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ABSTRACT
Crowd data sourcing is increasingly used to gather infor-
mation from the crowd and to obtain recommendations. In
this paper, we explore a novel approach that broadens crowd
data sourcing by enabling users to pose general questions,
to mine the crowd for potentially relevant data, and to re-
ceive concise, relevant answers that represent frequent, sig-
nificant data patterns. Our approach is based on (1) a sim-
ple generic model that captures both ontological knowledge
as well as the individual history or habits of crowd mem-
bers from which frequent patterns are mined; (2) a query
language in which users can declaratively specify their in-
formation needs and the data patterns of interest; (3) an
efficient query evaluation algorithm, which enables mining
semantically concise answers while minimizing the number
of questions posed to the crowd; and (4) an implementa-
tion of these ideas that mines the crowd through an interac-
tive user interface. Experimental results with both real-life
crowd and synthetic data demonstrate the feasibility and
effectiveness of the approach.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

1. INTRODUCTION
Consider the following scenario: Ann is planning a va-

cation in New York City with her family. In particular,
she is interested in finding combinations of popular child-
friendly activities and a nearby restaurant to eat at after-
wards, and for each such combination, useful related advice
(e.g., walk or rent a bike). She immediately thinks of two
options: searching the web, or posting a question on some
forum to receive input. However, both of these options have
drawbacks.

Web search (e.g., using a search engine, or a dedicated
website like TripAdvisor) may return valuable information,
but if Ann queries for child-friendly activities or for good
restaurants she would still need to sift through the results to
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identify the appropriate combinations: Not all good restau-
rants, even if child-friendly, are appropriate after a sweaty
outdoor activity; a restaurant may be geographically close to
some attraction but not easy to access; and so on. Moreover,
much of the information is text-based so finding related ad-
vice (e.g., walk or bike) may be time consuming. Forums, on
the other hand, are more likely to yield detailed answers rel-
evant to Ann’s specific question. However, she would again
receive a number of (wide-ranging) text-based results, which
she would then have to manually examine and aggregate, to
extract the desired information out of them.

In this paper, we explore an alternative approach which
broadens crowd-based data-sourcing by enabling users to
pose general queries to the crowd and receive concise, rele-
vant answers that represent frequent, significant patterns.

The user’s interaction with our system is based on two
types of data sources: an ontology that captures general
knowledge, and a crowd of data contributors with personal
knowledge. Returning to our example, the ontology would
include facts such as “Maoz Vegetarian is a restaurant in
NYC”. These facts are illustrated in the sample ontology
in Figure 1 by labeled edges connected to the “Maoz Veg.”
element. Using the ontology, Ann can formulate questions
such as“I seek an activity at a child-friendly attraction inside
NYC and a nearby restaurant”.

The ontology data, which consists of known and relatively
stable information, can often be found in publicly available
knowledge bases or mined from the web. However, the ontol-
ogy does not contain information about people’s habits, the
frequency with which people do certain activities (the fre-
quency of facts), or combinations thereof (the co-occurrence
of facts within fact-sets). For instance, it does not contain
information about how often people eat at Maoz Vegetar-
ian when visiting Central Park, or whether they bike rather
than walk. For this dynamic and perhaps unknown indi-
vidual data, the system mines the crowd by asking them
questions.

A crowd member’s personal history is modeled as a bag of
fact-sets (see Table 3), each representing an occasion in their
past, which they may not completely recall. A personal his-
tory can be thought of as a black-box, some details of which
can be exposed through the person’s answers to questions
[5]. For example, if asked the concrete question of whether
they bike in Central Park, a person may be able to say “Yes,
about once a week” even if they cannot remember the exact
dates [5]. People may also be able to answer more gen-
eral yet focused questions, e.g., what types of activities they
typically do in Central Park – an open specialization ques-
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Figure 1: Sample ontology

tion [5]. To find activities that are typically done together
(namely, facts which frequently co-occur within fact-sets),
questions are bundled together, e.g., “How often do you go
to Central Park and also eat at Maoz Vegetarian?” To find
additional relevant information the system could add “What
else do you do when you go to Central Park and eat at Maoz
Vegetarian?”, in response to which the person might suggest
renting bikes at the Boathouse. Note that this additional
information is not explicitly requested by Ann, but is found
because it frequently co-occurs with the other two facts.

Semantic connections between terms are known to be use-
ful for speeding up the computation in classic data min-
ing [28] and crowd mining [2]. Thus, in addition to helping
phrase the question, the ontology can be used to reduce
the number of questions posed to the crowd. For exam-
ple, if playing ball games in the Bronx Zoo is found to be
infrequent then it is not worth asking the crowd if they fre-
quently play basketball in the Bronx Zoo. Furthermore, the
ontology can help compute a concise, redundancy-free set of
answers. For example, if basketball is frequently played in
Central Park, it follows that more general facts (e.g., about
ball games in general) are also frequent. Thus only the most
specific answers should be included in the query output.

The final answers to Ann’s question may include “Go bik-
ing in Central Park and eat at Maoz Vegetarian (tip: rent
the bikes at the Boathouse).”, and “Feed a monkey at the
Bronx Zoo and eat at Pine Restaurant”. Since we collect
new data from the crowd, obtaining the results may not be
instantaneous, as when using a forum. However, in contrast
to a forum, the answers that we provide aggregate the an-
swers of many users, are concise, relevant and structured,
and thus provide an added value to the user.

Contributions. OASSIS extends previous query-driven crowd-
sourcing platforms, e.g. [19, 21, 25, 31, 34], by enabling users
to mine the crowd for significant data patterns. In contrast
to the crowd mining frameworks in [2, 3], our query-based
approach focuses the mining process on the particular user
information needs.

The solution that we propose consists of the following
components:

1. A simple, generic model capturing both publicly avail-
able knowledge (the vocabulary and ontology), as well
as the personal history of crowd members from which
frequent fact-sets will be mined.

2. A declarative query language OASSIS-QL (Ontology AS-
SISted crowd mining Query Language) in which the
user information needs can be formulated in order to
mine of relevant, frequent fact-sets from the crowd.

3. An efficient query evaluation algorithm for comput-
ing semantically concise answers to OASSIS-QL queries.
The algorithm builds its output incrementally, effec-
tively pruning the search space at each step to mini-
mize the number of questions posed to the crowd.

4. A prototype system OASSIS, which implements the above
ideas and evaluates user-specified OASSIS-QL queries
with the help of the crowd, through a dedicated crowd-
sourcing interface.

5. A demonstration of the effectiveness and efficiency of
OASSIS through an extensive experimental evaluation,
which includes both real crowd and synthetic data.

OASSIS-QL forms the necessary formal foundations for eval-
uating queries such as Ann’s. Moreover, it could also be
used for mining fact-sets from standard databases and thus
represents an independent contribution outside of the crowd
setting. Our experiments with OASSIS show the feasibility
of the approach. Important future extensions include us-
ing natural language to formulate queries; mining patterns
other that fact-sets, e.g., association rules; interactively ex-
tending and cleaning the ontology data with the help of the
crowd; controlling the selection of crowd contributors; and
retrieving only the top-k query answers.

Outline of paper. We present a formal model of the vocab-
ulary, ontology and crowd in Section 2. The query language
in which user questions are formalized, OASSIS-QL, is de-
scribed in Section 3. Sections 4 and 5 discuss the evaluation
of OASSIS-QL queries. The implementation of the OASSIS

prototype system, as well as experimental results, are de-
scribed in Section 6. Related work is in Section 7, and we
conclude in Section 8.

2. PRELIMINARIES
We start by presenting a simple, generic model that cap-

tures (i) general knowledge, including a vocabulary of terms
and an ontology of universal facts, and (ii) individual knowl-
edge, namely the personal knowledge of each member of the
crowd, to be collectively mined. These components will be
used in formulating crowd mining queries (Section 3).

