
Rule Sharing for Fraud Detection via Adaptation
Ariel Jarovsky1 Tova Milo1 Slava Novgorodov1 Wang-Chiew Tan2

1Tel Aviv University 2Recruit Institute of Technology
1{arielhe, milo, slavanov}@post.tau.ac.il 2wangchiew@recruit.ai

Abstract—Writing rules to capture precisely fraudulent trans-
actions is a challenging task where domain experts spend signif-
icant effort and time. A key observation is that much of this
difficulty originates from the fact that such experts typically
work as “lone rangers” or in isolated groups, or work on
detecting frauds in one context in isolation from frauds that
occur in another context. However, in practice there is a lot of
commonality in what different experts are trying to achieve. In
this paper, we present the GOLDRUSH system, which facilitates
knowledge sharing via effective adaptation of fraud detection
rules from one context to another. GOLDRUSH abstracts the
possible semantic interpretations of each of the conditions in the
rules at the source context and adapts them to the target context.
Efficient algorithms are used to identify the most effective rule
adaptations w.r.t a given cost-benefit metric. Our extensive set of
experiments, based on real-world financial datasets, demonstrate
the efficiency and effectiveness of our solution, both in terms of
the accuracy of the fraud detection and the actual money saved.

I. INTRODUCTION

Financial frauds are unauthorized financial operations
(called transactions) that obtain money or goods illegally from
accounts. Financial frauds are a billion dollar industry and
financial companies (banks, credit card companies, etc.) invest
significant resources to detect frauds and prevent them. Online
fraud detection systems monitor incoming transactions and
use models based on data mining and machine learning (ML)
techniques to detect frauds [15]. A typical approach is to score
each transaction and every transaction whose score is above a
threshold is classified as fraudulent.

However, such approaches may still not achieve high preci-
sion and recall as legitimate transactions may be misclassified
as fraudulent and, likewise, fraudulent transactions may be
missed. Also, the derived threshold does not provide a seman-
tic explanation of the underlying causes of the frauds like the
ways rules do. For this reason, financial companies typically
rely, in addition to ML models, on rules that are carefully
specified by domain experts. The rules refine the ML scores
with domain specific conditions, for automatically determining
fraudulent transactions.

Writing rules to capture precisely fraudulent transactions
is a challenging task where domain experts spend significant
effort and time. A key observation is that much of this
difficulty is due to the fact that experts typically work as
“lone rangers” or in isolated groups to define the rules, or
work on detecting frauds in one context in isolation from
frauds in another context. However, in practice there is a lot of
commonality in what different experts are trying to achieve.

Very often, rules defined by experts in one given context
may be useful for understanding how to detect frauds in
another context. Such collaboration between experts is desired
between the different branches of financial entities, and even
between competitors that are willing to share knowledge for
the greater cause of battling financial crime (as imposed by
local regulations [24]). The goal of the GOLDRUSH system
presented here is to facilitate knowledge sharing via effective
adaptation of fraud detection rules from one context to another.

We examine the conditions of the rules, and the source
and target contexts, to map rules from one context to an-
other. The possible semantic interpretations of each condition
are abstracted and then instantiated to the target context.
As the number of possible abstractions (and corresponding
instantiations) may be large, each rule can be mapped to the
target context in many different ways. The efficient algorithms
underlying GOLDRUSH identify the most effective ones, in
terms of improving the fraud detection accuracy in the target
context. To illustrate, let us consider the following example.

Example 1.1: Consider two fraud detection experts, A and
B, working in two different collaborating companies, located
in the USA and Germany, respectively. Figures 1 and 2 show a
portion of each company’s transaction relation (for simplicity,
we present here just some real-world attributes, including
the transaction time, amount, type, and country). We also
present in the last column the ground truth labeling for each
transaction: fraud (marked as F) or legitimate (L).

ϕA :Type = “Stock Trade” ∧ Amount ≥ 100K ∧
Time ≥ 16:00 ∧ Country ∈ {Dinotopia, Jamonia}

The above rule is designed by expert A to detect the
frauds in Figure 1. In practice each rule also includes a
threshold (not shown) on the transaction score as derived by a
Machine Learning module, i.e., the degree of confidence that
the transaction is fraudulent, as well as additional conditions
on the user/settings/etc. We will omit the scores and the
additional conditions for simplicity and focus only on the rules
in this example.

The rule defined by expert A in her context may be useful,
after some appropriate adaptation, for the context of expert
B, and different interpretations will yield different target
conditions. Observe that the condition over Time may refer
to the local time or the time after the closing of the local
Stock Exchange Market (i.e., 16:00 for the New York Stock
Exchange). A time-zone adaptation should be applied for the
former interpretation (+6 hours) to adapt it to the time in Ger-
many. However, the target condition should be Time ≥ 20:00

Time Amount Type Country
15:58 107K Stock Trade Dinotopia L
16:01 104K Stock Trade Dinotopia F
16:02 111K Stock Trade Jamonia F
16:04 102K Stock Trade Dinotopia F
16:15 96K Stock Trade Dinotopia L

: : : : :
Fig. 1: Expert A Transactions

Time Amount Type Country
19:53 140K Stock Trade Orsinia L
20:02 97K Stock Trade Orsinia F
20:03 230K Stock Trade Orsinia F
20:05 92K Stock Trade Orsinia L
20:07 206K Stock Trade Orsinia F

: : : : :
Fig. 2: Expert B Transactions

(the Frankfurt Stock Exchange closing time) if it is the latter
interpretation. Similarly, Country ∈ {Dinotopia, Jamonia}
may refer to all over the world attacks originating from these
two specific (fictional) countries, in which case an identity
mapping should be employed. Conversely, if the condition
deals with a specific attack against the local market (USA
in this case), we should map it by the rule target country
market attackers, e.g. Orsinia. Finally, Amt ≥ 100K may be
a condition in terms of the local currency, in which case a
translation from US dollars to Euro may be applied (translates
to about 95K). Or, it may be a condition that captures
“exceptionally large amounts”, which, considering the trade
amounts distribution in context B, should be mapped to 200K
Euro. A resulting possible translation for rule ϕA then may
be the following:

