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Abstract—The problem of finding an item-set of maximal
aggregated utility that satisfies a set of constraints is at the
cornerstone of many search applications. Its classical definition
assumes that all the information needed to verify the constraints
is explicitly given. However, in real-world databases, the data
available on items is often partial. Hence, adequately answering
constrained search queries requires the completion of this missing
information. A common approach to complete missing data is
to employ Machine Learning (ML)-based inference. However,
such methods are naturally error-prone. More accurate data can
be obtained by asking humans to complete missing information.
But, as the number of items in the repository is vast, limiting
human effort is crucial. To this end, we introduce the Probabilistic
Constrained Search (PCS) problem, which identifies a bounded-
size item-set whose data completion is likely to be highly ben-
eficial, as these items are expected to belong to the result set
of the constrained search queries in question. We prove PCS to
be hard to approximate, and consequently propose a best-effort
PTIME heuristic to solve it. We demonstrate the effectiveness
and efficiency of our algorithm over real-world datasets and
scenarios, showing that our algorithm significantly improves the
result sets of constrained search queries, in terms of both utility
and constraints satisfaction probability.

I. Introduction

The selection of a k-size item-set with the maximal aggre-
gated utility that satisfies a set of constraints is a fundamental
problem in many search applications, such as e-commerce
platforms and search engines. As an example, consider a
user searching an e-commerce website for shirts. Rather than
simply returning the top-k items matching the user’s request
(according to the utility scores), the platform often takes into
account additional factors. For instance, it might have signed
a contract with a particular brand, requiring that the query’s
result set contains at least one item of this brand. It may also
wish to diversify the result set, by including at least two other
brands, or shirts having different sleeve lengths [1], [2], [3].

The problem of finding an item-set of maximal aggregated
utility that satisfies a set of constraints is often referred to
as Constrained Search (CS) [2]. Its classical definition in the
literature assumes that all the information needed to verify
the constraints is explicitly provided. In practice, however,
the data available for the items is often partial. For example,
in e-commerce platforms, sellers frequently upload goods in
batches and tend to focus, in their provided information, only
on the most important attributes (e.g., product name and price),
with additional information provided by text descriptions
and images. Hence, adequately answering constrained search
queries requires the completion of missing information.

A common approach to address this problem is the com-
pletion of missing data by Machine Learning (ML) algorithms
[4], [5]. However, ML is naturally error-prone. Previously-
reported results indicate that it is hard to attain 85% precision
for a reasonable recall [6]. More accurate data can be obtained
by asking humans to complete missing data. Another solution
is asking humans to complete all missing data. But, as the
number of items in the database is typically huge, limiting
human effort is crucial. To this end, we propose a hybrid
approach that, given a bound on the number of items for which
data completion can be requested, harnesses the data derived
by common ML modules (e.g., attribute extraction [7], [5]) to
focus on the most “beneficial” items for which manual data
completion should be performed.

Specifically, given a set of constrained search queries of
interest (e.g., the most frequently asked queries) and a bound
k on the number of requests from humans, we consider (in
the offline phase) the probabilities derived by ML modules, to
identify a k-size item-set I that is expected to contribute the
most to these queries (in terms of constraint satisfaction and
utility). This is achieved by employing a dedicated algorithm
that we experimentally show to be effective, despite the in-
herent complexity of the corresponding optimization problem.
The underlying platform then generates data completion tasks
(referred to as data requests) for each item i∈I. Each task is
assigned to a human(s) and requires to complete all missing
data for an item. The system then updates the repository
appropriately. Remaining missing values are completed using
ML modules. We refer to this phase of partially cleaning the
repository as the data melioration process. Next, at run time,
as before, queries are evaluated over the completed database.

Before presenting our contributions, let us illustrate through
a simple example the problem that we address in this work,
named the Probabilistic Constrained Search (PCS) problem.

Example 1.1: Consider an e-commerce platform selling,
among others, women shirts. Part of the database is depicted in
Figure 1. It includes information about the shirts’ brand names
and sleeve lengths. Here, the sellers provided some of the
attribute values, and the missing ones were predicted using ML
algorithms. Next to each given/predicted value, we also show
(in parenthesis) the probabilities of all possible alternative
values, as determined by the ML modules. W.l.o.g. assume
that the platform selects the value with the highest probability
as the inferred attribute value. This may, or may not, match
the actual ground truth value (marked in red). We examine two
search queries: “women shirts” (q1), and “women sport shirts”
(q2). Let k, the number of items to be returned, to be 3. The



utility scores of the items w.r.t. the queries are also depicted in
Figure 1. Assume that the following constraints are imposed on
both queries: During a transition season, the platform requires
the queries’ results to include items having different sleeve
lengths. Also, the platform has signed a contract with Versace,
requiring all result sets to include at least one Versace item.
To ensure coverage of the brands, another constraint requires
to include items spanning different brands.

The platform’s result for q1 is S 1={i1, i7, i8} and its result
for q2 is S 2={i4, i5, i8} (with utility of 1.8 for both sets). Note,
however, that S 1 does not satisfy the first constraint w.r.t. the
ground truth, and the result for q2 could be improved in terms
of utility, if the ground truth was known. Completing missing
data on item i7 would improve both results: for q1 the result
becomes S ′1={i1, i2, i7} (with utility of 2.6), and for q2 the result
changes to S ′2={i4, i5, i7} (with utility of 2.7). Moreover, both
S ′1 and S ′2 also satisfy the constraints.Completing missing data
on item i2, on the other hand, would improve the result only for
q1, altering it to S ′1. In contrast, completing missing values on
items i8 or i9 is redundant. Item i8 has low utility score w.r.t.
both queries and item i9 have alternative items with higher
probabilities, which can meet the constraints’ requirements
(item i7 is more likely to have the brand Versace). Leveraging
the probabilities derived by the ML modules, our algorithm
chooses a bounded-size item-set that is expected to improve
the result quality (combined utility and constraints satisfaction
probability) for both queries. For example, assume that the
bound of data requests is 3. According to our problem for-
mulation, the platform should complete missing data on items
i2, i6, and i7, which would yield here the optimal (w.r.t. the
ground truth) solutions for both queries: S ′1 and S ′2.

Combining ML and human work is a common approach
in numerous domains (e.g., entity resolution [8]), and much
research has been devoted to minimize human efforts [5]. A
common usage of a human effort for ML is harnessing domain
experts to generate labeled data for supervised learning [5], [4].
Our work complements this previous research by leveraging
the probabilities derived by ML algorithms, to identify which
data records are best to manually complete. Here as well, we
aim to effectively use human effort, by identifying, given a
bounded budget, the most beneficial items to be completed for
the particular objective of CS. See a detailed comparison to
related work in Section VII.

We next outline our main contributions.

Problem Formulation: One can improve the result of
a constrained search query q in two manners: increase the
overall utility or satisfy the constraints with higher probability
(possibly at the cost of utility). Intuitively, an optimal result
for q is a k-size item-set that is of best quality, in terms of
its combined utility and constraints satisfaction probability
scores. This set may be different than the one currently
returned by the platform (whose answer is determined by the
provided/predicted values), which may have a lower quality
than such an optimal set. Therefore, we would like to ensure
that the information on the items in the optimal set is correct
so that it will be possible to include them in q’s answer.
We, therefore, define the PCS problem for a single query, as
the problem of finding a k-size items set of maximal quality,
i.e., with the highest, combined, utility score and constraint
satisfaction probability. (Section III).

Complexity Analysis: To get some intuition about the
hardness of PCS, we also discuss the hardness of the classical
Constrained Search (CS) problem - a restricted variant of PCS,
where all probabilities are in {0, 1}. While in the simple setting
where all constraints are defined over a single attribute, an
optimal PTIME algorithm for CS exists [1], we show PCS
to be NP-hard, even for this restricted case. For the general
case, we show that CS (and therefore also PCS) is hard to
approximate to a constant factor in PTIME. We furthermore
prove this bound to hold for PCS, even if the solution for the
corresponding CS is given (Section III).

