ConCaT: Construction of Category Trees from
Search Queries in E-Commerce

Uri Avron
Tel Aviv University
uriavron @mail.tau.ac.il

Shay Gershtein
Tel Aviv University
shaygl @mail.tau.ac.il

Abstract— Category trees play a central role in e-commerce
platforms, enabling browsing-style information access. Building
category trees that reflect users’ dynamic information needs is
a challenging task, mostly carried out by in-house taxonomists.
This manual construction often leads to trees that are lacking or
outdated since it is hard to keep track of market trends, seasonal
changes, holidays, and special events.

To support a browsing experience that better matches the
user information needs, and to considerably reduce the manual
work performed by taxonomists, we propose CONCAT - a
system that leverages the demand-based nature of the query
paradigm to automatically build a category tree that is maximally
similar to the result sets for search queries. We demonstrate
the effectiveness of CONCAT on real-world data, taken from
a large e-commerce platform, by interacting with the ICDE’21
participants who act both as the consumers and the taxonomists.

I. INTRODUCTION

Product category trees (also called, in some cases, product
taxonomies), play a central role in large-scale e-commerce
platforms, such as eBay, Walmart, Amazon, or Taobao. Such
taxonomies enable browsing-style information access and of-
ten drive the mapping of items into a structured set of key-
value pairs (e.g., memory size for smartphones or sleeve length
for shirts). Building and maintaining product category trees,
that reflects users’ dynamic information needs and interests, is
a challenging task, mostly carried out by in-house taxonomists.
This manual construction often leads to category trees that are
lacking or outdated since it is hard to keep track of market
trends, seasonal changes, holidays, and special events [1].

An alternative, more flexible information access paradigm
is the search-based paradigm, where users submit queries to
the platform’s search engine. This mechanism allow users to
formulate a more precise query that better reflects their intent
[2]. Nevertheless, for many users it is often hard to formulate
a precise query, resulting in high usage statistics of category
trees as a viable alternative.

To support a browsing experience that better matches the
user information needs, and to considerably reduce the manual
work performed by taxonomists, we propose CONCAT - a
system that leverages the demand-based nature of the query
paradigm to automatically build a category tree that is maxi-
mally similar to result sets for user queries.

From a practical point of view, such a category tree has sev-
eral advantages. First, it more effectively addresses the needs
of consumers. Second, our approach provides an automated

Ido Guy

eBay Research
idoguy @acm.com

Tova Milo
Tel Aviv University
milo@cs.tau.ac.il

Slava Novgorodov
eBay Research
snovgorodov@ebay.com

Original Category Tree

Suggested Category Tree

[Shirts] [Shoes] [Shirts] [Shoes]

(Women) (e) (women) (T]

Sample category trees for the electronics domain

Fig. 1.

solution, which saves taxonomists valuable time and effort.
Lastly, the real-time performance of CONCAT allows adapting
the tree with high-frequency, to ensure that the categories are
updated to match the most recent market trends.

Consider the following toy example in the context of an
online fashion store, that sells shirts and shoes. The left side
of Figure 1 depicts the existing category tree, where the two
top categories are “Women” and “Men”, as is traditionally
the case in fashion taxonomies. Correspondingly, the two
subcategories, “Shirts” and “Shoes”, appear both under the
“Women” and “Men” categories. However, there are large
subsets of items, both in the shoes and shirts categories,
that match both genders. Since in real-world platforms, each
item is, typically, allowed to appear in at most one branch
of the category tree, to ensure a compact categorization, a
consequence is that the shared items are partitioned across
the two subtrees, corresponding to the two genders.

Assume that the workload of user queries submitted to
the site’s search engine indicates that the most common
queries are “shirts” and “shoes”. The result sets for such
queries should arguably be all the shirts/shoes regardless of
the assigned gender (in the actual preprocessing stage of
CONCAT, we use more sophisticated methods to ensure that
the result sets are indicative of the user intent). However,
when a consumer, instead of using the search engine, uses the
category tree, to browse the selection of relevant shirts, she
must examine two non-adjacent categories in the tree (and
be aware of a second relevant category existing). Moreover,
even for the query “women’s shirts”, the relevant category
is incomplete, as some shirts, that match both genders, are
assigned to the men’s shirts category.