Definition 2.1 (Vocabulary). A vocabulary 𝒱 is a
tuple (ℰ, ≤ℰ , ℛ, ≤ℛ), where ℰ and ℛ are sets of element
and relation names, respectively, and ≤ℰ and ≤ℛ are partial
orders over these sets, respectively.

Elements in ℰ can be nouns such as Place or NYC, and
actions such as Biking. Relations in ℛ can be terms such
as inside, nearBy and parentOf. ≤ℰ signifies a semantically
reversed subsumption relationship between elements, e.g.,
biking is a sport and hence Sport ≤ℰ Biking. ≤ℛ signifies
a similar order over relations. From now on, we assume a
fixed vocabulary 𝒱.

Next, we define the notion of facts, in the spirit of lan-
guages such as RDF and OWL [17, 22].

Definition 2.2 (Facts and fact-sets). A fact 𝑓 over
𝒱 = (ℰ, ≤ℰ , ℛ, ≤ℛ) is a triple ⟨𝑐1, 𝑟, 𝑐2⟩ ∈ ℰ × ℛ × ℰ. A
fact-set 𝐴 is a subset of ℰ ×ℛ× ℰ.



ID Fact-set

𝑇1 Basketball doAt Central Park.
Falafel eatAt Maoz Veg

𝑇2 Feed a Monkey doAt Bronx Zoo.
Pasta eatAt Pine

𝑇3 Biking doAt Central Park.
Rent Bikes doAt Boathouse.
Falafel eatAt Maoz Veg

𝑇4 Baseball doAt Central Park.
Biking doAt Central Park.
Rent Bikes doAt Boathouse.
Falafel eatAt Maoz Veg

𝑇5 Feed a Monkey doAt Bronx Zoo.
Pasta eatAt Pine

𝑇6 Feed a Monkey doAt Bronx Zoo

(a) Personal DB 𝐷𝑢1

ID Fact-set

𝑇7 Baseball doAt Central Park.
Biking doAt Central Park.
Rent Bikes doAt Boathouse.
Falafel eatAt Maoz Veg

𝑇8 Feed a Monkey doAt Bronx Zoo.
Pasta eatAt Pine

(b) Personal DB 𝐷𝑢2

Table 3: Example transaction DBs

We denote facts using the notation ⟨𝑐1, 𝑟, 𝑐2⟩ or alterna-
tively the RDF notation 𝑐1 𝑟 𝑐2. Now, an ontology is
modeled as a fact-set with a particular type of data, intu-
itively capturing “universal truth”, that is, facts that hold
for all people at all times. An example of such a fact is
Central Park inside NYC.

Example 2.3. Figure 1 depicts an ontology in graph form.
Elements in ℰ (e.g., Central Park) are depicted as nodes; and
facts (e.g., ⟨Sport, subClassOf,Activity⟩) are depicted as di-
rected, labeled edges. In this ontology, the relations subClas-
sOf and instanceOf coincide with the reverse of the partial
order ≤ℰ , i.e., Activity ≤ℰ Sport.

In addition to the “universal truth” represented by the on-
tology, we are interested in modeling facts (over the vocab-
ulary) that are a part of a particular person’s history, e.g.,
“I played basketball in Central Park (last weekend)”, which
may be represented as Basketball doAt Central Park. Given
a particular person and occasion (e.g., Ann, last weekend),
we call the set of all the facts that hold for them a transac-
tion. We also assume that every transaction has a unique
ID. Given a set of crowd members 𝒰 , we associate with each
𝑢 ∈ 𝒰 a personal database 𝐷𝑢, which contains all the trans-
actions of 𝑢 related to different occasions. |𝐷𝑢| denotes the
number of transactions. Note that 𝐷𝑢 is completely virtual,
and is only used to model a crowd member’s history; we
assume it is not recorded anywhere, and cannot be directly
accessed like a standard database.

Example 2.4. Table 3 shows the (virtual) personal databases
𝐷𝑢1 and 𝐷𝑢2 of crowd members 𝑢1 and 𝑢2, respectively. The
table columns include the transaction ID and fact-sets, where
multiple facts are concatenated by a dot. For instance, 𝑇1

describes an occasion during which 𝑢1 played basketball at
Central Park and ate at Maoz Vegetarian. Note that some
transaction elements appear in the vocabulary but not in the
ontology (e.g., Boathouse).

Due to the semantic subsumption defined by the vocab-
ulary’s order relations, facts may also implicitly occur in a
database (or in fact-sets, in general). For example, consider
a transaction that contains Basketball doAt Central Park. If
Sport ≤ℰ Basketball, then Sport doAt Central Park also im-
plicitly occurs in the transaction. We formalize this by ex-
tending ≤ℰ and ≤ℛ to facts and fact-sets.

Definition 2.5 (Facts and fact-sets partial order).

Facts. Let 𝑓 = ⟨𝑒1, 𝑟1, 𝑒′1⟩ and 𝑓 ′ = ⟨𝑒2, 𝑟2, 𝑒′2⟩ be facts. We
say that 𝑓 ≤ 𝑓 ′ iff 𝑒1 ≤ℰ 𝑒2, 𝑟1 ≤ℛ 𝑟2 and 𝑒′1 ≤ℰ 𝑒′2.

Fact-sets. Let 𝐴 and 𝐵 be fact-sets. 𝐴 ≤ 𝐵 iff for every
fact 𝑓 ∈ 𝐴 there exists a fact 𝑓 ′ ∈ 𝐵 such that 𝑓 ≤ 𝑓 ′.

We say that a transaction 𝑇 implies a fact 𝑓 (resp., fact-
set 𝐴) if {𝑓} ≤ 𝑇 (resp., 𝐴 ≤ 𝑇 ), where 𝑇 is viewed as a
fact-set.

Example 2.6. Returning to our running example, the fol-
lowing also hold: letting 𝑓1 = ⟨Sport, doAt,Central Park⟩ and
𝑓2 = ⟨Biking, doAt,Central Park⟩, then 𝑓1 ≤ 𝑓2 since Sport ≤ℰ
Biking; suppose that nearBy ≤ℛ inside is in our vocabulary,
then letting 𝑓3 = ⟨Central Park, inside,NYC⟩ and
𝑓4 = ⟨Central Park, nearBy,NYC⟩, we have 𝑓3 ≤ 𝑓4. Based
on the previous observations, {𝑓1} ≤ {𝑓1, 𝑓3} ≤ {𝑓2, 𝑓3};
and for 𝑇1 from Table 3, {𝑓1} ≤ 𝑇1.

The significance of a fact-set 𝐴 for a person 𝑢 is measured
by its support in transactions in 𝐷𝑢, defined as
suppu(𝐴) := |{𝑇 ∈ 𝐷𝑢 | 𝐴 ≤ 𝑇}| / |𝐷𝑢|

Example 2.7. Consider again the personal DBs in Ta-
ble 3, and the fact-set 𝑓1 = {⟨Pasta, eatAt,Pine⟩, ⟨Activity,
doAt,Bronx Zoo⟩}. For 𝐷𝑢1 we have, e.g., suppu1 (𝑓1) = 1/3,
since the two facts of 𝑓1 are implied by 𝑇2 and 𝑇5.

Questions to the crowd. Recall that 𝐷𝑢 is virtual, and so
we cannot access it to compute the support for a given fact-
set. Instead, we infer this support by asking 𝑢 a question
about its frequency, as in [3]. We define the following two
types of questions to the crowd.
Concrete questions: retrieve just the support of a given

fact-set from the crowd member.
Specialization questions: given a fact-set ask the crowd

member to specify a more specific, significant fact-set along
with its support, to speed up information gathering (see
Section 4.1).