Algorithms: Since PCS is hard to approximate, we
provide an efficient best-effort algorithm, which we experimen-
tally show to be effective. Two common classes of algorithms
for top-k problems are the greedy [9] and interchange [10]
algorithms. Our algorithm follows an analogous hybrid line,
applying a greedy procedure followed by a local-search one.
Greedy initialization. This procedure finds an item-set that
is likely to satisfy the constraints by iterative processing of
the constraints. Each iteration selects new items to satisfy the
currently-examined constraint while also considering items se-
lected so far. The main challenge is to ensure that the extended
item-set still satisfies previously-examined constraints, while
also satisfying the current constraint with the highest possible
probability. Improvement via local search. This procedure
iteratively moves to neighbor solutions by replacing some
item(s) with different item(s) having higher utility scores. The
main challenge is to devise sufficient conditions on the new
item(s) to be added, ensuring improvement. Namely, to assure
that if the constraints satisfaction probability decreases, the
utility increases sufficiently to compensate for it (Section IV).

Extensions: To handle multiple queries simultaneously,
we extend PCS to support two commonly-used aggregation
strategies: Average and Least Misery (LM), resp., presenting
the AVG-PCS and LM-PCS problems. In AVG-PCS, the goal
is to find an item-set that is expected to maximize the average
contribution to the queries. In LM-PCS, the goal is to find an
item-set that maximizes the minimum contribution for each of
the queries. We show how our algorithm can be generalized
to these variants(Section V).

Experimental Study: We conducted an experimental
study based on real-world datasets from both the e-commerce
and people search domains. Our results indicate the effec-
tiveness of each of step of our algorithm, as well as the
effectiveness of the whole algorithm compared with multiple
alternative baselines. The experiments show that, on average,
our algorithm improves the quality of result sets of constrained
search queries in 4% in terms of utility, and in 27% in terms
of constraints satisfaction probability (Section VI).

A demonstration of our framework was recently presented
in [11]. The short paper accompanying the demonstration
provides only a brief description of the framework, whereas
the present paper provides the theoretical foundations and
algorithms underlying the framework.

II. Preliminaries

We present the model of data and constraints underlying
our study, used to formally define the PCS problem.



Brn: g {g: 0.6, v: 0.4, n: 0}
Slv:  l  {l: 0.8, s: 0.2}

i3 i4

Brn: g {g: 0.6, v: 0.4, n: 0}
Slv:  l  {l: 0.8, s: 0.2}

Brn: g {g: 0.6, v: 0.4, n: 0}
Slv:  l   {l: 1, s: 0}

i2i1

Brn: n {g: 0.15, v: 0.15, n: 0.7}
Slv:  l   {l:1 ,s: 0}

i9

Brn: g {g: 0.6, v: 0.2, n: 0.2}
Slv:  s {l: 0.3, s: 0.7}

i10

Brn: v {g: 0.5, v: 0.5, n: 0}
Slv:  l  {l: 0.5, s: 0.5}

i6 i7 i8

Brn: g {g: 0.6, v: 0.4, n: 0}
Slv:  s {l: 0.3, s: 0.7}

Brn: n {g: 0, v: 0.1, n: 0.9}
Slv:  s {l: 0, s: 1}

Brn: v {g: 0.3, v: 0.7, n: 0}
Slv:  l  {l: 0.7, s: 0.3}

i5

Brn: n {g: 0, v: 0, n: 1}
Slv:  s  {l:0 ,s: 1}

Item Utility Score
“women shirts” (q1) “women sport shirts” (q2)

i1 0.9 0.001
i2 0.8 0.001
i3 0.7 0.001
i4 0.001 0.9
i5 0.001 0.9
i6 0.001 0.9
i7 0.9 0.9
i8 0.001 0.001
i9 0.6 0.8
i10 0.4 0.001

Fig. 1: Example database which include information about items’
brand name (Brn), where the values are Gucci (g), Versace (v) and
Nike (n), and sleeve lengths (Slv), where the values are long (l) and
short (s). The actual values are marked in red. On the bottom are the
items’ utility scores w.r.t. two search queries.

A. Data Model

A data repository consists of a set I={i1, . . . , in} of n items,
each associated with a set A of attributes. Every attribute
a∈A has a domain of values, denoted as Va. For each item
i∈I, attribute values provided by its owner have a probability
of 1 (with all other values having the probability of 0). The
value probabilities for attributes not specified by the owner
are obtained by employing an ML module [7], [4], [5]. Let
Pra,v[i] denote the probability item i∈I has the value of v∈Va
for the attribute a∈A. We assume that the probabilities of the
attribute values, of the same or different items, are independent.
Figure 1 depicts information about 10 items. Here the attributes
are the items’ brand name and sleeve length. The sellers
provided some of the values. Missing values were predicted
using ML algorithms. Next to each given/predicted value, are
also depicted (in the parenthesis) the alternative values, along
with their probabilities (as determined by the ML module).
W.l.o.g. we assume that the platform chooses the value with
the highest probability as the attribute value. This may, or may
not match the actual ground truth value (colored red).

Given a search query q, each item i∈I is associated
with a utility score, denoted as uq(i)∈[0, 1], which measures
the expected welfare or satisfaction of a consumer w.r.t q.
Following [1], we define the overall utility score of an item-set
I⊆I w.r.t. a query q, denoted as uq(I), as the sum of utility
scores of each individual item.

B. Count And Coverage Constraints

A constraint is defined over an attribute and a k-size item-
set. Here we consider two simple types of constraints, which
can capture a wide range of previously-studied constraints [1],
[2], [3]: count and coverage constraints.

Count Constraint. A count constraint defines upper and
lower bounds on the number of set members having a specific

value for a given attribute. Formally, a count constraint defined
over an attribute a∈A and a value v∈Va, requires the item-set
to contain at least f loor and no more than ceil items having
the value of v for a. A count constraint is therefore denoted as
a tuple 〈a, v, f loor, ceil〉. Given a k-size item-set I and a count
constraint c= 〈a, v, f loor, ceil〉, the probability I satisfies c is
denoted as Prc[I]. One can compute this probability by con-
sidering all subsets I′⊆I of I of size f loor≤ j≤ceil, examining
the probability that all items in the subset I′ have the value
of v for the attribute a, and all items in I\I′ do not. Formally:
Prc[I] :=

∑ceil
j= f loor

∑
I′⊆I,|I′ |= j

∏
i∈I′ Pra,v[i]

∏
i<I′ (1 − Pra,v[i]).

Coverage Constraint. A coverage constraint defines upper
and lower bounds on the number of set members having
different values for a given attribute. Formally, a coverage
constraint defined over an attribute a, requires the item-set
to contain at least f loor and no more than ceil different
values for a. A coverage constraint is therefore denoted as a
tuple 〈a, f loor, ceil〉. Given a k-size item-set I and a coverage
constraint c=〈a, f loor, ceil〉, the probability I satisfies c is
denoted as Prc[I]. One can compute this probability using
the Poisson Multinomial Distribution (PMD). Given a number
f loor≤ j≤ceil, ( j, k)-PMD expresses the probability that a k-
size item-set I will have exactly j different values for a, where
the items have different probabilities for having each value
v∈Va. In our setting, one needs to quantify the probability that
a k-size item-set will have at least f loor and no more than ceil
different values. We therefore sum the ( j, k)-PMD probabilities
for all f loor≤ j≤ceil, as follows: Prc[I]=

∑ceil
j= f loor( j, k)-PMD[I].

For both definitions, if no lower (resp., upper) bound is
specified, we set f loor (resp., ceil) to 1 (resp., k). The user
may also provide relative bounds (w.r.t the set size) for f loor
and ceil, and the absolute numbers can be derived from them.

