented oracle that consults with the ground
truth Soccer database, (2) a real person who is a perfect expert; in
fact, to make sure the results that we obtain are consistent, we re-
peated the experiments with three distinct people whom we know
to be true Soccer experts, and (3) real crowd of imperfect experts
consisting of soccer fans. Surprisingly, in all our experiments the
perfect experts provided the exact same results as the simulated
perfect oracle. First, the Soccer games database is at a reasonable
scale and it was not difficult to find ardent fans who are extremely
knowledgeable about the World Cup and soccer games in general.
Second, these fans are usually competitive and will do all it takes
(e.g., searching the answers on Google) for being the “master” of
FIFA. As we shall explain, our results with imperfect experts are
somewhat different.

The parameters we considered in our experiments are below.

Degree of data cleanliness refers to the ratio of number of true
tuples in the dataset (i.e., |𝐷∩𝐷𝐺|) to the total number of tuples
in the dataset plus the tuples missing from the dataset (namely
|𝐷|+ |𝐷𝐺 −𝐷|). For example, if the data cleanliness is 50%,
then the number of true tuples in the dataset is exactly the same
as the total number of false and missing tuples. To simulate
a dirty database which contains wrong and missing tuples, we
add false tuples and remove true tuples to the cleaned Soccer
data. We vary the cleanliness of our datasets from 60% to 95%.
The default value is 80%.

Noise skewness refers to the ratio of the number of false tuples in
the dataset (i.e., |𝐷 −𝐷𝐺|) to the number of these false tuples
plus the number of the missing true tuples (namely |𝐷−𝐷𝐺|+
|𝐷𝐺 −𝐷|)) . We vary it from 100% where we have only false
tuples and no true missing tuples, through 50% where the num-
ber of false and missing true tuples are equal, to 0% where we
have only missing tuples and no false tuples. For our exper-
iments with the deletion algorithm (Algorithm 1), the default
value is 100% and for experiments with our insertion algorithm
(Algorithm 2), the default value is 0%. For experiments in the
general case (Algorithm 3), the default value is 50%.

Degree of result cleanliness is similar to the Data Cleanliness pa-
rameter, but considers the cleanliness of the query result, and
thus refers to the ratio between |𝑄(𝐷)∩𝑄(𝐷𝐺)| and |𝑄(𝐷)|+
|𝑄(𝐷𝐺)−𝑄(𝐷)|.

We illustrate our findings with the following five representative
queries that are inspired by World Cup trivia quizzes from vari-
ous websites e.g., [26, 25]. These queries have varying result sizes,
from the smallest to largest:
∙ Q1: Find all European teams who lost at least two finals.

∙ Q2: Find all teams from the same continent that played at least
twice against each other.

∙ Q3: Find all non-Asian teams that reached the World Cup knock-
out phase and won at least once.

∙ Q4: Find all teams that lost two games with the same score.

∙ Q5: Find all teams that won at least two games, while one of
the opponents was a South American team.

Next, we describe the alternative baseline algorithms that we
compared to our solution. Specifically, we compared the number
of different crowd actions (i.e., boolean questions and open ques-
tions) posed by our solution (Algorithms 1, 2, and 3) to that posed
by the competing algorithms running on the same input.
Deletion baseline algorithms For the case of deletions, we have
two baseline algorithms (Random and QOCO−) that decide which
tuples among the witnesses to verify against the crowd. In our ex-
perimental setup, QOCO executes in a loop and iteratively asks
the crowd whether a given answer in 𝑄(𝐷) is correct. If the crowd
deems that an answer in 𝑄(𝐷) is incorrect, then one of these base-
line algorithms is used to determine which tuples in the witnesses
of the wrong tuple should be verified against the crowd.

∙ Random - a naïve algorithm that randomly picks a tuple, among
the tuples in the witnesses of the wrong answer, to verify next.

∙ QOCO− - a simplified version of our deletion algorithm that
greedily picks the most frequent tuple among the tuples in the
witnesses of the wrong answer, but does not identify when a
unique minimal hitting set exists. Consequently, it continues
posing further questions to verify the remaining tuples.

Insertion baseline algorithms Recall that the core of Algorithm 2
is the Split() method. Hence, we would like to study the effect of
using different methods for splitting a query on the performance of
Algorithm 2. We consider the following alternatives.

∙ Naïve - the naïve approach does not split the query.
∙ Random - randomly splits the given query into two subqueries.
∙ Min-Cut - splits the given query according to structure-based

process presented in Subsection 5.2.
∙ Provenance - uses data provenance and the WhyNot? algorithm

from [58], as discussed in Subsection 5.2.

Results for Perfect Oracle. Figure 3 shows the results of sim-
ulated perfect oracle (and thus also for a real perfect expert), for in-
sertion, deletion, and the mixed general case algorithms with vary-
ing parameters. We refer to the version of Algorithm 3, that uses a
combination of our deletion algorithm (i.e., Algorithms 1) with the
Provenance-based insertion algorithm (i.e., Algorithms 2), as the
“Mixed" algorithm. Each graph is the result of an experiment for
an algorithm with a change in one of the parameters (mentioned in
parenthesis), while the remaining parameters are assigned default
values. For graphs 3a,...,3e the bottom part of each bar (in black)
represents the lower bound count, i.e., the number of query answers
that must be verified - for deletion algorithms , the number of miss-
ing answers - for insertion algorithms, and respectively, the num-
ber of query answers and missing answers for the mixed case. The
middle part of each bar (in red) represents the actual number of ver-
ification questions (i.e., deletion questions) or the number of filled
variables (i.e., insertion questions) or their sum when relevant. The
top portion of each bar (in white) represents the number of ques-
tions saved or avoided relative to the upper bound. For example,
for deletion, the total number of questions that one would ask with
the naïve algorithm corresponds to the number of distinct tuples in
the witness set of the answer that is to be deleted. Hence the total
is always constant for a given query. Figure 3a shows that the to-
tal number of possible questions is 17 for Q1, 38 for Q2, and 140
for Q3. For insertion, the total number of questions is what would
be asked by the naïve algorithm that does not split the query (that
is, the highest number of unique variables that the expert needs to
provide, in the worst case). We next detail the results.