A concrete question about, e.g., {⟨Biking, doAt,Central Park⟩,
⟨Rent Bikes, doAt,Boathouse⟩} may be presented to the user
as “How often do you go biking in Central Park and rent
bikes at the Boathouse?” The user answer could be “Once a
month”, which can then be interpreted as, e.g., the support
value 12/365 (signifying 12 days a year). An example for a
specialization question might be “what type of sport do you
do in Central Park? How often do you do that?” The an-
swer could be, e.g., “Basketball” for the first part, and“every
other Sunday” for the second, translating the frequency to
support as in a concrete question. Previous crowd mining
work observed that interleaving open-ended and concrete
questions is beneficial: specialization questions allow promi-
nent, significant fact-sets to be found quickly, by simply ask-
ing people to specify them; whereas, concrete questions are



1 SELECT FACT-SETS
2 WHERE

3 { $w subClassOf* Attraction.

4 $x instanceOf $w.

5 $x inside NYC.

6 $x hasLabel "child-friendly".

7 $y subClassOf* Activity .

8 $z instanceOf Restaurant.
9 $z nearBy $x}

10 SATISFYING

11 { $y+ doAt $x .

12 [] eatAt $z.
13 MORE}

14 WITH SUPPORT = 0.4

Figure 2: Sample OASSIS-QL Query

helpful to dig deeper into people’s memories and discover
data they may have not recalled spontaneously [3, 5].

Given the definition for “personal” support, we can de-
fine the overall significant fact-sets as the ones for which
the average support over all crowd members exceeds some
predefined threshold. Choosing the support threshold is a
general problem in data mining [1], but in our setting it has
an intuitive interpretation: support is the average frequency
of a habit, and the support threshold represents the min-
imum frequency, e.g., to discover habits that the average
user does at least 3 times a year once can use the thresh-
old 3/365. Moreover, given the significant fact-sets w.r.t. a
certain threshold, we can more easily compute the significant
fact-sets for a different threshold, by caching and re-using
the crowd answers for the new mining task. See details in
Section 6.3.

Since we cannot pose all the questions to all the crowd
members and crowd answers are not precise, in practice it
is necessary to resort to estimations of this average. For
simplicity we use below a simple estimation method where
each question is posed to a fixed-size sample of the crowd
members and the answers are averaged. More generally one
could use any black-box (e.g., of [3, 25]) to determine the
number of users to be asked and how to aggregate their
answers, see Section 4.2.

3. THE OASSIS-QL QUERY LANGUAGE
We now present our query language, OASSIS-QL, which ex-

tends the RDF query language SPARQL [26] with features
that account for mining frequent fact-sets. The syntax and
semantics of OASSIS-QL are illustrated via the example in
Figure 2, which represents the scenario presented in the In-
troduction: “Find popular combinations of an activity in a
child-friendly attraction in NYC and a restaurant nearby
(plus other relevant advice)”. The query answers would in-
clude a formal representation of, e.g., “Go biking in Central
Park and eat at Maoz Vegetarian (tip: rent the bikes at the
Boathouse).”, “Play ball games in Central Park and eat at
Maoz Vegetarian”and“Feed a monkey at the Bronx Zoo and
eat at Pine Restaurant”, given as fact-sets in RDF notation.

The advantages of using OASSIS-QL for crowd mining are:
1) the language is rich, and can be used by experienced users
to express a wide range of queries (see the discussion about
the expressivity of OASSIS-QL at the end of the section); and
2) since it is based on SPARQL, SPARQL programmers can

easily learn it, and user-friendly query formulation tools for
inexperienced users can be developed by adapting existing
tools for SPARQL. These include, e.g., tools that translate
natural language to SPARQL . As a first step, we offer a full
language guide with many examples [24], and a user-friendly
query editor (see Section 6.2).

We next explain how different parts of the query are used
to formulate Ann’s intuitive question, and the form of the
requested answers.

Overview of syntax. The SELECT statement (line 1) spec-
ifies the format of the answers, where FACT-SETS requests
output in the form of fact-sets. (Alternatively, VARIABLES

can be used to request relevant variable assignments.) The
WHERE statement (lines 2-9) defines a SPARQL-like selection
query on the ontology 𝒪, which computes a set of possi-
ble assignments for the query variables. Using these assign-
ments, the SATISFYING statement (lines 10-14) defines the
data patterns to be mined from the crowd. Patterns with a
high enough support are returned in the requested format.

SPARQL-based features. The WHERE statement defines a
meta–fact-set, where some of the elements or relations are
replaced by variables denoted by $ (e.g., $x). [] stands
for anything, when we do not care about a variable’s value,
as long as one exists. An assignment 𝜙 maps the query
variables to relations and elements. 𝜙 is said to be valid if
by applying it to all the variables in the WHERE meta–fact-
set, we obtain a fact-set 𝐴 ≤ 𝒪, i.e., a set of facts which is
semantically implied by the ontology.

Another useful feature of SPARQL shown in the example
is $w subClassOf* Attraction, which defines a path of 0
or more facts with subClassOf relation connecting $w and
the Attraction element. In this manner, we can select any
(perhaps indirect) subclass of Attraction.

Basic crowd mining features. Valid assignments to the
WHERE statement variables are applied to the variables in
the meta–fact-set in the SATISFYING statement, to obtain
fact-sets whose support should be mined from the crowd.
Intuitively, these are the parts of the user question that
are not general knowledge but depend on human judgment
(e.g., “popular”). The syntax of the SATISFYING statement is
composed of a SPARQL part for defining the meta–fact-set,
and a WITH SUPPORT part which defines the required support
threshold (see Section 2 for a discussion on how to set this
threshold). We say that an assignment 𝜙 is significant if the
support of the fact-set it defines exceeds the threshold.

We denote by 𝐴WHERE and 𝐴SAT the meta–fact-set of the
WHERE and SATISFYING statements, respectively. Given an
assignment 𝜙, we abuse notation and denote by 𝜙(𝐴) the
fact-set resulting from applying 𝜙 to all the variables in the
meta–fact-set 𝐴.

Example 3.1. Assuming that the crowd contains only the
two users 𝑢1 and 𝑢2, we explain the semantics of the example
query (ignore the colored text, to be explained shortly) on the
sample ontology and databases (see Figures 1 and 2 and Ta-
ble 3). There are several valid assignments w.r.t. the WHERE

statement of this query, including the assignment 𝜙16 : 𝑥 ↦→
Central Park, 𝑤 ↦→ Park, 𝑦 ↦→ Biking, 𝑧 ↦→ Maoz Veg., and
assignment 𝜙20 , which differs from 𝜙16 by mapping 𝑦 to
Baseball (the assignment indices will be useful in the se-



quel). The average support of 𝜙16(𝐴SAT) is avg(1/3, 1/2) =
5/12, which exceeds the threshold in line 14, and that of
𝜙20(𝐴SAT) is avg(1/6, 1/2) = 1/3. Hence, 𝜙16 is significant
and 𝜙20 is not.

Advanced features
MSP. Consider an assignment 𝜙15 that differs from 𝜙16

by mapping 𝑦 to Sport. This assignment is more general
(and thus less informative) than 𝜙16 : applying 𝜙15 on the
SATISFYING or SELECT statements yields fact-sets that are
more general than those yielded by applying 𝜙16 (accord-
ing to the partial order on fact-sets). By default, OASSIS-
QL queries return only the maximal (i.e., most specific)
significant patterns (MSPs), which form a concise output
representation. The rest of the patterns can then be in-
ferred by generalization. To obtain all of the significant
patterns one can append the keyword ALL to the SELECT

line. See the formal definition of MSPs in Section 4.1.
Multiplicities. A user may wish to know if multiple simi-

lar facts co-occur in the same occasion. This multiplicity
can be specified in the SATISFYING clause of an OASSIS-

QL query by attaching to each variable or fact how many
instantiations of it we are interested in (see the “+” after
$y). Standard notations like +, *, ? can be used for “at
least one”, “any number”, “optional”. The default mul-
tiplicity is “exactly one”. The semantics of a query with
multiplicities is that sets of values are assigned to variables
instead of single values. Multiplicity 0 it is equivalent to
deleting all the meta-facts containing the variables.