Given a k-size item-set I and a set of (count and coverage)
constraints C, recall that PrC[I] denote the probability I
satisfies all constraint in C. Let PC={C1, . . . ,Cl} denote a
partition of the constraints in C into l subsets of dependent
constraints. Namely, for every i∈[1, l], all constraint in Ci are
dependent, however they are independent of all constraints in
C j where i, j. We note that in the worst case, all constraints
in C depend on one another. The probability I satisfies all
constraints in given subset C j⊆C is defined, using the chain-
rule, as follows: PrC j [I]:=

∏|C j |

i=1 Pr[Xci | ∩
i
j=1 Xc j ], where Xci

is the event where I satisfies constraint ci. The probability
I satisfies all constraint in C is then: PrC[I]:=

∏
Ci∈PC

PrCi [I].

This raises the question of finding the partition PC for a
given set of constraint C. Naturally, all constraints imposed
on dependent (or the same) attributes are dependent as well.
Namely, this problem reduces to the problem of finding a
partition of the attributes into disjoint subsets of dependent
attributes. To verify if two categorical attributes (e.g., brand
name, sleeves length) are independent, one can use the Chi-
Squared test of independence. For numerical attributes (e.g.,
price), one can use ANOVA test.

In this work we assume that each constraint can be sat-
isfied, and that all constraints can also be satisfied simultane-
ously. A discussion regarding the related constraint satisfaction
problem is given in Section V-B.



C. Constraints Satisfaction Estimation

Given a k-size item-set I and a constraint c, the com-
putation of the exact value of Prc[I], as described above, is
exponential in k and ceil, as both definitions require to examine
all subsets of I of size ceil. However, if all probabilities were
in {0, 1}, computing Prc[I] - which in this case is either 0 or
1 - can be done in O(k). We get that for a constraint set C,
if all probabilities were boolean, PrC[I] can be computed in
O(k·|C|) (see details in [12]).

To estimate PrC[I] in the general case, we use the possible
worlds semantics [13]. Recall that the items’ probabilities are
assumed to be independent. A possible world is an assignment
of a random value for each item attribute, chosen w.r.t. the
probability distribution of its values. In such a possible world,
the chosen value has probability 1 whereas all other values
have probability 0. To estimate PrC[I] we generate m possible
worlds. For each such boolean world, we compute the value of
PrC[I], then output the averaged result. Let ̂PrC[I] denote the
estimated value of PrC[I]. For fixed ε, δ>0, we can derive m,
the number of worlds to be generated, s.t. | ̂PrC[I]−PrC[I]|≤ε
with probability ≥1−δ. We prove the following ([12]):

Proposition 2.1: For a k-size item-set I, a set of l con-
straints C, and fixed ε, δ>0, we have: | ̂PrC[I] −PrC[I]|≤ε with
probability ≥(1−δ), where ̂PrC[I] is estimated using O( 1

δ·ε2 )
possible worlds, and it can be computed in O(l·k2).

We assume ε and δ are provided as part of the input
and all our results take these requirements into account. For
simplicity of presentation, we omit explicit discussions of these
parameters in our analysis whenever possible.

III. Problem Formulation

We next formally define the PCS problem for a single
search query, and discuss its computational complexity.

A. Problem Definition

As mentioned, the data available for the items is often
partial, and hence adequately answering constrained search
queries requires the completion of missing data. Given a set of
constrained search queries of interest (e.g., the most frequently
asked queries) and a bound k on the number of items for which
data completion can be requested, the PCS problem identifies a
k-size item-set that is expected to contribute the most to these
queries (in terms of both constraint satisfaction and utility).

For a single search query q, we identify a k-size item set
who has the highest potential to improve the result of q. As
mentioned, one can improve the result of q by increasing the
overall utility or satisfy the constraints with higher probability.
Since one may come at the expense of the other, an optimal
result for q is an item-set with highest, combined utility score
and constraint satisfaction probability. Note that this set may
be different than the one currently returned by the platform
(whose answer is determined by the provided/predicted at-
tribute values). We define PCS for a single query as follows.

Definition 3.1 (PCS): Given a number k, a search query
q, and a set of constraints C, find a set I⊆I s.t:
I=argmax|I′ |=kuq(I′)·PrC[I′].

Similar to [14], our definition uses multiplication to com-
bine the utility and probability scores. Other combinations,
e.g., weighted sum, are also possible, and we leave their
investigation to future work. Note that PCS is defined using
the items’ utility scores, which may change when the workers
complete missing information. Meantime, these scores are
assumed to be the best available approximation to the actual
utility scores (which are based on the real attribute values).

System workflow. In the offline phase (i.e., the data
melioration phase), we consider a search query q (or a set
of queries), a set of constraints C, and a bound k on the
number of items for which data completion can be requested.
By solving PCS the system identifies a k-size item set I that
has the highest potential to improve the result of q, while
considering the items’ probabilities (obtained by ML modules).
The system then generates data completion tasks (referred to
as data requests) for each item i∈I. Each task is assigned to
a human(s) and requires to complete all missing data for an
item i (by examining, e.g., its description and image). The
tasks can be performed using a dedicated UI, or exported to
various external crowd platforms. The system then updates
the repository I appropriately, according to the new data on
items in I. Remaining missing values are completed using ML
modules. Next, at run time, as before, queries are evaluated
over the completed database.

Setting k. In our problem definition, we set the selected
item-set size to be k – the number of items in a search query
result set. In case the bound on the number of data completion
requests, denoted as k′, is smaller than k, we generate requests
only for the of the top k′ items in I with the highest utility
scores. In case k′>k, we repeat the cleaning process d k′

k e times
,as follows. In each iteration, we will: (1) Select (at most)
k items to be manually cleaned. (2) Complete their data and
update the repository. (3) Run our algorithm again over the
updated repository to identify the next item-set.

To compute k′, the bound on the number of items com-
pletion requests, we operate as follows. We assume a cost
model where the price per item is fixed. It reflects the average
expenditure, per item, for completing all the item’s missing
attributes with sufficiently high precision (following common
practice in e-commerce systems [4], [15]). k′ is computed by
dividing the budget the system allocates for data melioration
by this per-item average cost.

An alternative approach is to ask the sellers (or the data
providers) of the items to complete missing data. However,
providing information in a structured way is a demanding task
and may create friction between the sellers and the platform.
Therefore, here as well, it is desirable to identify the items
for which it is most beneficial to approach to a seller for data
completion, in terms of ability to satisfy consumer demands.
Thus, our problem definition stays the same regardless of
whether the completion requests are directed to the sellers (in
which case the cost is measured by “irritation” units) or to
crowd workers (in which case the cost in monetary).

Example 3.2: Recall that the result set of the query q1
(based on the provided/derived values) is S 1={i1, i7, i8}, with
uq1 (S 1)=1.8 and PrC[S 1]=0.55. According to the PCS prob-
lem, the ideal result set whose missing items data should be
requested is S ′1={i1, i2, i7} with uqi (S 1)=2.6 and PrC[S ′1]=0.44.



Completing missing data on these items assists the platform
to include them in the result set of q1 (once the database is
corrected, the result of q1 becomes S ′1), improving it in terms
of both utility and constraints satisfaction probability (recall
that w.r.t the ground truth, S 1 does not satisfy c1).

To get some intuition about the hardness of PCS and to
connect it to previous studied problems, we consider a re-
stricted variant of PCS, referred to as Constrained Search (CS).
In CS all probabilities are either 0 or 1. This corresponds to a
common scenario where practical systems use ML modules to
predict missing values. W.l.o.g. assume that the system chooses
the value with highest probability as the predicted value (i.e.,
the probability of the chosen values is 1, and non chosen ones
of 0). Let Î denote the resulting repository. In CS, the goal is
to find a k-size item-set in Î that satisfies all constraints in C
with probability 1, and maximizes the overall utility.