Deletion algorithms. In all our experiments, QOCO had bet-
ter performance results than its competitors. We present only a few
representative graphs in the figure. We show only the graphs of
queries Q1, Q2, and Q3 since the trends in queries Q4 and Q5 are
similar. Figure 3a shows how the performance varies across queries
Q1, Q2, and Q3. The difference between QOCO and QOCO−

due QOCO’s ability to identify unique hitting sets becomes more
apparent as the size of the query grows (i.e., both number of re-
sults and number of tuples). In all cases, the two perform better
than the Random algorithm that verifies all tuples of all witnesses.
Figure 3d demonstrates how different levels of noise (i.e., varying
degree of data cleanliness and result cleanliness) affects the perfor-
mance. The numbers mentioned at the bottom of the graph, i.e.,
(2), (5), (10) represent the number of wrong answers among the
answers in the result 𝑄(𝐷). The gap between the performance of
QOCO and the Random algorithm increases with the noise level.

Insertion algorithms. In all our experiments the split-based al-
gorithms performed better than the Naive (the upper bound in the
graphs), and the provenance-based split performed best. Interest-
ingly however, there was no clear winner between the Min-Cut ap-
proach and the Random split. To illustrate Figure 3b shows the
results for queries Q3, Q4 and Q5 (Queries Q1 and Q2 show sim-
ilar trends to Q3 and are thus omitted). As we can see, the prove-
nance based algorithm always performs best, whereas for Min-Cut
and Random, in Q3 the two perform the same, in Q4 Min-Cut is
better than Random, and in Q5 the opposite holds. This confirms
our intuition that the ideal split depends in practice on what data is
missing, rather than on the structure of the query.

30 30 30
72 72 72 21 27

64

79 93

249

31 31

31

28
28

28

0

40

80

120

160

200

240

280

320

360

QC QC-
(Q2)

Rand QC QC-
(Q3)

Rand

Fill Missing

Verify Tuples

Vefify Answers

Figure 4: Experimental results - real experts (𝑄2 and 𝑄3)

Figure 3e illustrates the performance of the algorithms for in-
creasing degrees of noise for a specific query (Q3). Here again, for
all setups of parameters, the provenance based algorithm performed
better than both Min-Cut and Random algorithms, and among the
these two, Min-cut was marginally better than Random for this
query, but overall there was no clear winner.

Mixed algorithms. As mentioned before, we consider here an
implementation of Algorithm 3 that uses QOCO deletion algo-
rithm (as opposed to the weaker QOCO− or Random) and the
Provenance-based insertion algorithm. Results with other inser-
tion algorithms are not presented for space constraints because they
yield weaker results than the provenance based algorithm. As shown
in Figure 3c, QOCO performed better than its competitors. In
figure 3f we use the Mixed algorithm, and the same query (Q3),
but vary the number of missing and wrong answers. We demon-
strate the distribution of different types of question presented to the
crowd: verification of a result answer, verification of a tuple (a tuple
contained in a false answer’s witness), and filling blanks that refer
to both adding a missing answer and completing a missing tuple.
As expected, the graph shows that the number of tuples and answers
that are verified increases as the number of errors increases.

Results for Real Experts Crowd. Figure 4 illustrates that
QOCO is also effective with the real crowd (imperfect experts for a
certain domain). The trends we observed are similar to the set of ex-
periments with a simulated oracle (or a perfect expert). We aggre-
gated the results from 3 experts using majority vote rule for all the
answers from the crowd (our chosen implementation for the black-
box aggregator). Recall that for each answer to an open question,
QOCO poses to the crowd 2 additional closed verification ques-
tions (see Section 6.2). The way we count crowd answers is slightly
different for boolean (closed) questions and open ones. Answers to
closed questions increase the counter by one, while answers to open
questions increase the counter by the number of (unique) variables
that the expert provided their values. In addition, since the deci-
sions are made by majority vote, once two experts give the same
answer, a decision can be made and a third answer is no longer
needed. Hence the total number of crowd answers in Figure 4 may
be smaller than 3 times the number presented in the matching graph
for the single perfect expert experiment. The results of the two il-
lustrated queries contained 5 missing and 5 wrong answers (but the
computation of Q3 involves more tuples hence the corresponding
larger number of crowd questions). 60% of the errors in each query
(the more popular and well-known answers) were identified and
corrected within an hour from the time the queries were posted on
the social network. 90% was fixed within another hour, and the
whole experiment completed within 3.5 hours, identifying all er-
rors. Observe that the “fill missing” numbers are identical across
different algorithms of Q2 (resp. Q3). This is because we use the
same provenance-based insertion algorithm and hence, the same
(number of) questions are posed to the experts.