To address both issues, and provide a solution where users
can more frequently view a category that consists of all the
relevant items they seek in a given search session, the platform

Original Category Tree Suggested Category Tree

Electronics

Phones

Memory Memory
Cards Cards

Fig. 2. Sample category trees for the fashion domain

Cameras

Cameras Memon Phones
Cards

should instead use the tree depicted on the right side of
Figure 1. The category “shirts” contains all the shirts relevant
for both genders. In addition, if users are indeed interested
in viewing a category that matches a specific gender, then
these are still available below the more general “shirts”
category. Note that now, in the new tree, there are no dedicated
categories for men or women that contain all the products
relevant for a specific gender. However, if the search queries
indicate that such result sets are rarely sought, then this
absence is negligible compared to the improvement for more
common queries.

The following example demonstrates a similar scenario,
where a somewhat different modification is needed.

Consider an online electronics store that sells cameras,
phones, and various accessories for these products, such as
memory cards. The existing tree, depicted on the left side
of Figure 2, has two separate categories for memory cards:
“Cameras”— “Memory Cards” and “Phones”— “Memory
Cards”. However, all memory cards are suitable for both
product types.

Assume that the most searched query is “memory cards”,
and that complete sets of all accessories for a given product
type are rarely searched. The tree depicted on the right side
of Figure 2 would then better serve the consumer needs, as it
has a separate category containing all memory cards. The fact
that these items no longer appear under the general categories
has little effect, as the memory cards are rarely searched as
part of more general item sets.

The trees presented in Figures 1 and 2 are based on real
categories trees in large e-commerce platforms. To handle
the large workloads, the trees are typically constructed by
several taxonomists that work in parallel, each assigned to
categorize a different domain, which leads to deficiencies
as illustrated above. Our system allows platforms to create
trees that fix such discrepancies. Moreover, the automatic
construction has real-time performance, compared to manual
error-prone constructions that may take weeks or months.

Model The problem we study is called the Optimal Cate-
gory Tree problem (OCT). The input for OCT' consists of
result sets for search-queries. The solution space is composed
of rooted trees, in which every node contains a subset of the
items, and represents a category. In a valid tree, every non-
leaf category contains as a subset the union of the items in
its child categories. Moreover, every item appears in only one
most-specific category (typically, a leaf-category) along with
all its ancestor categories. The ideal goal is to have in the tree,

for every query, a category (tree node) that is very similar to
its result set. For some queries, it may be more important
to have a matching category, therefore the input sets may
be weighted to reflect the significance of the corresponding
queries. This model has multiple variants, based on the set-
similarity function, used by the platform, for measuring the
similarity of an input set and a category (e.g., the Jaccard
similarity index or the Fy score). The score of a tree, w.r.t.
a given query, is the similarity score of its result set and the
category that is most similar to it. The objective is to produce
a tree that maximizes the weighted (w.r.t. the query weights)
sum of the scores over all the queries.

We have studied the model above both from a theoreti-
cal and a practical perspective. Namely, we proved in [3]
strict hardness of approximation bounds for this setting, as
well for several of its generalizations and related problem.
Whereas here we provide two heuristic algorithms, which
apply generically to multiple problem variants, along with
improved algorithms, with theoretical guarantees, for special
cases. The effectiveness of these algorithms was verified over
large datasets, both public and private, from large real-world
e-commerce platforms. These algorithms serve as the core
modules in the CONCAT framework, as described in the
sequel.

Demonstration Overview We demonstrate the operation
of CONCAT over real-world e-commerce data. Our demon-
stration reenacts a scenario where an e-commerce platform
redesigns its online store and wishes to construct a category
tree, that most closely matches the item sets sought by users,
as indicated by the search queries. The audience will play
two separate roles: (1) consumers who submit queries to
the platform’s search engine, and (2) taxonomists that utilize
CONCAT to construct trees that best match these queries.