B. Hardness Results

As mentioned, given a k-size item-set I and a set of
constraints C, computing the exact value of PrC[I] may be
expensive. Our hardness results hold even if PrC[I] could be
provided by an oracle in O(1). To establish the connection
between the PCS and the CS problems, we also provide
hardness results for CS.

The authors of [1] have studied a restricted variant of the
CS problem, where the goal is to select a k-size item-set that
maximized the overall utility, subject to only count constraints
imposed on a single attribute. For this problem, they presented
an optimal PTIME algorithm. However, as we show, already
in this restricted setting, PCS is NP-hard.

Theorem 3.3: The PCS problem is NP-hard, even with
only count constraints imposed on a single attribute.

Practical scenarios, however, may include constraints im-
posed over multiple attributes. We first provide hardness result
for CS, then analyze the more general PCS problem.

Theorem 3.4: The CS problem cannot be approximated to
a constant factor in PTIME (unless P=NP), even with only
count constraints, and even if all utility scores are equal.

We prove Theorem 3.4 via a novel reduction from the
classic Maximum Independent Set (MIS) problem. It follows
that there is no PTIME algorithm that can solve general CS
instances. Henceforth, commercial systems use heuristic algo-
rithms to find a k-size item-set that satisfies all constraint, yet
does not necessarily maximize utility. A prominent example is
ElasticSearch [16], used by popular search applications (e.g.,
eBay, Facebook [16]). This bound naturally holds also for PCS.
Moreover, we can show it to hold even if the solution to the
analog CS problem is given.

Theorem 3.5: The PCS problem is NP-hard and cannot be
approximated to a constant factor in PTIME (unless P=NP),
even with only count constraints, and even if the solution to
the corresponding CS problem is given.

IV. Algorithms

As mentioned, PCS is hard to approximate in PTIME.
We, therefore, provide a heuristic PTIME algorithm, which we
experimentally show to be effective. Our algorithm performs

Algorithm 1: UpdateConstraint Procedure
input : A coverage constraint c=〈a, f loor, ceil〉, and a set of items S .
output: A coverage constraint ĉ=〈a, ̂f loor, ĉeil〉

1 vals← ∅
2 foreach i ∈ S do
3 vi ← argmaxv∈Va (Pra,v[i])
4 vals← vals

⋃
{vi}

5 foreach j ∈ I\S do
6 Pra,vi [ j]← 0

7 ̂f loor ← max(0, f loor−|vals|), ĉeil← max(0, ceil−|vals|)
8 ĉ = 〈a, ̂f loor, ĉeil〉
9 return ĉ

two steps. It first builds an initial solution by applying a greedy
computation, with the goal of maximizing the constraints
satisfaction probability. It then employs a local search to
improve the solution in terms of utility. For simplicity of
presentation, we assume that the bound on the number of data
requests is equal to the number of items in a query result set.
We also assume that there is at most one count (resp., coverage)
constraint per attribute. Otherwise, we merge all count (resp.,
coverage) constraints imposed on the same attribute into a
single constraint, by taking the maximal f loor and the minimal
ceil values of these constraints.

A. Greedy-Based Algorithm

Our greedy algorithm employs two procedures: one for
handling count constraints and one for coverage constraints.
We begin by describing these two procedures (their pseudo-
code is given in [12]), then present the full greedy algorithm.

Handling count constraints. Given a count constraint
c=〈a, v, f loor, ceil〉, this procedure selects the top f loor items,
according to their probabilities of having the value v for the
attribute a. Ties are being broken according to utility scores
(and arbitrarily for items with the same probability and utility).
Then, to ensure no more items having the value v are selected,
for every item i∈I\S , we set Pra,v[i]=0.

Handling coverage constraints. Given a coverage con-
straint c=〈a, f loor, ceil〉 and the set of items selected so far
S , this procedure first updates the bounds of c to take into
consideration the items in S . This is done using the procedure
UpdateConstraint (Algorithm 1), which works as follow. For
every item i∈S , let vi be the value i is most likely to have for
the attribute a. To ensure no more items having the value of
vi for a are selected, for every item j∈I\S we set Pra,vi [ j]=0.
Let num denote the number of values for a the items in S
have. We update the lower and upper bounds of c by settinĝf loor=max(0, f loor−num), and ĉeil=max(0, ceil−num). Next,
we select the top ̂f loor items according to their probabilities
of having different values to a, as follows. We sort all items
|Va| times, according to their probabilities of having each value
v∈Va for a. We then select ̂f loor items, where each selected
item is the top item in a different list, and return these items.

The greedy algorithm iterates over the constraints. While
count constraints require to select items having a specific value
for a given attribute, coverage constraints require to select
items with no particular values. We, thus, first iterate over the
count constraints. With the remaining slots, we select items
with the highest utility scores that have not been chosen yet.
We assume a a random order imposed over the constraints.



Algorithm 2: Greedy Algorithm
input : A set of constraints C, a search query q, and a number k.
output: A k-size set of items.

1 S ← ∅
2 foreach count constraint c ∈ C do
3 S c ← GreedyCountConstraint(c)
4 foreach item i ∈ S C do
5 if |S | < k then
6 S ← S

⋃
{i}

7 foreach coverage constraint c ∈ C do
8 S c ← GreedyCoverageConstraint(c, S )
9 foreach item i ∈ S C do

10 if |S | < k then
11 S ← S

⋃
{i}

12 while |S | < k do
13 i← an item in I\S with the highest utility w.r.t. q
14 S ← S

⋃
{i}

15 return S

Formally, the processing is depicted in Algorithm 2. For
every count constraint, we call the GreedyCountConstraint
procedure, and add the returned items to S (lines 2−6). We
then iterate over all coverage constraints. For every coverage
constraint, we call the GreedyCoverageConstraint procedure
with the current set S , and add the returned items to S
(lines 7−11). Last, if |S |<k, we add to S the items with the
highest utility scores from I\S (lines 12−14).

Example 4.1: Let q=q1. Algorithm 2 first process the con-
straint c2, adding to S item i8 (as it has the highest probability
of having the brand Versace). Assume that Algorithm 2
considers c1 before c3. Next, we process c1 with S ={i8}. Since
the number of different brands in S is 1, we update the lower
and upper bounds of c1 to be 1 and 2, resp. We also set the
probabilities of all items to have the brand Versace to 0. This
procedure returns item i5, as its brand is Nike with probability
of 1. We then process c3 where S ={i8, i5}. We consider item
i8 as having long sleeves, and item i5 as having short sleeves.
Thus, the lower bound of c3 is updated to 0, and hence the
procedure returns no additional items. Last, sine |S |=2, we
add item i1 to S , as it has the highest utility score in I\S , and
terminate returning S ={i8, i5, i1}.

Remark: We note the following limitations of the
greedy algorithm. First, in the worst case, no available slots
are left before the algorithm has examined all constraints.
Second, even if available slots do exist, the final constraints
satisfaction probability may be low. Nonetheless, as we show
in our experiments, this best-effort algorithm is in practice
highly effective for real-life scenarios. Last, as mentioned, the
algorithm uses random order over the constraints, and, in case
there are available slots, adds items based solely on their utility.
We leave for future work optimizing the constraints order and
items addition, to increase the satisfaction probability.

B. Local Search Algorithm

The main idea of local search is to move from one solution
to a different solution, by applying local changes, until a
solution deemed (local) optimal is found or a time bound is
elapsed. Such algorithms start from a candidate solution and
iteratively move to “neighbor” solutions. To apply local search
in our setting, we define a similarity measure between two
item-sets, to be used to define the neighborhood relation.

Given a k-size item-set I, and a set of constraint C, let i be
an item from I, j is an item from I\I, and let I′=I\{i}

⋃
{ j}.

We define the similarity between I and I′, sim(I, I′), as the
absolute difference between the probability I and I′ satisfy all
constraints in C. Formally, sim(I, I′):=|PrC[I]−PrC[I′]|. Given
a threshold θ∈[0, 1], we say that I′ is a neighbor solution of I
if the change in satisfaction probability when moving from I
to I′ is at most θ, i.e., sim(I, I′)≤θ. A k-size item-set has no
more than k·(n−k−1) neighbor solutions, where n=|I|.