8. RELATED WORK
Data cleaning As mentioned in the Introduction, numerous data
cleaning techniques have been proposed in the past. Cleaning prob-
lems can be classified between single-source and multi-source prob-
lems and between schema and instance related problems [52]. Ex-
isting tools address problems such as deduplication [17], entity res-
olution [1, 4], and schema matching [46]. Common technical ap-
proaches are, inter alia, clustering and similarity measures [4]. Data
mining tools for outlier detection [22] or association rules [55] are
also used to improve data, to complete missing values, correct ille-
gal values and identify duplicate records. [66] used query aware
approach in a different context of determining uncertain objects
in probalistic data. The goal there is to generate a deterministic
representation that optimize the quality of answers to queries/trig-
gers that execute over the determinized data. In the context of data
cleaning [62] introduced the idea of cleaning only a sample of data
to obtain unbiased query results with confidence intervals. Experi-
mental results have indicated that only a small sample needs to be
cleaned to obtain accurate results. QOCO is similar in spirit to
[62] in that it uses the crowd to correct query results, but unlike
QOCO, [62] does not propagate the updates back to the underly-
ing database. Another critical difference from [62], as well as from
prior work on data cleaning, is that the open world assumption that
we support allows to add missing true tuples to the database.
Crowdsourcing Crowdsourcing, or human computation, is a model
where humans perform small tasks to help solve challenging prob-
lems. Incentives can range from small payments to public recog-
nition and social reputation to the desire to help scientific progress
[51]. It is a powerful tool that has been employed for database
cleaning tasks such as entity/conflict resolution [61, 65], duplicate
detection [6, 11], schema matching [67, 35, 43], and filling up miss-
ing data [50, 49, 27]. These complimentary techniques can be used
for the initial data cleaning and then refined by our approach. As
previously mentioned, extensive research has also been devoted to
develop algorithms to ensure the quality of answers, both for indi-
vidual answers (e.g., outlier detection [42, 59, 16]) and aggregated
answers (e.g., using error probability, or an average weighted by
trust [48, 47, 54]). In addition, previous works propose different
methods for evaluating crowd workers’ quality, e.g., to filter spam-
mers and identify domain experts [42, 39, 36, 29, 37]. These meth-
ods too are complementary to our work and can be used here as
a preliminary step to select our experts. Depending on the task,
crowdsourced solutions may require a massive work force and may
be expensive and time consuming. For instance, verifying that an
ontology corresponds to an experts model of the scientific domain
requires checking every relationship in the ontology [19]. As men-
tioned, we propose our query-oriented approach as means to focus
resources to the most relevant portions of the underlying data.
View updates The problem of translating updates on the view into
source updates so that the updates on the view are effectively cap-
tured is called the view update problem. Some of the works (e.g.,
[14, 9, 41]) compute the necessary updates on the source that will
remove or insert the desired output tuple and, at the same time, min-
imizes the changes to the output. Our work follows more closely
to the idea of automatically identifying “minimal updates” on the
source that will correct one or more tuples in the query result [9].
However, a minimal source update does not always reflect the ac-
tual ground truth 𝐷𝐺. In fact, even though a minimal update to
the source database will fix the query result, it may not correct the
database. Even worse, it may actually further corrupt the database.
Our algorithm in QOCO interactively leverages oracle crowds to
identify a correct sequence of updates which may not always be
“minimal” in the sense [9], to be performed. Such updates correct

tuples in the underlying database in addition to fixing the errors in
the query result.
Provenance The topic of data provenance (i.e., the origins or
source of data) has been extensively studied in the past. Various
notions of data provenance, such as lineage [15], why and where
provenance [8], provenance semirings [30], have been proposed.
Related to data provenance is the topic on explaining the reason(s)
a tuple is in the result. Naturally, the data provenance of an output
tuple can be used to explain the existence of the tuple in the output.
In addition, other works, such as [3, 56], have considered how to
explain the result or differences in aggregates in the result. More re-
cently, there has been a number of research on deriving the changes
that are needed to the underlying databases [34, 33, 32] or query [5,
10, 58, 31] so that a missing tuple appears in the output. The focus
of our work, however, is neither to compute the data provenance
nor to provide (all) explanations to the why or why-not questions
but rather, to identify correct updates to apply to the underlying
database to rectify the error in the output. Even if the explanations
from prior work can be translated into corrective updates, their re-
sults do not suggest which corrective updates to apply.

9. CONCLUSIONS
We present QOCO, a novel query-oriented system for cleaning

data with crowd oracles. An incorrect (resp. missing) tuple is re-
moved from (resp. added to) the result of a query through updates
on the underlying database, where the updates are derived by in-
teracting with crowd oracles. The system uses a set of novel algo-
rithms for minimizing the required interaction. Our experimental
results on real-world datasets demonstrate the promise that QOCO
is an effective and efficient tool for data cleaning.

There are several challenging directions for future work. Specif-
ically, we plan to extend QOCO by supporting richer view lan-
guages, such as queries with aggregates and negation. Aggregates
introduce significant complications as there are potentially numer-
ous ways to achieve the same aggregate (e.g., to SUM to 100) and
pruning the search space to identify the correct updates is challeng-
ing. On a related direction, we plan to investigate how constraints
such as key and foreign key constraints can be incorporated into our
framework. The presence of such constraints will require a more
nuanced calculation of the (potential) interactions with the crowd,
that take into account the dependencies among tuples and possi-
ble constraints violation. In addition, we plan to consider richer
crowd interactions by allowing composite crowd questions where,
for example, the correctness of several tuples is posed in a single
question. Composite questions can potentially reduce the number
of questions posed in general. We plan to investigate how to de-
cide what kind of composite questions to ask and when to ask such
questions. The crowd incentive and rewards model can also be im-
proved. Currently we compute a user’s effort based on the number
of tuples and variables she adds. The model can be enhanced to
account for the frequency and novelty of a particular answer (e.g.,
rare facts are harder to find), and motivate users to provide less-
trivial answers in general. Another extension is to consider a richer
crowd interaction paradigm that allows for attributes modification
or tuples merge, in addition to deletions and insertions. Finally, an
intriguing question is how to incrementally maintain the cleaned
data when the underlying ground truth changes.