More. The MORE keyword in line 13 is used to identify any
fact-set which commonly co-occurs with the other facts,
i.e., the “...plus other relevant advice, if there is any” part
of the user query. This is a syntactic sugar for {$u $p

$v}*, i.e., any number of unrestricted facts. See [24] for
more details and additional advanced OASSIS-QL features.

Example 3.2. Our example query allows any multiplic-
ity greater than 0 for $y, and any multiplicity of MORE facts.
Assignments 𝜙16 , 𝜙20 and 𝜙15 (discussed earlier) had mul-
tiplicity 1 for $y and 0 MORE facts. As another example,
𝜙16 could be extended to include the MORE fact Rent Bikes
doAt Boathouse (multiplicity 1), signifying the combination
of biking in Central Park, eating in Maoz Veg., and also rent-
ing bikes at the boathouse. Another extension of 𝜙16 could
map $y to {Biking, Ball Game} (multiplicity 2), signifying
the combination of biking in Central Park, playing baseball
in Central Park, and eating at Maoz Veg. Both extended as-
signments are valid w.r.t. the query, but only the former is
significant; it yields a fact-set that is implied by transactions
𝑇3, 𝑇4 and 𝑇7 in the example DBs in Table 3, and thus has
an average support of 5/12.

Expressivity. As OASSIS-QL is based on SPARQL, its ca-
pabilities of performing selection over the ontology, are di-
rectly derived from those of SPARQL.1 As we show in the
next section, using multiplicities allows to capture standard
frequent itemset mining with OASSIS-QL. To simplify the
presentation, we only show here how to mine fact-sets from
the crowd for a given support threshold; some additional
features, such as mining association rules, are described in
the language guide [24], and possible future extensions are
discussed in Sections 1 and 8.

1For instance, SPARQL does not allow path quantification.
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Figure 3: Example partial order over assignments

Query evaluation. Note that there is nothing in the syn-
tax or semantics of OASSIS-QL that requires the use of the
crowd in the evaluation process, had the user databases been
available. Since in practice the user databases are only vir-
tual and cannot be materialized [5] one needs to mine the
crowd to obtain the relevant information, and our evalua-
tion techniques are developed accordingly. In the next two
sections, we explain how OASSIS-QL queries are evaluated
by computing valid assignments and identifying which ones
are significant. We first assume in Section 4 that we have all
the valid assignments, and discuss how to use the crowd to
determine the significant assignments. Computing the set
of valid assignments in an efficient manner is then discussed
in Section 5.

4. MINING THE CROWD
We start by describing query evaluation (focusing on the

SATISFYING clause) for a single crowd member, then extend
the techniques to multiple users.

4.1 Evaluation with a Single User
We describe the vertical algorithm that interactively chooses

the next question to the crowd. We start by defining a (se-
mantic) partial order over assignments, and then describe
how this order is exploited by the algorithm.

Partial order over assignments. We formally define an
assignment (with multiplicities) 𝜙 as a mapping from the
variable space 𝑋 to P(ℰ) ∪ P(ℛ), i.e., to sets of vocabulary
elements or relations. The partial order over these assign-
ments is defined as follows.

Definition 4.1 (Assignment order relation). Let 𝜙
and 𝜙′ be assignments. 𝜙′ is a successor of 𝜙, denoted by
𝜙 ≤ 𝜙′, if for every variable 𝑥 ∈ 𝑋 and every value 𝑣 ∈ 𝜙(𝑥),
there exists 𝑣′ ∈ 𝜙′(𝑥) s.t. 𝑣 ≤ 𝑣′. We use l to denote im-
mediate successors, i.e., 𝜙l𝜙′ if 𝜙 ≤ 𝜙′ and there exists no
𝜙′′ (different from 𝜙,𝜙′) s.t. 𝜙 ≤ 𝜙′′ ≤ 𝜙′.

When |𝜙(𝑥)| = 1, we may identify 𝜙(𝑥) with its single ele-
ment.

Example 4.2. We continue explaining the evaluation of
the sample query in Figure 2, but to simplify the presenta-



tion, we consider only the parts highlighted by a grey back-
ground (i.e., without the nearby restaurant). Figure 3 illus-
trates parts of the order relation over assignments. Each
node represents an assignment 𝜙, and contains two values,
𝜙(𝑥), 𝜙(𝑦). (The value of 𝑤 is omitted). There is an edge be-
tween 𝜙 and 𝜙′ if 𝜙l𝜙′. Some of the assignments, marked by
a dashed outline, are not valid w.r.t. the WHERE clause (they
are relevant since our algorithm will explore them). Dotted
edges denote omitted ancestors or descendants. Node colors
are explained in Example 4.5.

Recall assignment 𝜙20 from Example 3.1, restricted to the
variables 𝑥, 𝑦 (the assignment index denotes the number of
the relevant node in Figure 3). Also consider 𝜙17 (node 17).
It holds that 𝜙17 ≤ 𝜙20 , since the value of 𝑥 is more specific
in 𝜙20 . In fact, 𝜙17 l 𝜙20 , since Ball Gamel Baseball.

We can now formally define MSP assignments.

Definition 4.3 (MSPs). Given an OASSIS-QL query 𝑄,
a valid and significant assignment 𝜙 to 𝑄’s variables is an
MSP if 𝜙 is maximal w.r.t. ≤, i.e., it has no valid and
significant successor 𝜙′.

We can infer that an assignment is (in)significant accord-
ing to its successors and predecessors, using the following
observation.

Observation 4.4. If 𝜙 ≤ 𝜙′ then if 𝜙′ is significant, so
must be 𝜙.

Since all the significant assignments but the MSPs have
significant successors, their significance may be inferred. Hence,
the MSPs form a concise representation of the full query
result, and it suffices to compute only them. Such an in-
ference scheme forms the core of many crowd/data mining
techniques [10, 20, 2].

Example 4.5. The color codes in Figure 3 are as follows:
MSPs are painted orange; other significant assignments are
yellow; insignificant assignments are grey; and the minimal
among those (i.e., the most general ones) are painted dark
grey.2 Note that indeed, for every significant assignment,
the preceding assignments (its ancestors in the graph) are
significant; and this holds symmetrically for insignificant as-
signments and their descendants.

The vertical algorithm. The output of the vertical algo-
rithm (Algorithm 1) is the set of valid MSPs.3

Given a pre-computed set of valid assignments 𝒜valid, the
algorithm first expands this set in line 1 by adding every
assignment that is more general than some assignment in
𝒜valid. This expansion improves the algorithm performance
(see below, and Section 6.4, when we compare our algorithm
to the näıve approach) as well as the user experience (Sec-
tion 4.2). Then, it initializes 𝑀 to be an empty set. As
long as there exists an unclassified assignment, which is not
known to be (in)significant, it chooses the unclassified as-
signment which is minimal by the partial order (i.e., most
general), 𝜙. It then checks whether 𝜙 is significant (by ask-
ing the crowd, using the function ask(·)). If so, it looks for

2Nodes 18-20 in Figure 3 are not minimal since they have
insignificant ancestors, omitted from the figure.
3If the ALL keyword is specified, the other significant assign-
ments can be inferred.