Let C be a constraint set, I is a k-size item-set, and I′
is a set obtained by replacing one item from I. As noted,
computing PrC[I] exactly takes exponential time, and hence
the same holds for sim(I, I′). Let ̂PrC[I] (resp. ̂PrC[I′]) denote
the estimated constraints satisfaction probability of I (as de-
scribed in Section II-C). We have showed that for fixed ε, δ>0:
| ̂PrC[I] − PrC[I]|≤ε with probability 1−δ, using m possible
worlds. Denote ̂sim(I, I′)= | ̂PrC[I]− ̂PrC[I′]|.

Lemma 4.2: Given a threshold θ∈[0, 1], a set of constraints
C, and two k-size item-sets I and I′, if ̂sim(I, I′)≤θ−2ε then
sim(I, I′)≤θ, with probability ≥1−δ.

From Lemma 4.2, we can derive which neighbor solution
I′ of I is superior to I, by examining the utility scores of
the items. Formally, let q be a search query, C is a set of
constraints, ε, δ>0, and I, I′ are two item-sets s.t. sim(I, I′)≤θ
with probability ≥1−δ. We can show the following:

Theorem 4.3: If uq( j)> uq(I)·θ
1−θ then: Prc[I′]·uq(I′)>

Prc[I]·uq(I), with probability ≥1−δ.

The local search algorithm is depicted in Algorithm 3.
Given a threshold θ, we set ε= θ

2 , δ=1−ε, and derive the number
of possible worlds to be generated (line 1). We then preform t
local changes to the solution S . In each iteration, we choose a
random item i∈S (line 3), then look for a candidate item j<S
to replace i (line 4), using Procedure 4, and replace i with j
(line 5). Algorithm 4 depicts the procedure for finding the best
candidate item, given an item to be replaced i. For every item
j∈I\S , let S ′ to be the solution obtained by replacing i with
j (line 4). We examine whether sim(S , S ′)≤θ (with probability
≥1−δ), according to Lemma 4.2. If so, we examine if the
utility of j is high enough to ensure improvement, according to
Theorem 4.3 (lines 5−7). Among all items that satisfy these
conditions, we select the one with the highest utility (lines
8−9). If no such item exists, we return the original item i.

Example 4.4: Continuing with our running example, let
θ=0.1 and t=10. Algorithm 3 starts with the solution returned
by Algorithm 2, i.e., S ={i1, i5, i8}. For i1 there are no alternative
items, as it has the highest utility score w.r.t. q1. For i5, the
only alternative is item i7. At this point, also for i8 there are
no alternative items. Therefore, w.h.p., in one of the iterations
Algorithm 3 will select item i5 and will replace it with i7.
As item i7 also has the highest utility score w.r.t. q1, it has
no alternative items, yet now we can replace i8. The best
alternative for i8 is item i2, as for all items that are not in
S , it has the highest utility score. Hence, w.h.p., in one of the
following iterations, Algorithm 3 will select item i8 and will
replace it with i2, resulting with the (optimal) set S ={i1, i2, i7}.

As mentioned, when no improved solution is present in
the neighborhood of a solution I, the local search algorithm
is stuck at a locally optimal point. A standard optimization to



Algorithm 3: Local Search Algorithm
input : A constraint-set C, a search query q, a threshold θ, number of

iteration to executed t, and an item-set S .
output: A k-size item-set.

1 ε ← θ
2 , δ← 1 − ε, m← 0.25

δ·ε2
2 foreach counter = 1, ..., t do
3 i← an item from S chosen uniformly at random
4 j← FindBestCandidate(S , i, θ,C, q,m)
5 S ← S \ {i}

⋃
{ j}

6 return S

Algorithm 4: FindBestCandidate Procedure
input : An item-set S , an item i∈I, a threshold θ, a constraint-set C, a search

query q, and the number of random worlds to be generated m.
output: An item from I.

1 item = i
2 foreach j ∈ I \ S do
3 S ′ ← S \ {i}

⋃
{ j}

4 ŝim← EstSim(S , S ′,C,m)
5 if ŝim≤ θ

2 then
6 if uq( j) > uq (S )·θ

1−θ then
7 if uq(j) > uq(item) then
8 item← j

9 return item

avoid this is to extend the neighborhood relation. Namely, we
can replace k′<k random items from I with k′ random items
from I\I at the same iteration. Here again, we devise sufficient
conditions on the set of items to be included, to ensure an
improvement (see full details in [12]).

Remark: We note that in case the initial set (obtained
by the greedy algorithm) has a low constraint satisfaction
probability, the resulting set is likely to have a low constraint
satisfaction probability as well. Nonetheless, as we show, in
most of the examined scenarios, the constraints satisfaction
probabilities of the sets obtained by the greedy algorithm were
higher than those of the item-sets that are currently returned by
the system. This was the case also for the item-sets obtained
by our full two-step algorithm, even though local search may
decrease the constraints satisfaction probability.

Time Complexity: The time complexity of the Greedy-
CountConstrint procedure is dominated by the time it takes to
sort the items, which is O(n log(n)), where n=|I|. Similarly, the
time complexity of the GreedyCoverageConstrint procedure
is dominated by the items it takes to sort the items per value,
which is O(|Va|·n log(n)), where |Va| is the number of values
of the attribute a. Let r denote the maximal number of values
for an attribute a∈A. The time complexity of the full greedy
algorithm is therefore O(l·r·n log(n)), where l is the number
of constraints. Algorithm 3 calls Algorithm 4 t times, which
estimates the similarity of two item-sets (n−k) times, where
t is the number of iterations. A similarity estimation can be
done in O(m · l · k), where l=|C| and m=O( 1

θ3 ). Therefore, the
time complexity of Algorithm 3 is O(t·(n−k)·l·k· 1

θ3 ).

V. Extensions

We next extend PCS to handle multiple queries. One
possible approach to do so is to simply handle each query
separately. However, if the number of the overall data requests
is bounded, it is desirable to focus on items that would be
beneficial to multiple queries. We thus extend our problem def-
inition to handle multiple queries simultaneously. We consider
two common aggregation strategies [17]): Average and Least

Misery (LM). Using the average strategy, the goal is to find
an item-set that maximizes the average contribution across all
queries. Following the LM strategy, the goal is to maximize the
minimum contribution for each query. We begin by formally
defining the AVG-PCS and LM-PCS problems, then explain
how our algorithm can be generalized to handle multiple
queries. Last, we discuss how our proposed algorithm can be
used to investigate the interactions among the constraints.

A. Multiple Queries

For simplicity of presentation, we assume that the same set
of constraints is imposed over all queries, However, all of our
definitions and algorithms naturally extended to the general
case, where each query may be associated with a different set
of constraints (full details are provided in [12]).

We are given a set of m search queries Q={q1, ..., qm}, and
a set of constraints C, imposed over all queries in Q. In AVG-
PCS, the goal is to find a k-size item-set that maximizes the
average contribution across all queries in Q. Formally, given
a number k, find an item-set I⊆I s.t:

I=argmax|I′ |≤k

∑
qi∈Q uqi (I

′)·PrC[I′]
m

(1)
An alternative problem definition follows the Least Misery
strategy [17], and maximizes the minimum contribution for
each query in Q. Formally, find a set of items I⊆I s.t:

I = argmax|I′ |≤k min
i∈[1,...,m]

uqi (I
′)·PrC[I′] (2)

Here again, we set the size of the selected item-set in both
definitions to be k – the number of items in a query result set.
As in the case of a single query, if the number of data requests,
k′, is <k, we take the top k′ items having the highest utility
scores, and if k′>k, we may repeat the process k′

k times.