Acknowledgements We are grateful to the anonymous review-
ers for their insightful comments. This work has been partially
funded by the European Research Council under the FP7, ERC
grant MoDaS, agreement 291071 and by the Israel Ministry of Sci-
ence. Tan is partially supported by NSF grant IIS-1450560.

10. REFERENCES

[1] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra. Progressive
approach to relational entity resolution. Proceedings of the
VLDB Endowment, 7(11), 2014.

[2] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart.
Crowd mining. In SIGMOD, pages 241–252, 2013.

[3] T. Arora, R. Ramakrishnan, W. G. Roth, P. Seshadri, and
D. Srivastava. Explaining program execution in deductive
systems. In DOOD, pages 101–119, 1993.

[4] I. Bhattacharya and L. Getoor. Collective entity resolution in
relational data. ACM Transactions on Knowledge Discovery
from Data (TKDD), 1(1):5, 2007.

[5] N. Bidoit, M. Herschel, and K. Tzompanaki. Query-based
why-not provenance with nedexplain. In EDBT, pages
145–156, 2014.

[6] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. KDD, pages
39–48, 2003.

[7] P. Buneman, J. Cheney, W. C. Tan, and S. Vansummeren.
Curated databases. In ACM PODS, pages 1–12, 2008.

[8] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In ICDT, pages
316–330, 2001.

[9] P. Buneman, S. Khanna, and W. C. Tan. On propagation of
deletions and annotations through views. In PODS, pages
150–158, 2002.

[10] A. Chapman and H. V. Jagadish. Why not? In SIGMOD,
pages 523–534, 2009.

[11] M. Charika, S. Chaudhuri, R. Motwani, and V. R. Narasayya.
Towards estimation error guarantees for distinct values.
PODS, pages 268–279, 2000.

[12] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends in
Databases, 1(4):379–474, 2009.

[13] Cia world fact book.
https://www.cia.gov/library/publications/the-world-
factbook/.

[14] Y. Cui and J. Widom. Run-time translation of view tuple
deletions using data lineage. Technical Report 2001-24,
Stanford InfoLab, 2001.

[15] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of
view data in a warehousing environment. ACM TODS,
25(2):179–227, 2000.

[16] T. Dasu and T. Johnson. Exploratory data mining and data
cleaning. In Wiley, 2003.

[17] P. Domingos. Multi-relational record linkage. In In
Proceedings of the KDD-2004 Workshop on Multi-Relational
Data Mining. Citeseer, 2004.

[18] J. Edmonds and R. M. Karp. Theoretical improvements in
algorithmic efficiency for network flow problems. JACM,
19(2):284–264, 1972.

[19] J. Evermanna and J. Fangb. Evaluating ontologies: Towards
a cognitive measure of quality. Information Systems,
35(4):391–403, 2010.

[20] W. Fan and F. Geerts. Foundations of Data Quality
Management. Synthesis Lectures on Data Management.
2012.

[21] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Cerfix: A system
for cleaning data with certain fixes. In PVLDB, pages
1375–1378, 2011.

[22] U. M. Fayyad. Mining databases: Towards algorithms for
knowledge discovery. IEEE Data Eng. Bull., 21(1):39–48,
1998.

[23] U. Feige, M. Langberg, and K. Nissim. On the hardness of
approximating NP witnesses. In K. Jansen and S. Khuller,
editors, Approximation Algorithms for Combinatorial
Optimization, volume 1913 of LNCS, pages 120–131.
Springer, 2000.

[24] Fifa official site. http://www.fifa.com/.
[25] Fifa trivia quizzes and games.

http://www.sporcle.com/games/g/fifaworldcup.
[26] Fifa world cup trivia. http://en.trivia.fifa.com/.
[27] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and

R. Xin. Crowddb: Answering queries with crowdsourcing. In
SIGMOD, pages 61–72, 2011.

[28] V. Ganti and A. D. Sarma. Data Cleaning: A Practical
Perspective. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2013.

[29] S. Ghosh, N. Sharma, F. Benevenuto, N. Ganguly, and
K. Gummadi. Cognos: crowdsourcing search for topic
experts in microblogs. SIGIR, pages 575–590, 2012.

[30] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In ACM PODS, pages 31–40, 2007.

[31] Z. He and E. Lo. Answering why-not questions on top-k
queries. In ICDE, pages 750–761, 2012.

[32] M. Herschel and M. A. Hernández. Explaining missing
answers to SPJUA queries. PVLDB, 3(1):185–196, 2010.

[33] M. Herschel, M. A. Hernández, and W. C. Tan. Artemis: A
system for analyzing missing answers. PVLDB,
2(2):1550–1553, 2009.

[34] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the
provenance of non-answers to queries over extracted data.
PVLDB, 1(1):736–747, 2008.

[35] N. Q. V. Hung, N. T. Tam, Z. Mikló, K. Aberer, A. Gal, and
M. Weidlich. Pay-as-you-go reconciliation in schema
matching networks. In ICDE, pages 220–231, 2014.

[36] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management
on amazon mechanical turk. HCOMP, pages 64–67, 2010.

[37] J. Jiao, J. Yan, H. Zhao, and W. Fan. Expertrank: An expert
user ranking algorithm in online communities. NISS, pages
674–679, 2009.