Algorithm
Input: 𝒜valid: the set of valid assignments
Output: msp

1 𝒜 ← {𝜙 | ∃𝜙′ ∈ 𝒜valid, 𝜙 ≤ 𝜙′};
2 𝑀 ← ∅;
3 while exists unclassified assignment in 𝒜 do
4 𝜙← the minimal such assignment;
5 if ask(𝜙) then
6 while exists unclassified 𝜙′ s.t. 𝜙l 𝜙′ do
7 if ask(𝜙′) then 𝜙← 𝜙′;

8 add 𝜙 to 𝑀 ;

9 return 𝑀 ∩ 𝒜valid;

Function ask(𝜙)
1 Ask the user 𝑢 for 𝑠← suppu(𝜙(𝐴SAT));
2 if 𝑠 ≥ Θ (the support threshold) then
3 ∀𝜙′ ≤ 𝜙 mark 𝜙′ as significant;

4 else
5 ∀𝜙′ ≥ 𝜙 mark 𝜙′ as insignificant;

6 return (𝑠 ≥ Θ);

Algorithm 1: Vertical algorithm

an unclassified assignment 𝜙′ s.t. 𝜙 l 𝜙′. For each such 𝜙′,
if it is significant, the algorithm updates 𝜙 to be 𝜙′, and
in the next iteration of the internal loop, it searches for an
even more specific assignment; and so on. The most spe-
cific (maximal) significant assignment found in this manner
is appended to 𝑀 . Finally, the set of valid MSPs is returned
as the output. Every call to ask(·) can classify multiple as-
signments (see Observation 4.4).

Example 4.6. Let us trace one iteration of the outer loop
of Algorithm 1 for the user 𝑢avg, whose answers are the av-
erage support of 𝑢1 and 𝑢2 from the running example. As-
sume that the input assignments include all the assignments
in Figure 3. At the beginning of the algorithm, all the as-
signments are unclassified, and thus, node 1 represents the
minimal (most general) unclassified one. The algorithm can
then ask 𝑢avg about a sequence of successors of node 1, for
example in the following order: 1, 3, 7, 10, 11, 15, 17, and
all of 17’s successors (including 18-20). This order is ob-
tained by replacing 𝜙 with discovered significant successors
(e.g., node 3) in the inner loop, and ignoring insignificant
successors. For 17 no significant successor is found, and
hence it is correctly identified as an MSP. In a second it-
eration of the outer loop, the selected minimal unclassified
assignment could be, e.g., node 2.

Algorithm analysis. The correctness of the vertical algo-
rithm follows from the monotonicity of significance and the
correctness of the inference scheme (proof omitted). We
show next that the algorithm is efficient in terms of the
number of questions posed to the crowd.

When multiplicities are introduced, the query language is
expressive enough to capture standard data mining: e.g., to
capture mining for frequent itemsets, use an empty WHERE

clause and $x+ [] [] as the SATISFYING clause. In this
case, the total number of assignments can be exponential in
the vocabulary size. Luckily, we can show that even when
this is the case, the number of crowd questions can be much
smaller in practice.



We define the crowd complexity of an algorithm that eval-
uates OASSIS-QL queries as the number of unique questions
posed to the crowd by the algorithm. The following propo-
sition states the crowd complexity of the vertical algorithm.
This can be proved based on the top-down assignment traver-
sal order, as well as the expansion of 𝒜valid.

Proposition 4.7. The crowd complexity of evaluating an
OASSIS-QL query is O((|ℰ|+ |ℛ|) |msp|+

⃒⃒
msp−

⃒⃒
).

We now show a lower bound. Let mspvalid be the set of
MSPs among the valid assignments.

Proposition 4.8. The complexity of computing the an-
swer to an OASSIS-QL query using only concrete crowd ques-
tions, is Ω(|mspvalid|+

⃒⃒
msp−valid

⃒⃒
).

In practice, |mspvalid| and even |msp| are typically of rea-
sonable size, and our optimizations further improve the al-
gorithm performance in practice. See Section 6.

Speeding up with specialization questions. Consider the
meta–fact-set $y doAt $x and assume that we have already
established that 𝜙15 : 𝑥 ↦→ Central Park, 𝑦 ↦→ Sport is sig-
nificant. This assignment may have many successors by the
partial order, as many as the sport types that we have in our
vocabulary. However, some of them may be easily pruned
by a human user, who knows, e.g., that people do not ski in
Central Park.

By asking specialization questions about 𝜙, e.g., “What
type of sport do you do in Central Park?”, we are guar-
anteed to find a following assignment that is at least fre-
quent in the current user’s DB, if there exists any. Thus,
we are more likely to discover additional significant assign-
ments quickly. This is especially beneficial in incremental
evaluation or when the number of query results is limited.

To choose which type of questions to ask, we have used,
in previous work, a parameter for the ratio of open-ended
crowd questions vs. more concrete ones [3]. In our exper-
iments, instead of forcing the crowd members to answer a
specific question type, we allowed them to choose the ques-
tion type. This was done to study their preferences and to
improve their user experience. To study the effect of dif-
ferent ratios of specialization and closed questions, we have
varied this ratio in synthetic experiments. See Section 6.

4.2 Evaluation with Multiple Users
We next consider multiple crowd-members working in par-

allel. Given a set of answers from different crowd members
to some question, we assume a black-box aggregator that de-
cides (i) whether enough answers have been gathered and
(ii) whether the assignment in question is significant or not.
Generally, such a black-box could be designed to ensure the
quality of answers, both for individual answers (e.g., outlier
detection [21]) and aggregated answers (e.g., error probabil-
ity, or an average weighted by trust [3]).

The multiple users algorithm. The assignments per crowd
member are traversed in the same top-down order as in the
case of a single member, but inferences are done based on the
globally collected knowledge. More specifically, Algorithm 1
is changed as follows.
1. The outer loop is executed per user, and can be termi-

nated at any point if the user does not wish to answer
more questions.

2. Different user answers obtained through the ask(·) func-
tion are recorded per assignment.

3. The if condition within the ask(·) function is changed to
“𝜙 is overall significant”, which is decided by the black-
box aggregator. The aggregator can answer yes, no, and
undecided, in which case not enough answers have been
collected for 𝜙, and no inference takes place.

4. The return value of ask(·) is true iff “(𝑠 ≥ Θ) AND 𝜙 is
not overall insignificant”, to prevent the user from being
asked about successors of 𝜙 if 𝜙 is not significant either
for the current user or overall.

5. In line 8 of the main algorithm, 𝜙 is added to 𝑀 only if
it became an overall MSP by the user’s answer.

The first fact-set about which a user is asked, is a minimal
unclassified node, which could be relatively specific among
all the assignments. To avoid this, the algorithm can be
refined to start the traversal from the overall most general
assignment (even if it is already classified), and then navi-
gate to a minimal unclassified assignment. This may lead
to some redundant questions, but in practice has the advan-
tage of speeding up the computation because when a general
assignment is discovered to be insignificant, its (typically
many) successors can be pruned for this user. In addition,
it allows for a pleasant user experience.

Crowd member selection. We have already noted that the
black-box aggregator can be used to monitor answer qual-
ity. In addition, previous works propose different methods
for evaluating crowd workers’ quality, e.g., to filter spam-
mers [18, 27]. These methods can be used here as a pre-
liminary step to filter the crowd members to which we pose
questions. In our specific context, two additional methods
can be employed to select the crowd members: first, we can
check the consistency between the answers of the same user,
taking advantage of the fact that the support for more spe-
cific assignments cannot be larger. In this manner, we can
easily filter out spammers, while perhaps still allowing for
small inconsistency in a cooperative member’s answers. Sec-
ond, the OASSIS-QL query itself may be extended to specify
restrictions on selected crowd members; see the discussion
in Section 8.