Example 5.1: Let Q={q1, q2}. Following the average pol-
icy, the selected item-set is: S AVG= {i2, i6, i7}. Informally, i7 is
relevant for both queries, and items i2 and i6 are relevant only
for q1 and q2, resp. Hence, completing missing data on these
items may improve the results of both queries. Following the
LM policy, the selected item-set is S LM={i6, i7, i9}. Intuitively,
as there are fewer items that are relevant for q2 than for q1,
optimizing the result of q2 is more challenging. Thus, this set
includes more items that are relevant for q2 (all items in S LM)
than items that are relevant for q1 (only items i7 and i9).

We next explain how our algorithm can be extend to
support the multiple queries variants. For space limitations,
we provide here only a brief overview of the algorithms.
AVG-PCS Given a set of search queries Q={q1, . . . , qm}, we
compute the average utility score of an item i∈I w.r.t. all
q∈Q. Using the average utility scores, we employ the greedy
procedure to obtain an initial solution, then use the local-search
procedure to improve it, without any further adaptations.
LM-PCS Given a set of search queries Q and a set of
constraints C, for every query qi∈Q, we compute the solution
obtained by running our algorithm for a single query. Let
S qi denote the solution obtained for the i-th query. We then
estimate, for each q j∈Q, the value of uq j (S qi )·PrC[S qi ] (as
described in Section IV-B). Finally, we return the item-set
in which its minimum value w.r.t. to all queries in Q is
maximal. To speedup processing time, we employ parallelism
and compute the solution for all queries and estimate their
respective contributions in parallel. Indeed, as we show in



TABLE II: Examined Datasets.
Dataset n |A| # of queries # of constraints

Amazon [19] 431K 12 15 45
CrowdFlower [20] 32K 6 10 31
Victoria’s Secret [21] 31K 6 10 30
Home Depot [21] 124K 17 14 39
DM-Authors [22] 10K 10 10 50

our experiments, the overhead for this algorithm is marginal
compared with the AVG-PCS algorithm.

B. Investigating Interactions Among The Constraints

Given a set of constraints, the system owner may wish
to understand the interactions among the constraints. We
note that this problem is orthogonal to PCS and may serve
as a pre-processing step that the system owner runs before
running our algorithm. Nevertheless, we next show how our
algorithm can be used for this problem as well. Given a
set of constraints C, a search query q, and a new constraint
c<C, one may wish to asses the effect of adding c to C1.
Namely, to learn if this new constraint may lead to a significant
decrease in utility or constraint satisfaction probability. To this
end, we run our algorithm twice, once while considering the
original set of constraints C, and once while adding c into
C. Let C′=C∪{c}, and let S C (resp. S C′ ) denote the solution
obtained whit the constraints set C (resp., C′). We examine the
difference between S C and S C′ in terms of utility and constraint
satisfaction probability. If the difference between uq(S C) and
uq(S C′ ) is “significant” (e.g., above a predefined threshold),
we may alert the system owner that the constraint c may lead
to a significant decrease in utility. Similarly, if the difference
between PrC[S C] and PrC′ [S C′ ] is significant, we may alert
the system owner that c may contradict other constraints.

A related problem is the well-studied constraint satisfaction
problem [18], whose goal is to verify if there exists a k-size
item set that satisfies the constraints. Namely, to verify if there
is an assignment to the items’ missing attribute values that can
satisfy the constraints. Note that this problem is decidable and
that a naive approach requires an exhaustive search to examine
all attribute-value assignments and for each one to consider
all k-size item sets. Here again, note that this problem is
orthogonal to the PCS problem. As we mention in Section II-A,
in this work, we assume that each constraint can be satisfied
and that all constraints can also be satisfied simultaneously.

VI. Experimental Study

Our experimental study conducted to examine the quality
and scalability of our algorithm, in multiple practical scenarios.

A. Experimental Setup

We implemented all algorithms in Python 3.7. The exper-
iments were executed on a Linux server with a 2.1GHz CPU,
24 cores, and 96GB memory.

Datasets: We examine 5 datasets spanning two do-
mains: e-commence and people search.
E-commerce We examined 4 publicly-available datasets (listed
in Table II), containing search queries and top-k results in
several websites. As the obtained results over these datasets
demonstrated similar trends, for space limitations, we provide

1This procedure can be naturally extended for a set of queries and a set of
constraints C′, where C∩C′=∅.

the results only for the Amazon dataset. Amazon is a real-
world dataset, containing thousands of products in various
categories, including Electronics. The utility function was
computed according to search query relevance (using Elas-
ticSearch [16]). The set of attributes includes the products’
screen size, brand name, and charger type. The search queries
were taken from the BestBuy dataset [23]. For all e-commerce
datasets, we extracted the true values of missing attribute
values using semi-automatic methods with manual validation
(performed by domain experts) over the relevant items. For
ML value prediction, we used the NER model of [7], a top-
performing neural-network based model that can be used to
predict attribute values from text (i.e., products’ titles in our
setting). We used sets of real-life constraint examples provided
by a large e-commerce company (name omitted for privacy
request), which includes constraints ensuring specific brand
partnerships, gender plurality, and etc. The list of the constrains
is private and hence cannot be made fully public. On average,
each search query is associated with 3 constraints.
People Search. To demonstrate the applicability of our frame-
work to other domains, we included the DMA dataset, which
contains information on researchers who have frequently pub-
lished in data management-related conferences. The set of
attributes includes the researchers’ gender, affiliation, conti-
nent, research topics, and seniority group. We hid the original
values of the authors’ gender and continent (to serve as ground
truth) and used ML tools to predict their probabilities based
on the authors’ names. For gender, we used the gender-guesser
library [24], and for the continent, we used the algorithm of
[25]. For utility scores, we used the researchers’ h-index. Here
we consider constrained search queries selecting a set of 30
program committee (PC) members.The constraints, obtained
by consulting with previous program chairs of major database
conferences, include coverage constraints on the authors’
continents (ensuring that authors from at least 3 different
continents are selected), coverage of different seniority groups
(ensuring authors with at least 3 different seniority levels are
selected), and coverage constraints on the authors’ research
topics (ensuring that the number of different research topics is
at least 10). The constraints also included count constraints,
requiring that the selected author-set will include between
30%−70% females and 10%−40% industry affiliates. Namely,
the search queries are associated with a set of 5 constraints.

For all datasets, we extracted a smaller subset to be used
in the execution of the non-scalable optimal algorithm for the
PCS problem variants. These subsets include only the top 50
items/authors with the highest utility scores. We used the Chi-
squared test of independence to find subsets of dependent
attributes2, to identify dependent constraints. We identified
several correlated attributes in each dataset (e.g., affiliation type
and name in the DMA dataset). We treat constraints imposed
on correlated attributes as dependent constraints.

Baseline Algorithms: To quantify the usefulness of our
proposed two-step algorithm, we assess each of the steps’
effectiveness and compare its results with the optimal solution.
We thus examine the following baselines:
DO-NOTHING: the algorithm that does not attempt to im-
prove data at all. This no-op algorithm serves as the base no-
data-completion case, to which all algorithms are compared.

2All attributes in all datasets are categorical.



CS: this algorithm selects for completion the items returned by
the system (i.e., by employing a CS algorithm). The attribute
values are assumed to be the ones with the highest probability
according to the ML modules. Since CS is itself a hard problem
(see Section III-B), for small datasets we compute its optimal
solution, whereas for large datasets we use ElasticSearch [16].
GREEDY: the greedy algorithm, as described in Section IV-A.
LS: the local search algorithm described in Section IV-B,
which starts with a given item-set and improves it. We consider
two variants - one that starts from the CS results (LS(CS)), and
one that starts from the GREEDY result (LS(GREEDY)).
ACTIVE: we consider three baselines inspired by Active
Learning (see discussion in Section VII). The first variant
selects the top-k items with the highest uncertainty score. The
uncertainty score of an item i is defined as one minus the
probability that all of its attribute values are correct. To account
for utility, we consider two more variants that, resp., use utility
only, and the utility multiplied by the uncertainty score as the
ranking metric. Since the results of all three baselines were
consistently inferior to the results of other competitors (except
DO-NOTHING), we omit them from presentation.
OPT: last, we also provide the optimal solution for the PCS
problem variants computed using an exhaustive search.