[38] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis and
explanations for robust query evaluation in probabilistic
databases. In ACM SIGMOD, pages 841–852. ACM, 2011.

[39] D. R. Karger, S. Oh, and D. Shah. Iterative learning for
reliable crowdsourcing systems. NIPS, pages 1953–1961,
2011.

[40] R. M. Karp. Reducibility among combinatorial problems. In
R. E. Miller and J. W. Thatcher, editors, Complexity of
Computer Computations, pages 85–103, Plenum Press, New
York, 1972.

[41] B. Kimelfeld, J. Vondrák, and R. Williams. Maximizing
conjunctive views in deletion propagation. In ACM PODS,
pages 187–198, 2011.

[42] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh.
Counting with the crowd. PVLDB, 6(2):109–120, 2012.

[43] R. Mccann, W. Shen, and A. Doan. Matching schemas in
online communities: A web 2.0 approach. In ICDE, pages
110–119, 2008.

[44] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers
and non-answers. PVLDB, 4(1):34–45, 2010.

[45] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema
mapping as query discovery. In VLDB, pages 77–88, 2000.

[46] T. Milo and S. Zohar. Using schema matching to simplify
heterogeneous data translation. In VLDB, volume 98, pages
24–27. Citeseer, 1998.

[47] A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom. Crowdscreen: Algorithms for
filtering data with humans. In SIGMOD, pages 361–372,
2012.

[48] A. G. Parameswaran, S. Boyd, H. Garcia-Molina, A. Gupta,
N. Polyzotis, and J. Widom. Optimal crowd-powered rating
and filtering algorithms. VLDB, 7(9):685–696, 2014.

[49] H. Park, R. Pang, A. Parameswaran, H. Garcia-Molina,
N. Polyzotis, and J. Widom. An overview of the deco
system: data model and query language; query processing
and optimization. In SIGMOD, pages 22–27, 2012.

[50] H. Park and J. Widom. Crowdfill: collecting structured data
from the crowd. In SIGMOD, pages 577–588, 2014.

[51] M. J. Raddick, G. Bracey, P. L. Gay, C. J. Lintott, P. Murray,
K. Schawinski, A. S. Szalay, and J. Vandenberg. Galaxy zoo:
exploring the motivations of citizen science volunteers.
Astronomy Education Review, 9(1), 2010.

[52] E. Rahm and H. H. Do. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[53] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In VLDB, pages 381–390,
2001.

[54] V. C. Raykar, S. Yu, L. H. Zhao, A. Jerebko, C. Florin, G. H.
Valadez, L. Bogoni, and L. Moy. Supervised learning from
multiple experts: whom to trust when everyone lies a bit.
ICML, 2009.

[55] C. Sapia, G. Höfling, M. Müller, C. Hausdorf, H. Stoyan, and
U. Grimmer. On supporting the data warehouse design by
data mining techniques. In Proc. GI-Workshop Data Mining
and Data Warehousing, page 63. Citeseer, 1999.

[56] S. Sarawagi. Explaining differences in multidimensional
aggregates. In VLDB, pages 42–53, 1999.

[57] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge unifying wordnet and wikipedia. In
WWW, pages 697–706, 2007.

[58] Q. T. Tran and C.-Y. Chan. How to conquer why-not
questions. In SIGMOD Conference, pages 15–26, 2010.

[59] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar.
Crowdsourced enumeration queries. In ICDE, pages
673–684, 2013.

[60] Uniprot. http://www.uniprot.org/.
[61] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:

Crowdsourcing entity resolution. PVLDB, 5(10):1483–1494,
2012.

[62] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg,
T. Kraska, and T. Milo. A sample-and-clean framework for
fast and accurate query processing on dirty data. In
SIGMOD, pages 469–480, 2014.

[63] Open football. https://github.com/openfootball/.
[64] World cup history. http://www.worldcup-history.com/.
[65] S. E. Whang, H. Garcia-Molina, and P. Lofgren. Question

selection for crowd entity resolution. PVLDB, 6(6):349–360,
2013.

[66] J. Xu, D. V. Kalashnikov, and S. Mehrotra. Query aware
determinization of uncertain objects. IEEE Trans. Knowl.
Data Eng., 27(1):207–221, 2015.

[67] C. J. Zhang, Z. Zhao, L. Chen, H. V. Jagadish, and C. C.
Cao. Crowdmatcher: crowd-assisted schema matching. In
SIGMOD, pages 721–724, 2014.

APPENDIX
A. PROOFS

We provide below the proofs for the theorems and propositions
presented in the paper.

PROPOSITION 3.3. Let 𝑒 be an edit that is generated based on
the oracle’s answer to a question. We have |(𝐷 ⊕ 𝑒) − 𝐷𝐺| ≤
|𝐷 −𝐷𝐺|.

PROOF. The edit 𝑒 is either 𝑅(�̄�)+ or 𝑅(�̄�)−. Since 𝐷 ⊕ 𝑒
either removes a false tuple from 𝐷, or adds a true tuple to 𝐷, or
leaves 𝐷 unchanged, the above inequality holds.

PROPOSITION 3.4. Let 𝐷𝐺 be a finite database instance that
represents the ground truth, 𝐷 be a database instance, 𝑄 be a
query, and 𝑡 be a target action. If the domain is ordered, then there
is a finite number of questions 𝑞1, . . . , 𝑞𝑘 s.t. 𝑄(𝐷 ⊕ ans(𝑞1) ⊕
. . .⊕ ans(𝑞𝑘)) achieves the desired target action.