II. TECHNICAL BACKGROUND

We first formally define the Optimal Category Tree problem
(OCT) and briefly discuss our key theoretical results and
corresponding algorithms.

A. Formal Problem Definition

Input The Optimal Category Tree problem (OCT) takes as
input (Q, W), where Q C 2Y is a set of n sets over a universe
of items U, and each set in () is assigned a non-negative
weight by W : @ — R. Each input set typically corresponds
to a result set for a user query, and its weight indicates its
prominence (e.g., based on query frequency). Since our model
fully captures any query by its result set, we use the term query
when referring to each set in Q).

Problem variants The OCT problem has multiple variants
based on the similarity function, S : [2Y] x [2Y] — [0, 1], used
for the objective function. The variant with similarity function
S is denoted by OCT(S). To capture the fact that, below
a certain similarity score, a category has no utility w.r.t. the
given query, since it is not recognizable as a relevant match by
the user, we extend the similarity functions with a threshold

l CTCR

Taxonomist

\ 4

e Queries &
Weights:
red shirt (3) =¥
nike shoes (7)

e Similarity

Input: Tree Builder \

Data
Adaptor

Item Category

Labeler

CCT
Tree Builder

Function: F,
e Threshold: 0.8
e Original Tree: {}

Fig. 3.

parameter 6 € (0,1], such that similarity scores below the
threshold are rounded down to 0.

Solution space A solution to an OC'T instance is a category
tree - a rooted tree, where every node contains a subset of
U and represents a category. A valid category tree satisfies
the following two requirements. First, every non-leaf category
contains the union of the item sets in its child categories
(and possibly other items). The root of the tree, thus, contains
all the items that appear in any category, with the categories
becoming more specific (smaller), as one moves down the tree
towards the leaves. Second, each item in the tree belongs to
exactly one most-specific category, along with all its ancestors.
Thus, every item appears only in categories that are consec-
utively placed on some branch in the category tree, where a
branch is a simple path from the root to a leaf.

Objective Given a query, ¢ € (), and a category tree, T', the
similarity score of a category C' € T over q is S(q,C). The
score of T over this query is S(g,T) = maxcer S(g, C). This
definition captures the fact that a user seeks the category that
most closely matches her (implicit) query. The overall score
of T is defined as S(Q, W, T) =3 .o W(q)-S(q,T). The
weights are reflected in the objective function, such that it is
preferable to have matching categories for queries of higher
weight. The objective is to produce a category tree of the
maximum score: arg max, S(Q, W, T).

Cover terminology. In the sequel, we say that a category
covers a query if their similarity score exceeds the threshold.
A query is covered if any category in the tree covers it.

B. Theoretical Bounds and Algorithms

In [3], we proved that all examined problem variants have
strict N P-hard inapproximability bounds, leaving room only
for impractical worst-case guarantees. Moreover, we showed
that the hardness also applies to more general settings, thus,
we cannot hope to provide practical worst-case guarantees,
even by a reasonable relaxation of our model. Theoretically,
these hardness results may not inspire much optimism as to the
solution quality a PTIME algorithm can achieve. Nevertheless,
we devised two heuristic algorithms, both used by CONCAT.
When testing their effectiveness over large real-world datasets
of e-commerce search queries, the achieved scores far sur-
passed the worst-case theoretical bounds.

The first algorithm is the Category Tree Conflict Resolver
(CTCR) algorithm, based on the following approach: we

/ Assignment

System Architecture

identify pairs and triplets of queries, referred to as conflicts,
such that, for each conflict, it is mathematically impossible
for any tree to cover all its queries simultaneously. We then
leverage algorithms for the Maximum Independent Set (M 1.S)
problem, to compute a conflict-free subset of the queries,
which we aim to cover entirely. Although M IS is inapprox-
imable, there are practical algorithms that solve it efficiently.
The tree structure is then derived, based on the containment
relations of the queries in the conflict-free set. Finally, we
greedily assign items to categories and condense the tree by
removing redundant items and categories.