ϕB :Type = “Stock Trade” ∧ Amount ≥ 95K ∧
Time ≥ 20 : 00 ∧ Country ∈ {Orsinia}

Our goal is to facilitate meaningful and effective rules
mappings between different contexts. A fundamental challenge
is that rule semantics is often undocumented. To overcome
this, we focus on the individual rule conditions and derive a set
of candidate value abstraction and concretization functions that
may capture the possible mappings between the conditions in
the given contexts. These include common built-in mappings
(e.g. currency and distribution-based mappings) as well as
semantic-aware mappings, derived by analyzing the given data
instance. To choose between the possible mappings we define
an intuitive cost-benefit model that reflects the improvement
in fraud detection that the resulting rules may bring. Finally
we provide a set of efficient algorithms to choose the best
translation among the candidates set. We show that finding
the optimal rule adaptation is NP-hard (intuitively, as all
the combinations between the conditions adaptation candidate
values need to be considered), but the problem can be modeled
as an Integer Linear Programming (ILP) problem. As the
performance of ILP solvers often deteriorates for large number
of variables (which is the case here), we employ a dedicated
data reduction technique that clusters together transactions that
“behave uniformly” w.r.t the conditions in the rule, dramati-
cally reducing the number of variables and yielding efficient
performance1.

Our contributions can be summarized as follows.
• We formulate and present a novel rule adaptation frame-

work that employs value abstraction and concretization
to map individual rule conditions from one context to

1While the ILP solver still goes through exponentially many combinations,
it gives very good performance in practice on the reduced data.

another. An intuitive cost-benefit model measures the
improvement in fraud detection that the resulting rules
may bring.

• We show that the problem of identifying the best rule
adaptation is NP-hard and propose an effective data
reduction technique which, together with a dedicated ILP
formulation of the reduced problem, yields nevertheless
a practically efficient performance.

• We have implemented our solution in the GOL-
DRUSH prototype system and applied it on real use
cases, demonstrating the effectiveness and efficiency of
our approach as a whole, as well as the individual
contribution of each components. We performed exper-
imental evaluations on five real-life datasets of financial
transactions that showed how our algorithms consistently
outperformed alternative baseline solutions, both in terms
of the accuracy of the frauds detection and the actual
money saved.

We note that while some previous work has studied the
problem of adapting rules to changes in the data (e.g. [25],
[11], [16]), they mainly focus on incremental maintenance
of rules in a given context as new transactions come in.
In contrast our work examines rule adaptations entailed by
context switching. Closest to our work is research on transfer
learning, that attempt to reuse knowledge gained while training
a model in one context to save training cost in another context.
In particular fraud detection rules may be viewed as a form
of decision trees to be transferred between contexts. However,
since their objective function is different, as we show in our
experiments, not only the resulting decision trees after the
ML-based transfer are less meaningful in terms of (semantics)
understability to the human expert, they are also less effective
in terms of fraud detection.

While we focus here on a particular application domain, our
techniques are generic and may be generally utilized to adapt
classification rules under similar cost-benefit objectives.

The paper is organized as follows. Section II presents the
data and cost-benefit model that we employ and formalizes
the rule adaptation problem. The problem complexity and the
optimized algorithms to solve it are considered in Section III.
The classes of value mappings that we consider are detailed
in Section IV. The experiments are described in Section V.
We present related work in Section VI and conclude in VII.

II. PRELIMINARIES

In the following section we present all the necessary defini-
tions to formally define the problem. We start by explaining the

data model (transactions and rules) followed by the definition
of rule adaptation and the cost/benefit model that we employ.

A. Transactions

Our model consists of a transaction relation
T (A1, A2, . . . , Am) = {t1, . . . , tn}, which is a set of
tuples (or transactions) over the attributes A1, A2, . . . , Am.
In a financial context, a tuple ti captures an operation (i.e.
transfer, payment) made through some bank or credit card.
The transaction relation is appended with more transactions
over time. For brevity, when the attributes and the transactions
set are clear, we will omit them and use just T . Every attribute
Ai belongs to a domain dom(Ai) which has a partial order
that is reflexive, antisymmetric and transitive, with a greatest
element >A and a least element ⊥A. Attributes associated
with a partial order but not with a total order are called
categorical attributes. The elements in such partial order are
sometimes referred to as concepts. W.l.o.g. we also assume
that >A and ⊥A do not appear in any of the tuples 2. These
special elements will be useful when defining rule mappings.
For brevity, when an attribute name is clear from the context
we omit it and simply use the notations > and ⊥.

A transaction may be classified fraudulent which means that
the transaction was carried out illegally. Conversely, a transac-
tion may be verified to be legitimate and classified accordingly.
The labeling is assumed to correspond to the (known part
of the) ground truth. Given a transaction relation T we
denote the set of fraudulent (legitimate resp.) transactions as
fraud(T) (legit(T)). In addition, each transaction is attached
with a score between 0 and 1, (computed automatically using
machine learning techniques) which represents the estimated
probability of each transaction to be fraud. Figures 1 and 2
depict two sample transaction relations. For the simplicity of
the presentation, the score is omitted from the figures. Also, we
assume (for simplicity) that all contexts have the same schema.
Otherwise one may apply schema matching techniques before
employing our algorithms.

B. Rules

Fraud detection experts specify rules that can be applied to
a transaction relation to identify the fraudulent tuples. For effi-
ciency of execution, the rules are typically written over a single
relation, which is a universal transaction relation that includes
all necessary attributes (possibly aggregated or derived from
many other database relations) for fraud detection. Hence, it is
not necessary to consider explicit joins over different relations
in the rule language. A rule ϕ in our setting is defined as
a conjunction of one or more conditions over the attributes
of a transaction relation T , For simplicity, each rule includes
only one condition over each attribute, but multiple disjunctive
conditions over the same attribute can be expressed using
multiple rules. Note that the rule language that we consider,
albeit simple, forms the core of common rule languages used
by actual systems and real-world industry companies [16].

2If not the case, add a new special element to the domain and set it
smaller/greater, in the partial order, than all other elements.

Indeed, as shown in the experiments, it covered all the obtained
rules.