PROOF. Since the domain consists of values with an order, one
can systematically enumerate all possible facts. For every fact 𝑓 ,
we ask the question TRUE(𝑓)? to the crowd and apply the corre-
sponding edits to the database until the target action 𝑡 is achieved.
It is easy to see that all facts in (𝐷 − 𝐷𝐺) ∪ (𝐷𝐺 − 𝐷) will be
asked after a finite number of steps and hence, the desired target
action must be achieved after a finite number of steps.

THEOREM 4.2. Problem 4.1 is NP-hard.

PROOF. We prove the theorem by showing that the correspond-
ing decision problem is NP-hard. The deletion question decision
problem asks: Given 𝐷, 𝐷𝐺, 𝑄, 𝑡 ∈ (𝑄(𝐷) − 𝑄(𝐷𝐺)), does
there exist at most 𝑘 questions 𝑞1, ..., 𝑞𝑘 of the type TRUE(𝑅(�̄�))?
s.t. 𝑡 ̸∈ 𝑄(𝐷 ⊕ ans(𝑞1) ⊕ ... ⊕ ans(𝑞𝑘))? Clearly, the deletion
question search problem is at least as hard as the deletion question
decision problem.

Our reduction makes use of the Hitting Set Problem which asks:
Given an instance (𝑈, 𝑆) where 𝑈 is a universe of elements and 𝑆
is a set of subsets of 𝑈 , and a positive number 𝑘, does there exists
a hitting set 𝐻 for (𝑈, 𝑆) such that |𝐻| ≤ 𝑘?

We will reduce an instance of the decision version of the Hit-
ting Set Problem with (𝑈, 𝑆) and 𝑘 to the deletion question deci-
sion problem as follows: The underlying vocabulary is {𝑢1, . . . ,
𝑢|𝑈|, 𝑆1, . . . , 𝑆|𝑆|, 𝑑}, for each 𝑢𝑖 ∈ 𝑈 , 𝑆𝑖 ∈ 𝑆 and 𝑑 stands
for a constant that is different from the rest of the values. The in-
stance 𝐷 consists of |𝑈 | + 1 relations. For each element 𝑢𝑖 ∈ 𝑈 ,
1 ≤ 𝑖 ≤ |𝑈 |, there is a unary relation schema 𝑅𝑖(𝑋𝑖) where
the relation 𝑅𝑖 has two facts 𝑅𝑖(𝑢𝑖) and 𝑅𝑖(𝑑). In addition, we
have the relation schema 𝑅(𝑍,𝐴,𝑋1, . . . , 𝑋|𝑈|). For every set
𝑆𝑖 ∈ 𝑆, we record in 𝑅 the characteristic vector of 𝑆𝑖 that de-
scribes the elements which occur in 𝑆𝑖. The instance 𝐷𝐺 consists
of the facts {𝑅1(𝑑), ..., 𝑅|𝑈|(𝑑)}. We define the query 𝑄 to be (𝑧)
:- 𝑅(𝑧, 𝑦, 𝑤1, . . . , 𝑤|𝑈|), 𝑅1(𝑤1), ..., 𝑅|𝑈| (𝑤|𝑈|).

Notice that 𝑄(𝐷) consists of a single tuple (𝑑), while 𝑄(𝐷𝐺) =
∅. The input target action is to delete tuple (𝑑) ∈ 𝑄(𝐷). Recall that
given an assignment 𝛼 for a result tuple 𝑡, we call the set of tuples in
𝛼(𝑏𝑜𝑑𝑦(𝑄)) the witness for 𝛼, (or simply, a witness for 𝑡). Notice

that every witness for (𝑑) w.r.t. 𝐷 contains a characteristic vector
of a different 𝑆𝑖 ∈ 𝑆.

For example, if (𝑈, 𝑆) is such that 𝑈 = {𝑢1, 𝑢2, ..., 𝑢4} 𝑆 =
{𝑆1 = {𝑢2, 𝑢3, 𝑢4}, 𝑆2 = {𝑢1, 𝑢2}}, then 𝐷 consists of the
following facts 𝑅1(𝑢1), 𝑅1(𝑑), 𝑅2(𝑢2), 𝑅2(𝑑), 𝑅3(𝑢3), 𝑅3(𝑑),
𝑅4(𝑢4), 𝑅4(𝑑), and 2 facts of the relation 𝑅, one for each 𝑆𝑖 ∈ 𝑆.
The set 𝑆1 corresponds to the fact 𝑅(𝑑, 𝑆1, 𝑑, 𝑢2, 𝑢3, 𝑢4), and the
set 𝑆2 corresponds to the fact 𝑅(𝑑, 𝑆2, 𝑢1, 𝑢2, 𝑑, 𝑑). The instance
𝐷𝐺 consists of the facts {𝑅1(𝑑), 𝑅2(𝑑), 𝑅3(𝑑), 𝑅4(𝑑)}, and the
query 𝑄 is (𝑧) :- 𝑅(𝑧, 𝑦, 𝑤1, 𝑤2, 𝑤3, 𝑤4), 𝑅1(𝑤1), 𝑅2(𝑤2), 𝑅3(𝑤3),
𝑅4(𝑤4). In this example tuple (𝑑) has 2 different assignments and
2 witnesses (one for each 𝑆𝑖 ∈ 𝑆):
𝑤1 = 𝑅(𝑑, 𝑆1, 𝑑, 𝑢2, 𝑢3, 𝑢4), 𝑅1(𝑑), 𝑅2(𝑢2), 𝑅3(𝑢3), 𝑅4(𝑢4)
𝑤2 = 𝑅(𝑑, 𝑆2, 𝑢1, 𝑢2, 𝑑, 𝑑), 𝑅1(𝑢1), 𝑅2(𝑢2), 𝑅3(𝑑), 𝑅4(𝑑)

It is easy to verify that the input to the deletion question decision
problem can be constructed in polynomial time in the size of (𝑈, 𝑆)
and 𝑘.