5. COMPUTING THE ASSIGNMENTS
We complete the picture by explaining how assignments

are computed. Since the number of assignments can be
large, we adopt a lazy approach for generating them, feeding
them to the vertical algorithm when needed. This optimiza-
tion is important as many assignments may be pruned along
the way and their computation may thus be avoided.

Recall that the WHERE clause of OASSIS-QL is specified us-
ing SPARQL-like syntax. Without multiplicities, this clause
can be efficiently evaluated using a SPARQL query engine.
We next explain how to use assignments computed by SPARQL
to address multiplicities.

Assignments with multiplicities. Consider two assignments,
𝜙 : 𝑥 ↦→ Central Park, 𝑦 ↦→ Biking and 𝜙′ : 𝑥 ↦→ Central Park, 𝑦 ↦→
Baseball. These assignments match on every variable (in this
case, 𝑥) but one (𝑦). If 𝜙 and 𝜙′ are valid w.r.t. the WHERE

clause, then 𝜙′′ : x ↦→ Central Park, 𝑦 ↦→ {Biking,Baseball}
must be a valid assignment for multiplicity 2. In the other



direction, if 𝜙′′ is valid, then by definition 𝜙 and 𝜙′ are valid,
being subsets of 𝜙′′.

We say that 𝜙′′ is a combination of 𝜙 and 𝜙′ if there exists
a variable 𝑥 ∈ 𝑋 s.t. for every 𝑦 ̸= 𝑥, 𝜙′′(𝑦) = 𝜙(𝑦) = 𝜙′(𝑦),
𝜙′′(𝑥) = 𝜙(𝑥) ∪ 𝜙′(𝑥) and 𝜙(𝑥), 𝜙′(𝑥) ⊂ 𝜙′′(𝑥). I.e., 𝜙 and
𝜙′ differ only by their assignment to 𝑥, and 𝜙′′ is equivalent
to their “union”.

Proposition 5.1. Every valid assignment with multiplic-
ity 𝑖 > 1 for some variable 𝑥 is a combination of two valid
assignments with multiplicity 𝑗 < 𝑖 for 𝑥.

By induction, this means that we can lazily compute as-
signments of any multiplicity greater than 1 as a combina-
tion of multiple assignments with multiplicity 1.

It is left to handle the computation of multiplicity 0: since
this requires removing some of the conditions in the WHERE

clause, the result may include values that do not appear
in assignments with multiplicity 1. Moreover, each combi-
nation of multiplicity 0 for a different set of variables may
include a different set of values. Here, we have no choice
but to compute the union of all the possible combinations
of variables with multiplicity 0.

Expanding the assignment set. We have discussed how to
compute all the valid assignments. Last, we exemplify the
expansion of the assignment set (line 1 of the algorithm).
Note that these assignments can also be generated in a lazy
manner, as needed by the algorithm.

Example 5.2. Consider lazily computing the assignments
of Example 4.6: assume that we keep records of the valid
assignments computed so far (at first, these are only the
SPARQL results with multiplicity 1, i.e., nodes 11 and 13-
17). Node 1 is computed first and generates a question to the
crowd. Next (iterating in the inner loop), node 3 is computed
by specializing Attraction to Outdoor. Then we must verify
that this node is a predecessor of a valid assignment and un-
classified. Next, node 7 is computed, and so on. Node 18,
which has multiplicity 2, is computed as successor of 17 by
lazily combining assignments 16 and 17.

6. IMPLEMENTATION
We have implemented the techniques described in the

previous sections in OASSIS, a prototype engine for crowd-
assisted evaluation of OASSIS-QL. We start this section by
describing the system architecture, and the user interface.
Then, we describe two sets of experiments that we have con-
ducted: first, experiments with a real crowd ; and synthetic
experiments, whose goal was to examine the effect of varying
properties of the data on our algorithm’s performance.

6.1 System Architecture
The OASSIS prototype system is implemented in Python 2.7

and uses a MySQL 5.6 database. External libraries used in-
clude RDFLIB for handling RDF data and NetworkX for
constructing the DAG that represents the partial order over
assignments.4 It uses two data repositories: an ontology in
RDF format, and CrowdCache, which stores the computed
assignments along with the answers collected from the crowd
for each of them. When OASSIS-QL queries are executed by

4www.rdflib.net and networkx.github.io

the system, the valid assignments (without multiplicities)
are computed using the RDFLIB SPARQL engine. The as-
signments are then sent to a module called AssignGenerator,
which is responsible for (lazily) computing additional assign-
ments (as described in Section 5) and the assignment DAG.
A different module, QueueManager, is responsible for exe-
cuting our multi-user algorithm by traversing the assignment
DAG and generating a queue of questions for every crowd
member who is currently active in the system. QueueMan-
ager occasionally invokes AssignGenerator in a request to
compute a successor of some assignment (w.r.t. ≤), prunes
assignments from the queues if they are no longer relevant
(to a concrete user or globally), and updates the collected
data in CrowdCache.

6.2 User Interface
We developed a web UI (in PHP 5.3), which is used both

by the user who poses the query, and by the crowd. For
the former, the UI includes (i) an OASSIS-QL query editor,
with query templates, and auto-completion for language key-
words and ontology elements and relations; and (ii) a UI for
browsing the obtained output. As mentioned in Section 3,
our vision is to adapt existing intuitive UIs for SPARQL
queries to our context. Such tools include graphical query
construction (e.g., [13]), and the translation of natural lan-
guage questions to SPARQL (e.g., [6]).

For the crowd, our UI tool also serves as a dedicated
crowdsourcing platform. General-purpose crowdsourcing plat-
form such as Amazon Mechanical Turk5 did not suit our
needs, which include dynamically computing the questions
per crowd member based on previously collected data. In
our UI, the crowd is engaged to contribute information via
a social questions-game where they are asked query-relevant
questions about their habits and experiences. Users are
awarded stars (bronze, silver and gold) as they answer more
and more questions, and can use them as virtual money ei-
ther to pose queries of their own to the system or to view
suggestions computed in response to previous queries. A
statistics page commends the top-20 users. Questions are
retrieved iteratively from the user queue and are then auto-
matically translated into a natural language question using
templates. These templates are domain-specific, and can be
manually created in advance. E.g., the assignment 𝜙17 from
Example 4.2 can be presented as “How often do you engage
in ball games in Central Park?”, the ontology elements
in bold being plugged into the template. The user answers
the question by clicking an option out of “never”, “rarely”,
“sometimes”, “often” and “very often”, which we interpret
as support values 0, 0.25, 0.5, 0.75 and 1, respectively. To
answer specialization questions, the user can choose to“spec-
ify”any part of the presented question. When the user starts
typing, auto-completion suggestions that match both the en-
tered prefix and the query are presented to the user.

In designing the interface of OASSIS, we have made two
optimizations based on feedback from preliminary user ex-
periments. First, we allow users, via a single click, to in-
dicate that some value occurring as part of the question is
irrelevant for them, in which case we infer that every assign-
ment that involves this value or more specific values, has
support 0. This optimization, called user-guided pruning,
allows us to prune large parts of the assignments DAG for
this user. Second, in specialization questions, if none of the

5Amazon Mechanical Turk. www.mturk.com.
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auto-completion suggestions are relevant for the users, they
can choose none of these, which assigns support 0 to all the
proposed assignments; in this manner, we obtain the an-
swers to many concrete questions at once, without incurring
additional user effort. We have also added a more button,
which opens a text input and allows the user to enter addi-
tional advice for the current assignment (corresponding to
the MORE part of the query).

6.3 Results for Real Crowd
In this set of experiments, we have used a real crowd

and a real-life ontology and vocabulary combining data from
Wordnet [23], YAGO [30] and Foursquare [9].