More formally, a rule is of the form ϕ =
∧

1≤i≤m αi where
αi is a condition of the form ‘Ai opi vi’, opi ∈ {=, 6=, <,>
,≤,≥,∈, /∈}. We assume that the rules are well-defined: the vi
values belong to the corresponding attribute’s domain and the
operators’ semantics is the corresponding from the domain.
For readability, in our examples we show only the non-trivial
conditions on attributes, namely omit conditions of the form
Ai ≤ >. The semantics of a rule ϕ is defined as a boolean
function over the tuples of a relation T such that for a tuple
t =< A1 :a1, A2 :a2, . . . , Am :am >,

ϕ(t) =
∧

1≤i≤m
αi[ai/vi]

Here ai/vi denotes the replacement of vi by ai in αi, and
the semantics of αi[ai/vi] is defined by the standard opi
semantics, except for the case where ai = > for which αi
is always satisfied. Similarly, the semantics of applying a rule
ϕ on T denote the set of all tuples that are captured by ϕ,
i.e.: ϕ(T) = { t ∈ T | ϕ(t) = True}. Let Φ denote a set of
rules over T , then Φ(T) =

⋃
ϕ∈Φ ϕ(T). In other words, Φ(T)

denotes the result of the union of evaluating every rule in
Φ over T . Observe that for every T and for every ϕ ∈ Φ,
ϕ(T) ⊆ Φ(T) ⊆ T , since every rule selects a subset of
transactions from T .

As an example, the rules ϕA and ϕB from the Introduction
are rules in the presented language.

C. Rule-Driven Transactions Classification

Recall that transactions may be associated with a classi-
fication label that indicates whether they are fraudulent or
legitimate. Given a rule ϕ and a set of transactions T (typically
the full transaction relation), we define the set of fraudulent
transactions captured by ϕ as FC(ϕ, T) = fraud(T) ∩ ϕ(T).
Conversely, the set of uncaptured fraudulent transactions is
defined as FU (ϕ, T) = fraud(T) r FC(ϕ, T). The set
LC(ϕ, T) of legitimate transactions (wrongly) captured by ϕ
and the set LU (ϕ, T) of uncaptured legitimate transactions are
similarly defined, by replacing fraud(T) with legit(T) (and
correspondingly replacing FC with LC in the LU formula).

Notice that these definitions can be extended also to be used
with a rule set Φ by simply replacing ϕ with Φ. For brevity,
when the rule/rules set and the transaction relation are clear,
we will omit them and simply use the notations FC , FU , LC
and LU . Ideally, we aim to build a set of fraud detection rules
in which FC and LU are as large as possible (and so FU , LC
are as small as possible).

D. Rule Adaptation

The context of an expert includes her transaction relation
and her current set of fraud-detection rules, as well as relevant
contextual information such as the company she works for, its
location, currency, language, local regulations, etc.

While there might be many ways to map rules from a source
context to a target, we center our attention here on mappings

that consider the individual conditions of the rule, substituting
(when needed) the values vi used in the rule conjuncts by those
that best match the target context. As we will see in Section
V, such value-based mappings are extremely effective.

Which value substitutions should one consider when adapt-
ing a rule from one context to another? As illustrated in our
running example from the Introduction, there are multiple
semantics to consider for each condition (attribute). For in-
stance, the value in the Amount attribute conjunct can represent
an absolute amount in the local context currency or some
regulatory value, or alternatively correspond to some percentile
in the amounts distribution. The candidate mappings are thus
obtained by first abstracting the value from the source context,
using each of these possible relevant semantics, and then
concretizing the abstracted values to the target context.

More formally, given an attribute Ai, we denote by Σ(Ai)
its given set of possible semantics. For a context s, an attribute
Ai and a possible value semantics σ ∈ Σ(Ai), the attribute
abstraction function αsσ : dom(Ai) → dom(σ) maps values
from the attribute domain dom(Ai) to the abstract semantic
domain dom(σ). Conversely, the attribute concretization func-
tion, γsσ , is the inverse function that maps an abstract semantic
value y ∈ dom(σ) to its set of possible origins in dom(Ai),
except for the special > element which is mapped to itself:
γsσ(y) = {x|αsσ(x) = y if y 6= >, else >}

To map a rule ϕ from a source context s to a target context t,
we will consider, for each conjunct Ai op vi in ϕ, its possible
abstractions (under the different semantic Σ(Ai)), and then
concretize each to the target domain. Formally,

Definition 2.1 (Attribute Mapping Candidates):
Given a source context s, a target context t and an attribute
Ai, the mapping candidates for a value vi ∈ dom(Ai) are the
values

V sti (vi) =
⋃

σ∈Σ(Ai)

γtσ(αsσ(vi))

When s, t and vi are clear from the context, we will omit
them and use just Vi.

Example 2.2: To continue with our example from the In-
troduction, consider the two financial institutes A and B that
want to share the knowledge about fraud attacks. Let us focus
on the Amount attribute of the first rule ϕA. Naturally, there
are several possible mappings for this attribute. For example
one of them may use the exchange rate of US Dollars (the
local currency of A in USA) to Euros (the local currency of B
in Germany). In this case the abstraction here maps the local
amount to some agreed upon reference currency (Swiss Francs
in the example); a conversion from the reference currency to
Euro is then used as the concretization function (marked as CC
in Figure 3). A second possible option is a distribution-based
mapping that maps the value to its corresponding percentile
(e.g. upper 5%) among the transaction amounts in context A.
The concretization function then maps the abstract percentile
to the corresponding concrete value in the target context B
(marked as VP). Another possibility is using semantics that
maps the amount to some local financial regulation, assuming

Semantics Abstraction Concretization
Identity [ID] 100K 100K
Exchange Rate [CC] 97K (CHF) 95K(EUR)
Distribution [VP] upper 5% 200K
Regulation Limits [RL] after hours 120K

Fig. 3: Mapping of {Amount ≥ 100K} from context A to B

that the value of the attribute in the rule is exactly the
regulation limit. Here the abstraction will be the “type of
regulation” (e.g. after hours trade) and the concretization is the
value of the corresponding regulation limit in the target context
country (marked as RL). In addition, there is an identity
mapping that leaves the value unchanged (marked as ID). The
summary of the different mappings discussed is depicted in
Figure 3.

We are now ready to define the set of candidate rule
mappings. Intuitively, it includes all the rules obtained by
substituting each of the values appearing in ϕ by one of its
corresponding possible mappings.

Definition 2.3 (Rule Mapping Candidates): Given a
source context s with a rule ϕ =

∧
1≤i≤m Ai opi vi, and a

target context t. Let Vi (1 ≤ i ≤ m), be the set of attribute
mapping candidates for vi. The set of rule mapping candidates
for ϕ is the set of rules

Ψst(ϕ) = {ϕ[v′1/v1, . . . , v
′
m/vm] | v′1 ∈ V1, . . . , v

′
m ∈ Vm}

Here again, when s and t are clear from the context we omit
them and simply use Ψ(ϕ).