We now show that there is a hitting set of size at most 𝑘 if and
only if there exists at most 𝑘 questions 𝑞1, ..., 𝑞𝑘 such that 𝑡 ̸∈
𝑄(𝐷 ⊕ ans(𝑞1)⊕ ...⊕ ans(𝑞𝑘)).

Suppose 𝐻 is a hitting set of size at most 𝑘. It is straightfor-
ward to verify that one can pose the questions TRUE(𝑅𝑖(𝑢𝑖))?
for every 𝑢𝑖 ∈ 𝐻 in any order. Recall that 𝐷𝐺 doesn’t contain
facts of type 𝑅𝑖(𝑢𝑖), for all 𝑖. Thus, the answer to every ques-
tion TRUE(𝑅𝑖(𝑢𝑖))? for every 𝑢𝑖 ∈ 𝐻 is NO, and a deletion edit
𝑅𝑖(𝑢𝑖)

− is generated. Since 𝐻 is a hitting set, its elements hit ev-
ery set in 𝑆, and hence their respective relations of the form 𝑅𝑖(𝑢𝑖)
hit every witness of the tuple (𝑑). The result of applying all such
deletion edits to 𝐷 is a database 𝐷′ such that (𝑑) ̸∈ 𝑄(𝐷′).

For the converse, suppose there exists at most 𝑘 questions 𝑞1, ...,
𝑞𝑘 such that 𝑡 ̸∈ 𝑄(𝐷 ⊕ ans(𝑞1)⊕ ...⊕ ans(𝑞𝑘)). We can assume
wlog that each 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝑘, must be a question on facts of 𝐷
since questions regarding facts not in 𝐷 are unnecessary towards
the removal of (𝑑) from the output. Similarly, we can assume wlog
that these questions will not be about facts of 𝐷𝐺, because they are
unnecessary towards the removal of the wrong answer (𝑑) as well.

Furthermore, we can assume wlog that each question is of the
form TRUE(𝑅𝑖(𝑢𝑖))? where 1 ≤ 𝑖 ≤ |𝑈 |. If the question is of
the form TRUE(𝑅(𝑡𝑖))?, where 𝑡𝑖 is a tuple of relation 𝑅, we can
always replace this question with the question TRUE(𝑅𝑗(𝑢𝑗))? for
some element 𝑢𝑗 contained in the set represented by 𝑅(𝑡𝑖) in order
to destroy the same witness. Since the deletion edits consists of
facts of relations of type 𝑅𝑗 and 𝑡 ̸∈ 𝑄(𝐷⊕ans(𝑞1)⊕...⊕ans(𝑞𝑘)),
it must be that the set of all subsets that correspond to the deletion
edits forms a hitting set for 𝑈 and this hitting set has size at most
𝑘.

THEOREM 4.5. Given a pair (𝑈, 𝑆), as described in Defini-
tion 4.3, a unique minimal hitting set exists if and only if the el-
ements of the singleton sets of 𝑆 forms a hitting set for 𝑆.

PROOF. Let 𝑀 denote the elements that occur in all singleton
sets of 𝑆. Clearly, any hitting set must contain 𝑀 . If 𝑀 itself is
a hitting set, then 𝑀 is also a unique minimal hitting set because
none of the elements of 𝑀 can be removed. We show next that if
a unique minimal hitting set exists, then 𝑀 must be a hitting for
𝑆. Assume by contradiction that the hitting set must include, in
addition to the elements in 𝑀 , some other element that hits a set
𝑠′ ∈ 𝑆. Then, 𝑠′ must contain at least 2 elements and the elements
of 𝑠′ do not occur among 𝑀 . If this is the case, different elements
of 𝑠′ will constitute to different minimal hitting sets.

THEOREM 5.2. Problem 5.1 NP-hard.

PROOF. We prove the theorem by describing a reduction from
the following NP-hard problem, which we call One-3SAT. An in-
stance of the One-3SAT problem is a satisfiable 3CNF formula Φ
where each clause in Φ has three literals. The problem of con-
structing a satisfying assignment for a satisfiable formula Φ is NP-
hard [23]. We will show that if there is a polynomial time algorithm
for generating at most 𝑘 questions such that 𝑡 ∈ 𝑄(𝐷⊕ ans(𝑞1)⊕
... ⊕ ans(𝑞𝑘)), then one can construct a satisfying assignment for
Φ in polynomial time.