We report the average results obtained by each baseline
over 10 runs. As a default setting, we set the bound on the
number of data requests to be k - the size of a query result
set. For the LS algorithm, we set the similarity threshold θ to
be 0.2, and t, the number of iterations, to k×3.

B. Quality Evaluation

To evaluate the quality of the algorithms we simulate the
following data melioration process. We are given a constrained
search query q (or a set of queries). Given the item-set returned
by an algorithm, we complete all missing data on its items ac-
cording to the ground truth values (i.e., replacing the predicted
values with the ground truth ones). The remaining missing
attribute values of other items are unchanged (i.e., are assigned
with the value having the highest probability according to the
ML modules). We then compute the optimal solution for the
CS instance over the resulting database. Next, we examine
the quality of the returned set for q in terms of utility and
constraint satisfaction (computed w.r.t. the ground truth). The
improvement is measured w.r.t. the DO-NOTHING baseline,
which shows the system’s results for q before the cleaning was
done. The greater the distance between an algorithm’s results
from the DO-NOTHING results, the better is the algorithm.

Here we consider the datasets’ small versions. We examine
two settings: (1) single-query, where each search query is
considered separately, and report the average result over all
queries3; (2) multiple-queries, where all queries are considered
simultaneously. For space limitations, in each experiment we
report the results only for one dataset, altering between the
Amazon and the DMA datasets. We report that in each case
the results over the other dataset demonstrated similar trends.
We measure improvement along three dimensions: (1) Overall
utility. We report the normalized utility score, computed by
dividing the aggregated utility score by the optimal attain-
able utility score - the aggregated utility of the top k items

3In all cases, the standard deviation was ≤ 0.05.

with the highest utility; (2) Constraint satisfaction probability
(computed as explained in Section II-C); (3) Overall utility
multiplied by the satisfaction probability (i.e., the objective
function of PCS). Figure 2 depicts the improvement of the
results achieved over the Amazon dataset.

In all our experiments, the completion of missing data
always improves a result-set in terms of constraint satisfaction
probability. Note, however, that revealing the real attribute
values for certain items may decreases the utility, as some
items selected by the underlying CS algorithm to meet the
constraints’ requirements (due to wrongly inferred attribute
values), may now have a different (correct) value that no
longer satisfies them. Indeed, this was the case in 16% of
the examined queries. Namely, revealing the real attribute
values decreased the (normalized) overall utility of 16% of
the examined queries by 0.1% on average. In return, their
satisfaction probability was increased by 0.3% on average.

In all cases, the results of DO-NOTHING were inferior
to OPT (and to LS(GREEDY)), showing the importance of
adequate data completion. This highlights the imperfection of
common ML solutions, and that relying solely on data derived
by such algorithms may lead to sub-optimal results. Observe
that LS(GREEDY) is the second-best competitor after OPT.
The LS step significantly improved the results in terms of
utility, no matter which result set it had started with. When
handling multiple queries simultaneously, the results have also
been improved in terms of constraint satisfaction (Figures 2b,
2c). However, the LS step yields the best results when starting
from the solution obtained by GREEDY, as this set is more
likely to satisfy the constraints than the result set of CS.

We next examine how different parameters affect the re-
sults. For space limitations, we present the results only for
the single-query setting. We report that the results over the
multiple queries settings demonstrated similar trends.

# of data requests: We examine how the number of
requests affects performance. The results over Amazon are
depicted in Figure 3(a), where the x-axis represents the number
of data completion requests and the y-axis represents the
probability of constraint satisfaction multiplied by the utility
score (i.e., contribution). Naturally, with more data requests,
the greater is the improvement. Observe that besides OPT,
LS(GREEDY) outperforms all competitors with any number of
data requests. The second best competitors here are GREEDY
and LS(CS), with only a small difference between them.

# of constraints: We examine how the number of
constraints affects performance. Here we randomly generate
constraints as follows. Given an attribute a sampled uniformly
at random, we generate (with equal probabilities) either a count
or a coverage constraint c. For a count constraint, we randomly
selected a value v∈Va, and set the lower (resp., upper) bound
of c to be a random number in [1, k] (resp. [ f loor, k]). For a
coverage constraint, we set the lower (resp. upper) bound to be
a random number in [1, |Va|] (resp., [ f loor, |Va|]). The results
over Amazon are depicted in Figure 3(b). Naturally, with no
constraints at all, there is no need to complete data, as the top
k items with the highest utility are the optimal solution. As
the number of constraints increases, it becomes harder to find
high utility items that also satisfy the constraints. Here again,
besides OPT, LS(GREEDY) achieves the best results.



(a) Single-query (PCS) (b) Multiple-queries (AVG-PCS) (c) Multiple-queries (LM-PCS)
Fig. 2: Improvement in the results in terms of constraints-satisfaction probability and utility.

(a) # of data requests. (b) # of constraints. (c) # of missing values. (d) quality of predictions.
Fig. 3: Improvement as a function of various parameters.

Data quality: Here we examine how the percentage of
missing values and their prediction quality affect the results.
As mentioned, in the DMA dataset, the authors’ gender and
country names were replaced with values inferred by ML mod-
ules. We vary the percentage of missing values by randomly
selecting authors whose ground truth values were kept. The
results are shown in Figure 3(c). Naturally, with no missing
values, the platform outputs the optimal solution, and hence
none of the algorithms improve the solution. As the number
of missing values increases, the number of wrongly inferred
values increases as well. Observe that, here again, LS(Greedy)
is consistently the second-best competitor after OPT. Next, we
vary the percentage of wrongly inferred values, to examine
the effect of the underlying ML module. We report that for
both gender and country name predictions, the percentage of
wrongly inferred values were 0.78 and 0.67, resp. The results
are depicted in Figure 3(d). Observe that where the quality of
the ML is poor, all competitors’ ability to improve the results
is limited. However, we note that there is no point in using
ML modules with low accuracy in real-life scenarios.

# of queries: We examine how the number of queries
affects the results of the AVG-PCS and LM-PCS algorithms.
For space limitations, full details are deferred to [12]. Natu-
rally, with more queries considered simultaneously, the contri-
bution for each query becomes smaller. We report that in all
cases, LS(GREEDY) is the closest competitor to OPT. Even
though the results are almost similar, as expected, the AvG-
PCS algorithm achieves a slightly better average contribution
than the LM-PCS algorithm. On the other hand, the LM-PCS
algorithm ensures that the minimum contribution is slightly
higher than the minimum contribution while using the AVG-
PCS algorithm. These results indicate that the adaptation of our
algorithms for the AVG-PCS and LM-PCS problem variants is
adequate for the corresponding optimization problem.

Interactions among the constraints: Last, we used the
procedure describe in Section V-B to examine the interactions
among the constraints. We observed no particular interactions
among the constraints in the Amazon dataset. Not surprisingly,
in the DMA dataset, we discovered that the coverage constraint

(a) # of items. (b) # of constraints.
Fig. 4: Running times as a function of various parameters.

(a) DMA. (b) Amazon.
Fig. 5: Running times as a function of # of queries.

imposed on the authors’ seniority level decreases the overall
utility by nearly 30%. Other constraints had no particular effect
on the overall utility or constraint satisfaction probability.

C. Scalability Evaluation

We examine how the running times of our algorithm are
affected by various parameters. Here we consider the full
datasets, and thus, we do not report the results of OPT. Since
the running times of the DO-NOTHING baseline are 0, we
omit this baseline from presentation. For space limitations, in
the first two experiments, we focus on the single-query setting
and the Amamzon dataset, and report that the results over the
other settings and datasets demonstrated similar trends.