E. Cost & Benefit model

As previously explained, to compare between the different
rule candidates in Ψ(ϕ) and determine which is the most
suitable mapping, we need to measure the “cost & benefit” it
entails. Intuitively, the gain from a new rule can be measured
by the increase in the number of fraudulent transactions that
are captured by adding it (i.e. the fraudulent transactions that
were not captured by the existing rules), minus the number
of legitimate transactions that it misclassifies (i.e. legitimate
transactions that were correctly classified by previous rules).

Problem 2.4 (Best Rule Adaptation Problem):
Let s be a source context with a rule ϕ. Let t be a target
context with transaction relation Tt and an existing set of rules
Φt. Let FC , FU , LC and LU denote the set of captured and
uncaptured fraudulent and legitimate transactions in t w.r.t to
Tt and Φt (as defined above). Let Ψ(ϕ) be the rules mapping
candidates set as previously defined.

The BEST RULE ADAPTATION PROBLEM is to compute
a rule adaptation ϕ′ ∈ Ψ(ϕ) such that:

w(ϕ′) =(α · |ϕ′(FC)|+ β · |ϕ′(FU)|) −
(γ · |ϕ′(LC)|+ δ · |ϕ′(LU)|)

(1)

is maximized for a given α, β, γ, δ ≥ 0.
The term (α · |ϕ′(FC)|+β · |ϕ′(FU)|) represents the benefit

that can be obtained from adding the rule adaptation ϕ′ to
the existing rule set Ψt in terms of the fraudulent transactions
captured, while the term (γ ·|ϕ′(LC)|+δ ·|ϕ′(LU)|) represents
the rule costs (in terms of legitimate transactions captured). By

weighting each of the components one can tune, depending
on the application, the precision and recall of the selected
rule. For instance, setting α = 1, β = 1, γ = 0, δ = 0
will maximize the recall of the new rule set, while the dual
assignment (α = 0, β = 0, γ = 1, δ = 1) will maximize
its precision. A more balanced function (which represents the
common policy of financial companies) can be α = 0.5, β =
1, γ = 0.5, δ = 1. This function aims to capture as much
uncaptured fraudulent transactions as possible (especially new
ones), while at the same time maintaining a low number of
(new) false positives.

Additional constraints (e.g. thresholds on the precision/re-
call/number of captured legitimate transactions) may be added
to the problem definition, to fine tune the adaptation. For
simplicity we omit this here but our algorithms extend to such
more refined definition.

III. FINDING THE BEST RULE ADAPTATION

Let us first assume that we have a single rule that we wish
to adapt. We will discuss the case where multiple rules are
available afterwards. From the exposition in the previous sec-
tion it follows that there are two main challenges to overcome
to yield a good rule adaptation: (1) the choice of suitable
abstraction/concretization functions that will allow to build an
effective yet not too large set of candidate mappings for each
rule attribute, and (2) the design of efficient algorithms to
identify the best, cost&benefit-wise, rule adaptation. We will
first discuss (2) in this section, assuming that the set of possible
mappings for every attribute value is given. Then, in the next
section, we will explain which mappings are used.

A naı̈ve algorithm to identify the best rule adaptation would
iterate over all possible attribute mappings, evaluate Equation
1 for each of the mappings, and choose the one with maximal
value. However, this algorithm’s complexity is exponential in
the number of attributes and becomes prohibitively expensive
when the relations contains many attributes, each with multiple
possible mappings, as it is often the case in practice (see
Section V). Indeed, we can show the problem to be NP-hard.

Theorem 3.1: Testing whether a rule ϕ has an adaptation
ϕ′ ∈ Ψ(ϕ) whose score w(ϕ′) exceeds a given threshold θ is
NP-Hard in the number of attributes in the transaction relation,
even if each attribute has only two possible mappings.

The proof is presented in the technical report [13]
However, as we will show below, the problem can be

modeled as an Integer Linear Programming (ILP) problem.
While this is still NP-hard, ILP solvers are known to be
efficient in practice especially if the number of variables is
not too large. Unfortunately, in our setting, the variables in
the ILP formulation correspond to the number of transactions,
which are typically in the order of millions of them. Hence,
we employ a dedicated preprocessing data-reduction step that
clusters together transactions that behave uniformly w.r.t the
conditions in the rule, representing them as a single tuple,
and thereby significantly reducing the ILP problem space.
Our experimental results (shown in Section V) on real-world
datasets prove the efficiency of our solution.

We will start our exposition by describing the direct ILP
formulation of the problem, then explain how it is optimized
via data reduction. Finally, we will consider the general case
which, given a set of candidate rules, computes a set of top-k
rule adaptations.

A. ILP Formulation of the Best Rule Adaptation Problem

Consider a rule ϕ =
∧

1≤i≤m Ai opi vi, and let Vi,
i = 1 . . .m, be the set of attribute mapping candidates for vi.
Intuitively, our ILP problem consists of a boolean variable for
every value in each Vi (with the value 1 symbolizing that the
corresponding mapping was chosen, and 0 that it was not).
We also have a boolean variable for each of the tuples in the
target transaction relation Tt (with the value 1 symbolizing
that it satisfies the rule under the chosen mapping). The
objective function will be analogous to the one defined in
problem 2.4. We also have a constraint for every attribute Ai
in the rule, ensuring that a single value is selected from Vi.
Formally, we define the ILP as follows:

Notations Let π(Γ) be the set of indexes of transactions in
Tt belonging to the set Γ for Γ ∈ {FC , FU , LC , LU}. Let
ci = |Vi| be the number of different mapping candidates for
attribute Ai and let n = |Tt|, then:
Boolean (0-1) Variables:

xi = 1 iff transaction ti was captured by the chosen rule
adaptation

Aij = 1 iff mapping candidate j of the set Vi was selected
for attribute Ai

Constants:
αijk = 1 if attribute Ai on transaction tk is satisfied by

mapping Aij , otherwise 0

Model Formulation Our goal is to maximize the following
objective function under the given set of constraints.
Objective Function:

∑
i∈π(FC)

α◦xi+
∑

i∈π(FU)

β ◦xi−
∑

i∈π(LC)

γ ◦xi−
∑

i∈π(LU)

δ ◦xi

Constraints:
First, we want to allow just one mapping to be selected for

every attribute i:

∀
1≤i≤m

ci∑
j=1

Aij = 1 (2)

Then, we have the constraints that define if transaction k
is satisfied by the selected adaptation: we require for every
attribute Ai that if j was the selected mapping among the
candidates in Vi, then the constant αijk must be equal to
1. For this purpose, we check the transaction satisfaction
by counting the number of attributes satisfied by the chosen
candidates. Thus, a count result of m is equivalent to a full
record satisfaction. We use a lower bound equation and an
upper bound one in order to force the variables xk to behave
as expected.