The second algorithm is the Clustering-based Category
Tree (CCT) algorithm, based on the following approach: we
identify a suitable vector representation (embedding) for each
query, and employ an agglomerative clustering algorithm over
the query embeddings, to derive the optimal tree structure,
where each category is marked with the queries it should aim
to cover. Then, we use the same procedure as in CTCR, to
greedily assign items and condense the tree.

Both algorithms apply schematically to any reasonable
similarity function. Moreover, CONCAT supports a more gen-
eral model where each query may have its own threshold
that a covering category must exceed. Lastly, we note that
CONCAT can mix into the input an existing tree, such that
the produced tree will not be radically different, maintaining
consistency.

III. SYSTEM ARCHITECTURE

We implemented CONCAT using Python and Flask. The
system architecture is depicted in Figure 3. First, CONCAT re-
ceives as input the search queries, along with the desired
similarity function and its threshold parameter. Next, the Data
Adaptor computes the result sets, which it then cleans and
preprocesses into a collection of weighted item sets. Then,
over this input, the two algorithms, CTCR and CCT, are
employed (recall that the greedy item assignment procedure is
shared by both algorithms and is, thus, depicted as a separate
module). The tree with the superior score out of the two
produced trees is then selected. Over this tree, the Category
Labeler automatically derives candidates for meaningful labels
for each category, based on its item set and the queries it
covers. Lastly, the taxonomist examines the final tree and
may adjust the input or impose soft constraints, to prompt
the system to recompute the solution.

= = ConCaT

“) (=) (#=) (=) Construction of Tree

Search queries:

shirts
shoes
boots
women shirts

B

Most common unique tokens: shoe, shoes, boots

Examples of listings in the category:

man shoes N
‘év:g;en shoes Shirts ‘Shoes Bags
backpacks Unisex Sports Shoes BAGEL Tennis Shoes For ~ Shoes for Shoes NIKE - adidas Kaiser 5 Goal
men shirts (Sizes: 7 - 11) Men (Black) Roshe One Futsal Boot
t-shirts
— Médi y— MR $59.90 $45.90 $75.90 $64.90
Fig. 4. Suggested tree based on the given search queries Fig. 5. Sample listings assigned to the “Shoes” category

IV. DEMONSTRATION SCENARIO

We demonstrate over real-world e-commerce data the op-
eration of CONCAT, an interactive system that constructs
category trees from a workload of user queries. We reenact
a scenario where an e-commerce platform redesigns its online
store, and wishes to construct a category tree, that most closely
matches the item sets sought by users. The audience will
play two separate roles: (1) consumers who submit queries to
the platform’s search-engine, and (2) taxonomists that utilize
CONCAT to construct trees that best match these queries. Our
system allows taxonomists to impose various soft constraints,
prompting CONCAT to efficiently recompute the solution.

First, we will present a Ul that enables the audience to
type in various search queries, and view the result sets. Then,
CONCAT will produce a category tree based on these sets, as
depicted in Figure 4. Finally, the taxonomist may reemploy
and tweak the solution, by adjusting the configuration.

Input: To start the demonstration the audience submits mul-
tiple search queries over fashion and electronics item reposito-
ries, taken from large real-world e-commerce platforms. Once
all search queries are submitted, the UI presents a list of pre-
searched queries, from which the users may select additional
queries to add to the input. The audience may indicate next to
each query its weight, to indicate how frequently it is assumed
to be submitted. Next, CONCAT employs the Data Adaptor,
and presents, in a new window, the final input. We will also
explain the operation of the algorithm used to derive it.