Repository size: The results are depicted in Figure 4(a).
Naturally, with more items, the running times increase for
all algorithms. Interestingly, GREEDY behaves similarly to
CS (ElasticSearch in this case), both searching for an item-
set that is likely to satisfy the constraints. Observe that the



LS step takes longer over the GREEDY set than on the CS
one. But, as shown earlier, yields a result of better quality.
In all cases, LS(GREEDY) runs in less than 5.5 seconds,
which is reasonable for an offline computation, and negligible
compared to the time it typically takes to collect missing data.
We report that in the DMA dataset, there was a greater increase
in running times for all algorithms as the dataset size grows.
This stems from the fact that in the DMA search queries, all
authors are considered as possible candidates. By contrast, in
Amazon, only a subset of the data qualifies for each query
(e.g., for the query “laptop”, only items having the value of
laptop for the attribute device-type are considered).

# of constraints: The results are depicted in Figures
4(b). We observe a near-linear growth in the running times
of GREEDY as the number of constraints increases. On the
other hand, for LS(GREEDY), we observe a near-exponential
growth. This stems from the fact that the estimation of the
constraint satisfaction probability this algorithm employs (line
4 of Algorithm 4) is highly affected by the number of con-
straints. Recall that in both datasets, each query is associated
with no more than 5 constraints. Nonetheless, LS(GREEDY)
terminates after no more than 12 seconds, even for 10 con-
straints - a reasonable processing time for an offline task.

# of queries: Next, we examine the effect on running
times of our algorithm, adapted to solve the two multiple-
queries problem variants, as a function of the number of
queries. The results are depicted in Figure 5. The running times
of the LS(GREEDY) algorithm adapted to solve AVG-PCS are
independent of the number of queries, and it behaves like a
single-query PCS algorithm. This stems from the fact that after
computing the average utility scores, there is no difference
between these algorithms. In contrast, the algorithm adapted
to solve LM-PCS demonstrates a near-logarithmic growth in
running times. The reason for this is that, due to parallelism,
we can process the queries simultaneously. However, this
algorithm performs an additional estimation step, for choosing
the solution that maximizes the minimum contribution for
each query (as described in Section V-A). If the number of
considered queries will be higher than the number of available
cores, we expect to see a linear growth in running times.

Local search parameters: Last, we examine how the
parameters of the local search algorithm affect its performance.
For space limitations, we provide an overview of our main
findings. According to our experiment, when the similarity
threshold increases, we observe a near-logarithmic growth in
the result quality; however, this comes at the cost of a near
exponential growth in running times. This stems from the
fact that with a grater similarity threshold, the size of the
neighborhood relation of a solution increases exponentially,
and there are a few candidate items that may improve the
solution. According to our results, a reasonable value for the
similarity threshold is 0.2, as higher threshold values signif-
icantly increase running times, while almost not improving
result quality. When the number of iterations increases, we
observe a near-logarithmic growth in the result quality; here,
this comes at the cost of a near-linear growth in the running
times. Namely, the number of iterations has a smaller effect
on running times compared with the similarity threshold.
According to our results, a reasonable value for this parameter
is 90 (i.e., approximately k×3 in our setting), as a higher

number of iterations significantly increase running times, while
almost not improving the result quality.

VII. RelatedWork

Our work is closely related to a line of work studying
different variants of the non-probabilistic Constrained Search
(CS) problem [2], [26]. For example, as mentioned in Section
III-B, the authors of [1] have studied a restricted variant of the
CS problem, for which they have devised an optimal PTIME
algorithm. While we have established a connection between the
general CS and the PCS problems (proving PCS to be harder),
we emphasize that our goal is different. Rather than searching
for the optimal result set of a constrained query based on the
given information, we identify those items whose completion
may generate better output. Indeed, as our experiments show,
the CS results are not the best solution for PCS. A restricted
variant of PCS was studied in [3]. However, their model only
supports count constraints and assumes equal utility scores.
Their proposed algorithms do not generalize to our context, as
their hardness results no longer hold in our generalized setting.

Imposing constraints on a result set is known to be
important in multiple domains [27], [28]. The two types
of constraints that we consider can capture a wide range
of constraints studied in multiple applications. For example,
coverage constraints have been studied in information retrieval
and recommender systems [14], [10], ensuring that a result set
covers a wide range of aspects. In algorithmic discrimination,
constraints may be imposed on the selected people-set, to
increase the representation of disadvantaged populations [1],
[26]. In crowdsourcing, much effort was devoted to select an
adequate worker-set satisfying coverage requirements [29], [3].
Future work will examine how our results can be applied to
improve data quality in such applications.

Another type of constraint, which we intend to study in
the future, is similarity-based constraints [27], [9], [10]. Qin
et al. [28] formalized the diversified top-k problem. As in our
case, they have shown it to be hard to approximate, via a
reduction from the maximum independent set problem. We
note that what makes this work differently from ours is the
details of the reduction itself, which is critical for obtaining
our approximation bound. Numerous algorithms for the top-k
diversification problem have been proposed [9], [27]. Gener-
ally, two main categories of such algorithms are greedy [9]
and interchange [10] algorithms. Our algorithm follows an
analogous line, applying a greedy procedure followed by a
local-search one. However, the different types of constraints
that we handle require the design of dedicated greedy and
interchange strategies. Interesting future work is to examine
how these two complementary lines of work can be integrated
to extend our algorithm to support similarity-based constraints.

Data cleansing is a well-studied task. A large body of work
focuses on fully-automated cleaning process [30], [31]. To im-
prove results, it is common to combine human knowledge with
ML [29]. This was done in numerous domains, including entity
resolution [8], and supervised learning [32]. To reduce costs,
much research was devoted to minimize the interaction with
humans [5], [33]. Our work complements these previous efforts
by leveraging the probabilities obtained by ML algorithms, to
identify which data records are better to be manually cleaned.



Here as well, we aim to effectively use human effort by limiting
the number of data completion requests.

A sub-filed of ML that is closely related to our work
is Active Learning, where a learning algorithm iteratively
chooses new data points to label (by humans). Similar to our
problem, an active learner aims to achieve high performance
using a limited number of labeled data points [34]. A common
query strategy used to choose which data points to label is
Uncertainty sampling [35], where an active learner queries the
instances about which it is least certain how to label. However,
as noted in Section VI, heuristics inspired by this approach
performed significantly worse than our algorithm. While in
most active learning works instances are selected serially [34],
a few frameworks propose to select instances in batches [36],
[37]. Most of these approaches use greedy heuristics to ensure
that the selected instances are diverse and informative [36],
sometimes incorporating diversity constraints [37]. As in our
setting, such batch-mode active learning aims to find an
optimal (diversity wise), set of instances. However, to the best
of our knowledge, none of the existing frameworks account for
the general type of constraints studied in our work. A possibly
interesting direction for future research may be to devise a
batch-mode active learning framework for the PCS problem.

Query evaluation over probabilistic databases has received
much attention in recent years [38], [39]. Many uncertain data
models (e.g., [39], [13]) adopted the possible worlds seman-
tics, where an uncertain relation is viewed as a set of possible
instances (worlds). Here as well, we have adopted the possible
worlds semantics, assuming that each item is associated with
probabilistic attribute values, and used techniques from [13] to
estimate the constraint satisfaction probability.

VIII. Conclusion and future work

We presented the PCS problem, which identifies a
bounded-size item-set whose data should be completed, to
improve the results of constrained search queries. We consid-
ered single- and multiple-query settings by supporting common
aggregation policies. We provided an approximation bound
to PCS, and proposed a heuristic algorithm to solve it. Our
experiments demonstrate the advantages of our algorithm in
multiple real-life scenarios. An interesting direction for future
work is to develop dedicated optimizations for determining
the optimal constraints order, to increase the satisfaction prob-
ability. Such a technique may use relative weights for the
constraints, indicating how important it is to satisfy them.
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