Upper bound: On the first hand, we want xk to be 1 only in
case of full satisfaction. Thus, we need an expression that will
allow xk to be 1 only if there are at least m attributes satisfied.

∀
1≤k≤n

m · xk ≤
m∑
i=1

ci∑
j=1

αijk ·Aij (3)

Lower bound: On the other hand, we want xk to be 1 in every
case of full satisfaction. Thus, we need an expression that will
require xk to be at least 1 if there are m attributes satisfied.

∀
1≤k≤n

m− 1 + xk ≥
m∑
i=1

ci∑
j=1

αijk ·Aij (4)

This concludes the construction.
The size of the ILP problem is quadratic in the number of

transactions in the target relation Tt. More precisely, it includes
3n+m+ Σ|Vi| constraints over n+

∑
|Vi| variables, where

n,m are the number of transactions and attributes in Tt, resp.
As will be shown experimentally in Section V, this presents
a performance bottleneck when the number of transactions
in Tt is large. To overcome this, we use a data reduction
technique that allows to represent a set of “indistinguishable”
transactions by a single tuple.

B. Optimization via Data Reduction

Given a rule ϕ, its sets Vi, i = 1 . . .m, of attribute mapping
candidates, and the target relations Tt, we build a reduced
relation T ′t which we call the RMC (Rule Mappings Clustered)
relation. Then we define a reduced ILP problem for the
compressed relation.

The reduced RMC relation: The RMC relation is built by
clustering together sets of transactions that would be equally
labeled by the adapted rule, independently of which specific
attribute mappings are chosen.

Example 3.2: To illustrate, recall our running example from
the Introduction. Consider expert B’s transaction relation from
Figure 2, and rule ϕA that we wish to adapt to her context.
Assume that expert B has no other rules at the moment and
so, all the fraudulent and legitimate transactions in the figure
are currently uncaptured. Suppose that the attribute mapping
candidate for adapting ϕA to context B are VAmount =
{95K, 100K, 120K, 200K} and VTime = {16:00, 20:00}.
Consider the third and fifth transactions in the Figure. One
can verify that, independently of the chosen mappings, both
transactions will be both captured or uncaptured by the cho-
sen rule adaptation (since both Amounts are above 200K
and both Times are above 20:00). Our RMC construction,
described below, merges such indistinguishable tuples.

Intuitively, for every attribute Ai, we partition its domain
dom(Ai), using the values in Vi. We choose (as will be
explained below) a representative for each partition, then
replace each attribute value in the transaction relation by the
representative of the partition to which it belongs. Recall that
conjuncts in the rule are of the form Ai opi vi. The domain
partitioning (and chosen representatives), and consequently
the value replacements, are dictated by operator opi used for

Time Amount FC FU LC LU

16:00 120K 0 0 0 1
20:00 ⊥ 0 0 0 1
20:00 95K 0 1 0 0
20:00 200K 0 2 0 0

Fig. 4: Expert B RMC Transactions Relation

value comparison. We use below hopii to denote the value
replacement function for attribute Ai.

To illustrate, let us consider the operators ≥ and = (the
other operators work similarly). For ≥, when the domain is
totally ordered, we use the values in Vi to partition the domain
into disjoint intervals [v, v′), v, v′ ∈ Vi ∪ {−∞,∞}, and set
each partition representative value as the minimal value in the
partition (v). (For the case of v = −∞ we use the special ⊥
symbol). The value replacement functions h≥i for attribute Ai
is then defined as follows:

h≥i (v) = argmaxb∈Vi{v ≥ b}

For =, each element in Vi forms a partition of itself whereas
all the others values belong to a “complement” partition
whose representative is the ⊥ element. The value replacement
functions h=

i for attribute Ai is then defined as follows:

h=
i (v) = v if v ∈ Vi otherwise ⊥

Example 3.3: Following Example 3.2, the next table
presents for each Amount value in Figure 2, its partition and
representative as induced by VAmount and h≥Amt.

vi v′is partition h≥Amt(vi)
92K (−∞, 95K) ⊥
97K [95K, 100K) 95K
140K [120K, 200K) 120K
206K [200K,∞) 200K
230K [200K,∞) 200K

Suppose also that VType = {Stock Trade, Payment}.
Clearly, using h=

Type, all the transactions in Figure 2 will
remain with the Stock Trade type.

Finally, we cluster indistinguishable tuples and attach, to
each representative tuple, counters for the four transaction
classes
(LC , LU , FC , FU), counting the number of tuples in the
cluster belonging to the corresponding class.

Example 3.4: Continuing with Example 3.2, Figure 4
shows the RMC table for the 5 transactions in Figure 2 (we
assume that all of them are still uncaptured). We omit the Type
and Country attributes since they have the same values for all
the records in the example (and thus will be indistinguishable
for any possible adaptation).

The reduced ILP problem: We can now define, for the
reduced RMC table, a corresponding reduced ILP Model. In
this model, each of the xi variables represents a summarized
transaction in the RMC relation, and the αijk constants are
defined w.r.t the xi summarized tuples. The definition of the
Aij variables stays the same.

We use the same set of constraints as before and adapt
just the objective function. Let χΓ

i denote the number of

original transactions of class Γ ∈ {FC , FU , LC , LU} that were
summarized into the summarized tuple xi, then the updated
objective function becomes:∑

i∈π(FC)

α ◦ χFC
i ◦ xi +

∑
i∈π(FU)

β ◦ χFU
i ◦ xi−

∑
i∈π(LC)

γ ◦ χLC
i ◦ xi −

∑
i∈π(LU)

δ ◦ χLU
i ◦ xi

As demonstrated in the experiments, the smaller size of the
transaction relation, and consequently the smaller size of the
ILP model, leads to significant performance improvement.