Solution Generation: After exploring the input data, the
taxonomists will run our algorithms, which produce in real-
time the category tree, along with label candidates for each
category, and accompanying statistics, indicating which cate-
gories cover which queries (and the relevant similarity scores,
along with the overall score). Together with the audience
we will use the Ul to examine the proposed solution and
the corresponding statistics. For example, taxonomists may
select on one of the categories, which prompts the UI to
display its cover statistics. Double clicking the category opens
a new window, which includes various views of the item sets,
including the view depicted in Figure 5, showing the most
common tokens in the item set, and a small representative
subset of the items (the users may also scroll through the
complete list of items).

Interactive adjustments: Upon examining the solution, if
some categorization decisions are unsatisfactory, taxonomists
may adjust the input accordingly. This prompts CONCAT to

recompute on-the-fly the relevant parts of the solution, pre-
senting the new tree with the most recent changes highlighted.
Moreover, the taxonomists may add to the input an existing
tree (which is the actual tree used by the e-commerce platform
relevant to the given dataset), and indicates on a slider the
extent to which this categorization should be preserved. The
Data Adaptor then adds the existing categories as additional
input sets weighting according to the indication on the slider.

Related Work The effective construction of category
trees/taxonomies has been the focus of research in a variety
of domains, including e-commerce, document management,
and question answering [4]-[7]. Aiming at assisting domain-
expert taxonomists in this difficult task, multiple algorithms
for automating the category tree construction [4], [8] and
maintenance [5], [9], [10] have been proposed, employing
a variety of clustering approaches, as well as crowdsourcing
[11]. More broadly, the e-commerce setting has lately received
much attention from researchers on a variety of problems [12],
[13]. To our knowledge, we are the first to provide a tree
construction algorithm from query logs in any domain.

Acknowledgments: This work has been partially funded
by the Israel Science Foundation, the Binational US-Israel
Science Foundation, Tel Aviv University Data Science center,

Bay Israel.
and eBay Israc REFERENCES

[1]1 Y. Zhang, A. Ahmed, V. Josifovski, and A. Smola, “Taxonomy discovery
for personalized recommendation,” in WSDM, 2014, pp. 243-252.

[2] D. Jiang, J. Pei, and H. Li, “Mining search and browse logs for web
search: A survey,” TIST, vol. 4, no. 4, pp. 1-37, 2013.

[3] “ConCaT (hardness),” https://slavanov.com/research/concat_proofs.pdf.

[4] S.-L. Chuang and L.-F. Chien, “A practical web-based approach to
generating topic hierarchy for text segments,” in CIKM, 2004.

[5] Q. Yuan, G. Cong, A. Sun, C.-Y. Lin, and N. M. Thalmann, “Category
hierarchy maintenance: a data-driven approach,” in SIGIR, 2012.

[6] C. Zhang, F. Tao, X. Chen, J. Shen, M. Jiang, B. Sadler, M. Vanni,
and J. Han, “Taxogen: Unsupervised topic taxonomy construction by
adaptive term embedding and clustering,” in Proc. of KDD, 2018.

[71 J. Shang, X. Zhang, L. Liu, S. Li, and J. Han, “Nettaxo: Automated topic
taxonomy construction from text-rich network,” in Proc. of WWW, 2020.

[8] K. Punera, S. Rajan, and J. Ghosh, “Automatically learning document
taxonomies for hierarchical classification,” in Proc. of WWW, 2005.

[9]1 H. Zhuge and L. He, “Automatic maintenance of category hierarchy,”

Future Generation Computer Systems, vol. 67, pp. 1 — 12, 2017.

I. Hasson, S. Novgorodov, G. Fuchs, and Y. Acriche, “Category recog-

nition in e-commerce using sequence-to-sequence hierarchical classifi-

cation,” in WSDM, 2021.

Y. Sun, A. Singla, D. Fox, and A. Krause, “Building hierarchies of

concepts via crowdsourcing,” 2015.

S. Gershtein, T. Milo, G. Morami, and S. Novgorodov, “Minimization

of classifier construction cost for search queries,” in SIGMOD, 2020.

S. Gershtein, T. Milo, and S. Novgorodov, “Inventory reduction via

maximal coverage in e-commerce,” in EDBT, 2020.

(10]

(11]
[12]

[13]