Suppose there is a polynomial time algorithm 𝑃 for the out-
put insertion question search problem. Given a 3SAT formula Φ,
we construct an input instance for the output insertion question
search problem as follows: The database instance 𝐷 is the empty
database. Construct a relation for every clause in Φ as follows.
For every clause 𝜙𝑖 ∈ Φ, where 1 ≤ 𝑖 ≤ |Φ|, construct a rela-
tion 𝑅𝑖(𝐴,𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3) where 𝑋𝑖𝑗 denotes the 𝑗th literal in 𝜙𝑖

and 𝐴 is a fresh attribute that does not occur among the literals of
Φ. In database 𝐷𝐺, every relation 𝑅𝑖, 1 ≤ 𝑖 ≤ |Φ|, consists of
facts that represent the satisfying assignments of the corresponding
clause 𝜙𝑖. For example, given 𝜙1 = (𝑋1 + 𝑋2 + 𝑋4), there are
7 facts (all of 𝑅1(𝑑, 1, 1, 1) to 𝑅1(𝑑, 0, 0, 1) except 𝑅1(𝑑, 0, 0, 0))
in 𝐷𝐺. For the clause 𝜙2 = (𝑋1 +𝑋2 +¬𝑋3), there are 7 facts in
𝐷𝐺, all except for the tuple 𝑅2(𝑑, 0, 0, 1). The value 𝑑 is a fresh
constant that is different from 0 or 1. Recall that the crowd mem-
ber must answer YES to questions of the form TRUE(𝑅𝑖(�̄�))?, if
𝑅𝑖(�̄�) ∈ 𝐷𝐺. Now, define the query 𝑄 to be (𝑥) :- 𝑅1(𝑥, 𝑥1,1,
𝑥1,2, 𝑥1,3),. . ., 𝑅|Φ|(𝑥, 𝑥|𝜙|,1, 𝑥|𝜙|,2, 𝑥|𝜙|,3)), where the variables
𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3 correspond to the literals in clause 𝜙𝑖 ∈ Φ for 1 ≤
𝑖 ≤ |Φ|. For example, the corresponding query for 𝜙1 and 𝜙2 is
(𝑥) :- 𝑅1(𝑥,𝑋1, 𝑋2, 𝑋4), 𝑅2(𝑥,𝑋1, 𝑋2, 𝑋3) and 𝑉 𝑎𝑟(𝑄) = {𝑥,
𝑋1, 𝑋2, 𝑋3, 𝑋4}. The output 𝑄(𝐷) is ∅ since 𝐷 is empty. The
wanted target action is to insert tuple (𝑑), because (𝑑) ∈ 𝑄(𝐷𝐺)
and 𝑡 ̸∈ 𝑄(𝐷). It is straightforward to verify that the input to
the output insertion question search problem can be constructed in
polynomial time in the size of Φ.

We now execute our polynomial time algorithm 𝑃 on 𝐷, 𝐷𝐺, 𝑄,
and (𝑑) with 𝑘 = |Φ|. We show that a solution to 𝑃 (𝐷,𝐷𝐺, 𝑄, (𝑑),
𝑘) leads to a satisfying assignment for Φ. For (𝑑) to appear in
the output, there must be at least one tuple per relation 𝑅𝑖, where
1 ≤ 𝑖 ≤ |Φ|, such that the tuples from different relations join
according to 𝑄. Since we are only allowed |Φ| questions, a so-
lution to 𝑃 (𝐷,𝐷𝐺, 𝑄, (𝑑), 𝑘) must contain exactly one question
TRUE(𝑅𝑖(𝑡𝑗))? for a tuple in each relation and the answer to the
question must be YES. Furthermore, since these tuples must join
together to produce (𝑑), we can conclude that the satisfying as-
signment for each clause together form a satisfying assignment for
Φ.

B. THE GENERAL ALGORITHM
The list of modifications to Algorithms 1, 2 and 3, designed to

support multiple imperfect experts in parallel, described in Sec-
tion 6.2, are:
1. Post all closed questions multiple times according to the aggre-

gator black-box. These questions are in Algorithm 1 in line 7,
Algorithm 2 line 7, and Algorithm 3 line 3.

2. Verify an answer to each opened question with closed verifica-
tion questions posted to the crowd. These questions appear in
Algorithm 2 lines 12, 18, and Algorithm 3 line 7.

3. Run both deletion and insertion parts in parallel. To allow that,
we add another condition 𝑄(𝐷) ̸= 𝑅𝑒𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 to the outer
“while’ loop in Algorithm 3 line 1.

4. Use parallel foreach loops, in both deletion part (Algorithm 3
lines 2-6) and insertion part (Algorithm 3 lines 7-9).

C. SYSTEM ARCHITECTURE

QOCO Manager

Insertion Module

Unverified
Answers

(For CurrQ)

Deletion Module U
se

r
In

te
rf

ac
e

D
at

ab
as

e

Verified
Answers

Wrong
Answers

Sub-
Queries

Missing
Answers

Query

Question

Results

Answers

Questions

Execute Query

Unverified
Answers

Verified
Answers

Result

Crowd Deletion Questions
Crowd Insertion Questions

Delete
Action

Update Actions

Insert
Action

Black-Box
Aggregator

Enumeratio
n Black-Box

Figure 5: QOCO architecture

Figure 5 illustrates QOCO’s system architecture. We describe
the major components next. The crowd, who are answering ques-
tions, and the user (requester) who is running the query over the
DB, interact with QOCO through the User Interface. In our ex-
periments with simulated oracle, the User Interface was replaced
with a simulator (called the ground truth) that returned answers
to queries from the ground truth database). There are three core
modules. QOCO Manager is responsible for interacting with the
Database, and managing iterations and deletions as described in
Algorithm 3. It receives the query from the requester and executes
it on the Database. It performs the needed insert and delete actions
identified by the Deletion module (Algorithm 1) and Insertion mod-
ule (Algorithm 2).

	Introduction
	Preliminaries
	Problem Definition
	Model and Problem
	Basic Architecture

	Removing a wrong answer
	Adding a missing answer
	Query split
	Implementations of Split()

	The general algorithm
	Iterative Cleaning
	Multiple Imperfect Experts

	Implementation
	DBGroup database
	Soccer database

	Related Work
	Conclusions
	References
	Proofs
	The General Algorithm
	System Architecture