To conclude the discussion, observe that a large number of
potential mappings allows on the one hand flexibility in rule
translation but on the other had makes the data reduction task
harder, as it may lead to smaller clusters. As we can see in
the experiments, the compression ratio of the RMC database
size, compared to the original one, indeed decreases when
the number of mappings grows. However, it is still highly
effective even for extremely large number (106) of possible
mappings, and the size is reduced by 2−4 orders of magnitude.
This shows that in practice, in spite of the large number of
mappings, many irrelevant mapping combinations are pruned,
allowing the RMC database size to be kept relatively small.

C. k-Rule Adaptation

So far we have explained how the best rule adaptation,
for a single rule ϕ is computed. When a set of n rules
is available (from the same or different sources), the same
algorithm can be applied to each of the rules ϕ in the set
(i.e. computing a reduced RMC relation for ϕ and running
ILP on it). The scores of the best adaptation for each of the
rules are compared, and the one with the highest score is
selected. If the score is positive (or above a minimal quality
threshold set by the system administrator), the translation is
added to the target rules set. The process can then be iterated,
to choose another qualifying rule adaptation, and so on. In the
full version of the paper [13] we present an optimized version
of this iterative process where “unpromising” rule candidates
are pruned via a threshold-based technique. We omit this here
for space constraints.

IV. GENERATING MAPPING CANDIDATES

We employ in GOLDRUSH three classes of attribute
mappings. The first class consists of a standard build in set
of value-based mappings. The second includes distribution
based mappings. The third class is data driven and employs
an ontological knowledge to determine possible abstractions/-
concretizations. We briefly overview each class below.

A. Mapping by Value

Our set of value-based mappings includes standard value
conversions for currency, temperature, time zone, length and
weight metrics. The corresponding abstraction (resp. con-
cretization) functions here map, in each context, every value
from (to) its local scale to (from) a universally agreed one.

We also include in this class three useful mappings:

Identity: This is the trivial mapping that leaves the values
unchanged. Here both the abstraction and the concretization
functions are simply the identity function.

Any-to-Any: This mapping allows to replace a value by
any other value in the domain. Such a mapping is useful
for semantic-less categorical attributes such as category code
names or internal user ids, where the corresponding value in
the target domain is unknown at mapping time, and allows
the algorithm to examine all possible instantiations. The ab-
straction function here maps all values to the abstract “Any”
element. The inverse concretization then facilitates all possible
mappings. To avoid blowup in the number of mapping options,
we apply this mapping only to categorical attributes with
bounded domain size (up to 100 in our implementation).

Wildcard: This mapping allows to replace a value by
the special > element, which satisfies all conditions, thereby
essentially removes the corresponding conjunct from the rule.
This is particularly useful when a given rule has conditions
that are relevant to the source context but not to the target.
For instance conditions on the state name may be relevant to
US bank branches but not for the European ones).

B. Mapping by Distribution

The second class includes distribution-based mappings such
as percentile and frequency (top/bottom-k). We distinguish
here between numerical and categorical attributes.

Numerical attributes: For numerical attributes there is
often a correlation between the value used in the condition
and the attribute’s value distribution in the underlying relation.
For example, assuming that only 5% of the money amounts
recorded in a transaction relation are above 100K, a condition
of the form of {Amount ≥ 100K} may in fact mean “in
the top 5% amounts”. To capture this we use an abstraction
function that maps each value to its corresponding percentile
in the attribute values distribution, in the source relation.
The inverse concretization function then uses the target’s
distribution to map back to the appropriate target value. (A
bottom n% mapping works in a similar manner.)

In our implementation we examined two standard methods
for estimating the percentiles and their values: building a Cu-
mulative Histogram and using 1-D Kernel Density Estimations
(KDE) [21]. As both methods yielded almost the same results
we show results only for Cumulative Histograms.

Categorical attributes: The top-k (resp. bottom-k) most
frequent is the analogous version of the numerical top n% (bot-
tom n%), for categorical attributes. The abstraction function
here maps every attribute value to the corresponding maximal
(minimal) k. The inverse concretization function then maps
each k to the appropriate value in the target context.

C. Mapping by Semantics

For categorical attributes, we use ontologies to examine the
semantic relationship between the values mentioned in the
attribute condition (e.g. Dinotopia and Jamonia in country ∈
{Dinotopia, Jamonia}) and each of the values mentioned in
the source context attributes (e.g. USA in location = USA of

Qurac USA
Germany

North
AmericaEurope

Orsinia
Dinotopia Jamonia

World

in
C

o
n

ti
n

en
t

in
C

o
n

ti
n

en
t

“scams” edge sequence

Internationally
sanctioned

“same continent” edge sequence

Fig. 5: A sample of geopolitical ontology
expert A in the Introduction). We use in GOLDRUSH (por-
tions of) general purpose ontologies such as YAGO [22] and
DBPedia [9] as well as domain specific ontologies. We assume
the ontologies to be sufficiently clean and accurate, and indeed
those that we use in our implementation were built and curated
by the domain experts of the participating financial institutes.

The simple, yet effective, semantic inference that we employ
examines the ontology graph. It identifies, for each semanti-
cally meaningful value mentioned in the source context, simple
path expressions (sequence of labeled edges) connecting the
value to the values mentioned in the condition. Each such
path expression captures a possible semantic abstraction. To
illustrate, two possible path expressions connect the USA node
to the two nodes labeled Dinotopia and Jamonia: (1) a single
(yellow) edge scams, semantically representing the fact that
both countries are the source of common scams against USA,
and (2) a sequence of two blue inContinent edges, capturing
that both countries belong to a single continent as the USA.
Each of the two path expressions captures a possible semantic
abstraction of the attribute value, relative to the source context.
Their conjunction captures a third abstraction representing the
conjunction of the two semantic properties.

For each such abstraction, the inverse concretization func-
tion retrieves, in the ontology graph, values that are accessible
by the corresponding path expression(s) from the analogous
target context attribute value. For instance, when adapting the
rule to a context where country = Germany, the concretiza-
tion of the first semantic abstraction (the scams edge) includes
Orsinia, whereas the concretization w.r.t the second semantic
abstraction (same continent) includes Orsania and Qurac.
The concretization of the third semantic abstraction is the
intersection of the two sets and includes only Orsinia, the
only value connected to Germany by the two path expressions.

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented the algorithms described in the
previous sections in the GOLDRUSH system, using Python
(backend service), PHP/JavaScript (frontend) and MySQL as
the database engine. The system architecture is detailed in
[13]. We next describe the datasets used in our experiments,
the compared algorithms, and the experimental evaluation.