We have recruited our crowd members to the experiments
through social networks. The black-box used for a decision
mechanism was simple: 5 crowd answers were required for
classifying an assignment; if the average support exceeded
the threshold, it was considered significant. We have used
the answers from the crowd to simulate executing the same
query with different support thresholds: note that the crowd
answers are independent of the threshold. The user answers
during the execution with support threshold 0.2 were cached,
and then reused in evaluating the query for higher support
thresholds. E.g., if following a crowd answer we obtained av-
erage support 0.2 for some assignment, the algorithm would
continue to a more specific assignment for support 0.2, but
in the simulation of threshold 0.4, it would stop. In the
statistics below, we count for each threshold only the an-
swers used by the algorithm out of the cached ones.

We have experimented with queries from 3 application do-
mains. All of them were chosen to reflect situations in which
data is not recorded in a centralized, systematic manner,
and people are the main source of knowledge. The first do-
main is the travel recommendation scenario, where we have
executed our running example query, with slight modifica-
tions to make it suitable to the target crowd (e.g., replacing
NYC by Tel Aviv) and other variations thereof (e.g., ask-
ing only about sports activities and locations). The second
domain is culinary preferences, where our queries retrieve
popular combinations of dishes and drinks of different types
(snacks, health food) which can be used, e.g., in composing
new restaurant menus or by dieticians. The third domain is
self-treatment, where our queries find what do crowd mem-
bers take in order to relieve common illness symptoms, in-
formation which can be used, e.g., by health researchers.

In general, the execution of queries from the 3 domains
exhibited similar trends, but required a different number of
questions to completion, between 340 and 1416 (which we
observed to be correlated with the number of MSPs, see
Figures 4a-4c and Section 6.4). 248 crowd members in total
have answered 20 questions on average per query to which
they have contributed. As our user base kept growing be-
tween subsequent queries, a speedup was observed in finding
the first MSP, which dropped from 28 minutes to less than 4,
and in completing the execution, which dropped from 36
hours to less than 10. In comparison, consider common fo-
rums such as TripAdvisor Forums6, as an alternative means
for collecting new, targeted data from web users. While such
forums have a much larger and devoted user base, we ob-
served that it still typically takes tens of minutes to get the
first post, and tens of hours until the last post is published.

6TripAdvisor. http://www.tripadvisor.com/

To this, one should also add the user’s processing time for
the posts – reading, extracting the relevant components, ag-
gregating the suggestions, identifying consensus, etc. We
provide the user with answers that are already aggregated,
starting the first MSP. The answers that we provide are also
structured, comprehensive and relevant, and we generally
provide them faster.

To highlight the key aspects in query execution, we fur-
ther detail in Figure 4 about three example queries from the
three domains, where the query in the travel domain corre-
sponds to the running example. The selected queries exhibit
two general situations: first, in the running example query,
we are interested in instances (of places and restaurants)
and hence some of the discovered MSPs may not be valid
w.r.t. the query (e.g., an MSP that contains the element
“Italian restaurant” rather than a specific restaurant); and
second, in the two other queries we are interested in classes,
and hence all the MSPs are valid (e.g., both “Pizza” and
“Italian food” are considered as classes and can appear in a
valid MSP). The queries also exhibit 3 extreme cases: the
travel query required the most crowd questions to complete,
the self-treatment query required the fewest questions, and
the culinary query had the largest number of possible assign-
ments in the DAG: in total, the DAGs of the three queries
contained 4773, 10512 and 2307 nodes respectively (without
multiplicities). Figures 4a-4c show different statistics about
the 3 queries, for threshold values ranging from 0.2 to 0.5, all
scaled to obtain similar bar heights. #MSPs and #valid
represent, respectively, the total number of MSPs and the
number of valid MSPs7, which, as expected, generally de-
crease as the threshold value increases.8 #questions rep-
resents the total number of questions asked including repeti-
tions: unlike in Section 4, here we wish to measure the exact
overall user effort, including asking multiple crowd members
about the same assignment according to the multi-user al-
gorithm. Observe that this number of questions decreases
as there are fewer MSPs and larger parts of the DAG can be
pruned. To illustrate the amount of questions saved by our
algorithm, baseline% compares the number of questions we
ask to a baseline algorithm, which only asks 5 questions for
every valid assignment without any specific traversal order.
Even when our algorithm considered an expanded set of as-
signments (as in Figure 4a), it asked at most 24% of the
baseline algorithm questions, and this dropped to <5% in
queries where such expansion was not needed (Figures 4b-
4c). In addition, it provides a better user experience.

Figures 4d and 4e show, for the travel query and self-
treatment query respectively, the pace of data collection
for threshold 0.2 (the second query behaves similarly to the
third and hence its graph is omitted). This is illustrated by
the number of questions posed as a function of the % of (i)
discovered MSPs (ii) discovered valid MSPs, which is only
relevant to the travel domain query, and (iii) classified valid
assignments (either as significant or not) at each point of the
execution. Observe that generally, towards the end of the
execution, classifying each remaining assignment requires
more crowd answers: these are typically isolated unclassi-
fied parts of the DAG, which cannot be inferred from other

7The number of valid MSPs does not appear in Figures 4b
and 4c since all the MSPs there are valid.
8As seen in Figure 4b, this is not always the case, as by rais-
ing the threshold we may change one MSP to insignificant,
turning all its immediate predecessors to MSPs.

http://www.tripadvisor.com/
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Figure 4: Experimental results

assignments. Comparing the two graphs, the self-treatment
query required fewer questions in general, but the first de-
cisions on MSPs and classified assignments were done much
more quickly. This is since our user base had grown be-
tween the executions of the two queries, and thus answers
from more users and at a higher rate were obtained during
the self-treatment query execution.

Out of the crowd answers, we had 12% for specialization
questions, out of which half (6% in total) got a “none of
these” answer, 13% user guided pruning and the rest were
for concrete questions. This reflects the higher effort in-
curred to crowd members by specialization questions, since
users preferred to answer concrete questions, and addition-
ally shows that the optimizations we introduced (none of
these, pruning) were useful to the crowd.

Multiplicities. In each of our queries, we have discovered
up to 25 MSPs with multiplicities. In one of the culinary
queries we found, among others, that crowd members often
have a steak with fries and a coke; or, more surprisingly, that
when they eat muesli with yogurt for breakfast they drink
apple juice. From the more input we have obtained some
nice tips from users, e.g., for doing push-ups in a park (an
assignment for a travel domain query) it is advisable to lean
on a soft surface. We note that in the statistics shown above,
we fed to the näıve algorithm only the assignments with
multiplicities that our algorithm had generated, for fairness.
The effect of our lazy assignment generation is demonstrated
by our synthetic experiments in the next section.

6.4 Results for Synthetic Data
The next set of experiments involves synthetic data, sim-

ulating the crowd answers for varying data properties. To
isolate the effect of varying different properties, we used a
simulation of a single user. The results were averaged over 6
trials. The properties studied are as follows.
Shape of the DAG. We have examined the effect of the

assignment DAG width and depth on the algorithm per-
formance. For that, we have used a DAG similar to the
one generated in our crowd experiments with the travel
query, but varied its width between 500 and 2000, and its

depth between 4 and 7, by arbitrarily pruning/replicating
parts of the DAG. (In comparison, the width of the DAG
in the crowd experiments is around 1350 with depth 7.)

Number of (valid) MSPs. We have considered different
number of MSPs ranging from 1% to 10% of the nodes.
In practice, the % of MSPs is likely to be much lower than
10% and was around 1.2% in our crowd experiments.