A. Datasets

We run the experiments over real-world financial transaction
relations obtained from our industrial collaborators (names

DS Monthly
Trx#

Fraud
Ratio

of
Rules Precision Recall F1

Score

A 45K 0.02 80 (27) 0.86 0.53 0.65
B 800K 0.002 44 (9) 0.65 0.0007 0.001
C 2.5M 0.01 55 (14) 0.52 0.1 0.17
D 4.2M 0.001 110 (34) 0.42 0.1 0.16
E 250K 0.001 62 (14) 0.6 0.02 0.05

Fig. 6: Datasets used for GOLDRUSH experiments
omitted per companies request). Due to the sensitivity of the
financial information, we received a masked version of the
datasets in which personal information such as user names,
account IDs and IPs were omitted, and locations were reduced
to include only the city name. We obtained five datasets
belonging to five different financial institutes (FIs) around the
world, for the second quarter of 2016. Each dataset consists
of (i) a transactions relation, of two full months activity, and
(ii) the full set of fraud detection rules for that period. As
mentioned in Section II, the rule language that we consider,
albeit simple, forms the core of common rule languages used
by actual systems and indeed covered all the obtained rules.
For each FI, we used the first month data as our training set
and tested our generated rules against the second month.

Transactions and Rules: The transaction relations include
payment and authentication activities performed by the FI
clients. Each transaction is labeled as fraudulent/legitimate.
The labeling is done as part of the standard operation of the FIs
(using e.g. user notifications and periodic user approval/dis-
proval of transactions and fraud notifications) and we use these
labels as the ground truth. The relations have between 30-70
attributes, numerical attributes (such as the transaction amount,
number of actions in the last hour, etc.) and categorical ones
(location, client type, activity type, etc.). Each transaction also
includes a risk-score attribute (a value between 0 − 1000),
generated by the machine learning module of our industrial
collaborators, that indicates the probability of a transaction to
be fraudulent and is usually used as one of the conditions in
the rules. The rules contain between 3-20 conditions.

Figure 6 provides some additional statistics about the differ-
ent datasets used for the experiments. The reported statistics
are for the training set. The test set is quite similar. The number
of transactions in the relations varies from 50K to 4.2M per
month, where 0.1% to 2% of them are labeled fraudulent and
the rest legitimate. The number of fraud detection rules for
each FI varies from 44 to 110 (ignore for now the numbers in
parentheses). The rule sets have precision between 0.42 and
0.86 and for all the datasets (except A) the recall is often
below 0.1. These low recall numbers are common for fraud
detection rules in the financial industry as fraud detection,
even when performed by experienced domain experts, is often
an extremely challenging task. Even small percentage of
improvement in fraud capturing is considered a major success
and yields great financial savings.

Ontology: In the experiments we used a geopolitical-
financial ontology that was manually built and curated by the
FIs domain experts. According to our industry collaborators
such a one-time effort is cost-effective, as there are many
effective rules that can benefit from the derived mappings. The

ontology was built using DBPedia [9] and publicly available
datasets such as CIA Factbook [7] and FATF [8] which
contains lists of location-based known fraud schemes (i.e.
Western Union Scams [26]), known money-laundering regions,
sanctioned countries, as well as geographical properties such
as each country’s continent and bordering countries.

B. Algorithms

Our experiments evaluate each of the algorithms presented
in the previous sections, as well as the end-to-end GOL-
DRUSH system. We next list the various algorithms (and
competing variants) that we examine.

The GOLDRUSH system: In our end-to-end experiments
we will use the full fledged GOLDRUSH . We use the
performance of the given rule sets as baseline. Note that
these rules reflect the execution of state-of-the-art ML to label
the transactions with risk-scores and to suggest thresholds3,
along with the work of professional domain experts to refine
the classification, and thus represent the strongest existing
competitor. We denote this baseline by ML+E. We measure
the contribution of GOLDRUSH by adding our generated
rules to the FI rules set, measuring the improvement in
performance, in terms of precision and recall, obtained for the
extended rules set, compared to the original set. To compare to
a transfer learning approach, we model the rules as decision
trees and apply a state-of-the-art transfer learning algorithm
from [20] (TL). (The construction details are given in the
full paper [13]). Here again we add the transformed rules
to the original FI rules set and examine the performance.
To the best of our knowledge none of the existing decision
trees TL algorithms support the incorporation of predefined
mappings in the process. To nevertheless examine if/how they
may improve the TL results, we also run an experiment where
we first applied all possible mappings to the rules, then gave
the resulting set as input to the TL algorithm (TLm).

Best Rule Adaptation: As detailed in Section III, GOL-
DRUSH solves the Best Rule Adaptation problem by: (1)
compressing the transaction relation into an RMC Relation,
and (2) solving an ILP problem for the reduced relation. We
refer below to this two steps algorithm as GOLD. To examine
the contribution of each of these two steps, we compare GOLD
to the following competitors:
GOLD−: A restricted variant of GOLD that does not build
the reduced RMC and runs the ILP on the original relation.
BF: The naı̈ve brute-force algorithm which iterates over
all possible attribute mappings, computing the score of each
possible combination by issuing a corresponding SQL query
over the transaction relation.
BF+: Similar to BF, except that the queries are issued on the
summarized RMC relation.

C. Experiments

To illustrate the efficiency and effectiveness of our approach,
we tested GOLDRUSH and its algorithms through three sets
of experiments. We first performed an end-to-end experiment

3For the companies privacy, the algorithms details cannot be disclosed

Type Method k = 1 k = 5 k = 10 k = 20

Values

Identity 7 53 97 163
Any-to-any 5 20 43 78
Wildcard 4 17 28 52
Currency 0 0 1 3

Distribution Cum. Dist. 5 33 68 161
Top-k Frequent 6 29 53 119

Semantic Location Onto. 2 2 8 32
Fig. 7: Mapping Methods adoption rate

to examine GOLDRUSH as a whole, demonstrating its ef-
fectiveness for improved fraud detection and actual money
saving. This also allowed us to illustrate the usefulness of each
mappings class. We next examined the runtime performance
of our algorithm, demonstrating its superiority compared to
the competing algorithms.