Distribution of MSPs in the DAG. We have used three
methods of generating MSPs: (1) using a uniform random
distribution over assignments (while guaranteeing that the
MSPs are not comparable), (2) biased towards selecting
MSPs that are nearby in the DAG, i.e., are separated by
at most 4 nodes, (3) biased towards selecting MSPs that
are far away in the DAG, i.e., are separated by at least 6
nodes. For each such variation, we have generated MSPs
in the entire DAG, or only among valid assignments.

Number and size of MSPs with multiplicities We have
varied the number of MSPs with multiplicities between 0
and 5% (out of the total nodes), and their size between 1
and 4 (which was the maximal size of MSP with multi-
plicity in the crowd experiments).

Ratio of specialization vs. concrete questions answered.
We set the ratio of answers obtained to such questions in
our simulation to 0%, 10% (similarly to the ratio observed
in crowd experiments), 50% and 100%. These were sim-
ulated by providing the algorithm a significant successor
of the current assignment.

Ratio of user-guided pruning clicks We have set the ra-
tio of user-guided pruning clicks obtained to 0%, 25%
(similarly to the ratio in crowd experiments) and 50%. A
very high ratio of user-guided pruning is not interesting,
since it means that there are no significant assignments.

We compare our algorithm to two alternative approaches:
∙ Horizontal. Inspired by the classic Apriori algorithm [1],

this algorithm asks about assignment 𝜙 only after verify-
ing that all of its predecessors are significant.
∙ Näıve. An algorithm that randomly chooses an assign-

ment among the valid ones.
The alternatives use the same inference scheme as our algo-
rithm and avoid questions on classified assignments.
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Figure 5: Varying the percentage of MSPs

We have noted, in our experiments, that varying the shape
of the DAG and the distribution of the MSPs in the DAG
had no significant effect on the observed trends. Hence, we
present here the results only for a DAG of width 500 and
depth 7, and a random distribution of selecting MSPs only
among valid assignments.

Varying the number of valid MSPs. Figure 5 shows the
results for different numbers of chosen valid MSPs. For each
such number, and for the different algorithms, the figure
shows the number of questions required to discover 𝑋% of
the selected valid MSPs. For example, for the case of 10%
valid MSPs, the vertical algorithm found 20% of these MSPs
(0.2% of the total assignments) after asking 80 questions.
With respect to the horizontal algorithm, our top-down ver-
tical algorithm starts returning answers to the query much
faster (e.g., it asks fewer than 35% of the questions asked
by the horizontal algorithm to discover 20% of the MSPs),
which is very useful in practical scenarios since answers can
be returned faster, as soon as they are identified. As a higher
% of MSPs are found, the gap becomes smaller, since the
vertical algorithm saves questions on significant assignments
by its traversal order but may “waste” some questions on in-
significant assignments in an attempt to find a significant
successor. The näıve algorithm performs well only when
there is a high % of MSPs and thus discovering them by a
“lucky guess” is possible (which, as mentioned above, is not
the case in realistic scenarios).

Varying the number and size of multiplicities. Our ex-
periments showed that the number of questions depends on
the % of MSPs, and not on whether they include multiplic-
ities. They also show that the lazy approach for generat-
ing DAG nodes with multiplicities was proven very efficient:
in all the experiment variations, OASSIS has generated less
than %1 of the nodes, in comparison to an “eager” algorithm
that generates all the nodes up to the same multiplicity.

Varying the ratio of answer types. Figure 4f shows the
number of questions required to discover 𝑋% of the valid
MSPs for different ratios of specialization questions and user-
guided pruning. In all cases, a high ratio of these special
types of questions improved the algorithm performance (al-
though not by much). However, we note that as more and
more assignments are pruned, the number of choices in spe-
cialization questions decreases, rendering concrete questions
preferable in a real crowd setting (as they incur less user
effort). Based on this and on user feedback, we propose al-
lowing users to choose the question type, but offer a higher
reward for specialization questions. Determining the exact
reward is left for future work.

7. RELATED WORK
Data procurement is one of the most important and chal-

lenging aspects of crowdsourcing [8]. Some recent work
(e.g., [7, 11, 19, 21, 25, 31, 32, 34]) suggests the construction
of declarative frameworks which outsource certain tasks to
the crowd, including the execution of common query oper-
ators such as filter, join and max, the task of populating a
database, information extraction [14, 33], etc. However, the
present paper is the first to propose a declarative framework
for specifying data patterns to be mined from the crowd. The
work of [16] focuses on evaluating planning queries with the
crowd. While it also considers incremental selection of crowd
questions, our construction of the assignment order relation
renders our problem very different from theirs.

Previous work in crowd mining [3, 2], by some of the
present authors, is the most related to ours. In [3], we
consider mining association rules from the crowd, however
(i) the approach is not based on an ontology; and (ii) it is
not query-based, and thus users cannot direct the mining
process. [2] studies the theoretical complexity of mining fre-
quent itemsets from the crowd but does not consider a query
language or system-related challenges, which are studied in
the present work.

Mining frequent fact-sets in our setting corresponds to
frequent itemset discovery, which is a fundamental building
block in data mining algorithms (see, e.g., [1]). The idea of
using item taxonomies in data mining, which correspond to
our semantic order relation over terms, was proposed for the
first time in [28]. We extend the semantic partial order over
terms to further capture facts, fact-sets and variable assign-
ments. We also mention, in this context, work on the dis-
covery of interesting data patterns through oracle calls [20,
10]. In particular, the traversal order of assignments that we
consider for the top-down algorithm is inspired by the Du-
alize and Advance algorithm of [10]. Similar ideas were also
employed in the context of frequent itemset mining from the
crowd by [2]. However, it requires further enhancements in
our setting to support queries, the traversal of assignments
to query variables, user sessions, etc.
OASSIS-QL combines capabilities from SPARQL for RDF

processing [26] with ideas from data mining query languages
such as DMQL [12] (see [4] for a survey), and enhances them
to obtain a query language for crowd mining. Specifically,
we use SPARQL-like syntax for the part of the query that
involves the ontology, and constructs inspired by DMQL for
specifying the form of the patterns to be mined. The idea
of evaluating such queries using the crowd is new.

Finally, we mention work on mining RDF data [15, 29].
[15] considers mining of RDF concept graphs, and uses a
semantic relation over facts similar to ours. However, they
do not consider query-driven mining, or mining the crowd.



Adapting their techniques to our setting is an intriguing di-
rection for future work.

8. CONCLUSION AND FUTURE WORK
In this paper, we introduced OASSIS, a system which al-

lows users to specify data patterns of interest and mine them
from the crowd. The model used in OASSIS captures both
ontological knowledge and the individual history of crowd
members from which significant patterns can be mined, and
its query language OASSIS-QL allows users to formulate their
information needs. We further presented an efficient query
evaluation algorithm for mining semantically concise an-
swers, which is implemented by OASSIS. Our experimental
results, both with a real crowd and synthetic data, indicate
the effectiveness of our solution.

We have only presented in this paper how to mine fact-
sets, and have greatly simplified the model in order to give
a precise analysis of our algorithm’s complexity. Additional
features can be found in the language guide [24]. Useful fu-
ture language extensions include returning the top-𝑘 answers
or diversified answers; selecting the crowd members, which
can be done by adding a special SPARQL-like selection on
crowd members to OASSIS-QL; and more. We believe that
many of the same principles developed here would still apply
in the context of such extensions, e.g., lazy assignment com-
putation, and asking crowd members questions “in context”.

The OASSIS engine and its UI can also be extended in
many interesting ways, some of which were already men-
tioned throughout the paper: formulating the queries in
natural language can be done by parsing a natural language
sentence, constructing the where part of SPARQL as in [6],
and identifying the parts that need to be mined from the
crowd (subjective/personal content). Additional interesting
possible extensions include employing an interactive refine-
ment process for the OASSIS-QL query based on the collected
answers; dynamically extending the ontology based on crowd
answers; and so on.
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