1) End-to-End Benchmark: As a recommendation system,
we evaluated the quality of the recommended rule-sets pro-
posed by GOLDRUSH in terms of statistical measures such
as recall, precision, F1-score, and the amount of money that
the user would save if she adopts the recommended rules. For
each FI, the candidate rules pool consists of the rules set from
all other FIs, and we generated k rule recommendations for
k ∈ {1, 5, 10, 20}. The presented rule-set statistics refer to
the rule set consisting of the given FI rule set union those
recommended by GOLDRUSH. We run the experiments for
each of the FI’s training and test sets. Since the results in the
two cases were similar, we present both just for the F1-score
measure, and only those of the test set for the other measures.

We use here the balanced ILP target score function pre-
sented in Section II-E with α = γ = 0.5 and β = δ = 1.
We consider only adaptations that yield a positive cost-benefit
score. In some cases, this implies that less than k rules
would be recommended, and this is the reason why there
are experiments for which the results for a given dataset
remain unchanged from some k onwards. Figure 6 reports (in
the parentheses) for each FI the number of rules, out of all
rules, for which at least one such adaptation was found in the
experiments. A sample of the results for GOLD vs. ML+E are
depicted in Figures 8a-8c, and for GOLD vs. TL in Figure 9.

Figure 8a depicts the recall for varying k. The first bar
for each dataset shows the recall of the ML+E on the test
data while the others present the recall obtained with GOLD
when adding the 1, 5, 10 and 20 recommended rules. The
recall naturally increases as more rules are added. For 10-rule
adaptation, the recall for all datasets more than doubles, and
for dataset B, where the ML+E rules set recall was extremely
low, the recall raises to almost 90%. Further note that for all
the datasets, an important improvement is shown already at the
1-rule adaptation. This is in accordance with the observation
that adequate rules are extremely hard to write and thus
companies often miss important fraud patterns that are hidden
in the data. The results demonstrate the great benefit that even
minimal knowledge sharing may bring. Even the adaptation
of a single rule (the most beneficial one, as determined by our
algorithm) can greatly improve performance.

Regarding the precision, it increased in all the datasets (in
some cases over 50%) except dataset A (where it has decreased

A B C D E
0

0.2

0.4

0.6

0.8

1

Test Dataset

R
ec
a
ll

ML+E G(k = 1)

G(k = 5) G(k = 10)

G(k = 20)

(a) Recall - Test set

DB EA C
0

0.2

0.4

0.6

0.8

1

Training Dataset

F
1
-S
co
re

ML+E G(k = 1)

G(k = 5) G(k = 10)

G(k = 20)

(b) F1-Score - Training Set

A B C D E
0

0.2

0.4

0.6

0.8

1

Test Dataset

F
1
-S
co
re

ML+E G(k = 1)

G(k = 5) G(k = 10)

G(k = 20)

(c) F1-Score - Test Set

10−2 10−1 100 101 102 103 104 105
10−2

10−1

100

101

102

103

104

105

GOLD Algorithm time (in secs.)

C
om

p
et
it
or

A
lg
o
ri
th
m

ti
m
e
(i
n
se
cs
.)

GOLD vs. GOLD−

GOLD vs. BF+

(d) Best Adaptation Algorithm Performance

101 102 103 104 105 106 107
10−6

10−5

10−4

10−3

10−2

Mappings combinations number

R
M
C

S
iz
e/
O
ri
gi
n
al

S
iz
e

Dataset A

Dataset B

Dataset C

Dataset D

Dataset E

(e) RMC Compression Analysis

101 102 103 104 105 106 107

101

102

103

Mappings combinations number

R
M
C

d
at
ab

a
se

si
ze

Dataset A

Dataset B

Dataset C

Dataset D

Dataset E

(f) RMC Size Analysis
Fig. 8: Experimental results

by 18% for the large k values). Notice that to avoid such
decrease, a precision threshold constraint can be added to the
ILP model (not done here). We have further observed in the
experiments that the precision has always increased in the 1-
rule adaptation, then gradually decreased for higher k values
(yet generally stays higher than that of ML+E).

Figures 8b and 8c present the F1-score for ML+E and
GOLD for the training and test dataset, respectively. We use
this measure to highlight the trade-off between the recall
improvement and the precision decrease (which, as mentioned,
occurred just for a single dataset). First, note that the results in
the training and test sets are fairly similar (especially in terms
of the delta between the original rules set and ours), which is
exactly what one would like to see. One can also notice that,
compared to the original rules set, the F1-score is improved in
all cases, even for dataset A with a decreased precision, and
thus we see here overall trends similar to Figure 8a.

Recall F1-score
0

0.2

0.4

0.6

0.8

1

Test Dataset - A

V
al
u
e

ML+E G(k = 1) G(k = 5)

G(k = 10) G(k = 20) TL(k = 1)

TL(k = 5) TL(k = 10) TL(k = 20)

Fig. 9: GOLD vs TL evaluation
To compare also to TL, Figure 9 depicts the recall and

F1-scores for ML+E, GOLD and TL for dataset A (the
others show similar trends). While the recall value for TL
is marginally higher than GOLD for k = 10, 20, the corre-
sponding precision was extremely bad, as demonstrated by
the fact that the TL F1-scores are significantly lower for all k.
Moreover, the rules generated by TL were not meaningful to
the experts in terms of semantic understability, as illustrated in
the full version of the paper [13]. Interestingly, for TLm, not

only that for each input rule an exponential number of rules
(all possible mapping combinations) should be examined, the
results did not improve relative to the original TL.

Finally, to highlight the monetary benefit of our approach,
we calculated the overall saved money by summing up the
amounts of all the uncaptured fraudulent transactions (FU)
that were captured by some rule in the recommended set. The
results show that the rules could have saved between 50K to
100M(!) USD, depending on the dataset (see [13] for details).

Original Rule Translated Rule
COUNTRY = Dinotopia ∧
TIME > 20 : 00 ∧ ...

COUNTRY = Qurac ∧
TIME > 21 : 00 ∧ ...

COUNTRY = Orsinia ∧
IP CHANGED TODAY > 3

COUNTRY = Dinotopia ∧
IP CHANGED TODAY > 1

ACTIVITY = Withdraw ∧
AMOUNT > 5K ∧ ...

ACTIVITY = Transfer ∧
AMOUNT > 100K ∧ ...

Fig. 10: Translated Rules
To conclude the experiment we examined, for each attribute

mapping class, how often it was effectively used to construct
the rules derived in the experiment. Interestingly all classes
were useful. Figure 7 shows the results, for various mapping
classes, for varying k. The most dominant mapping is the
identity one, reflecting the fact that in many case values are
context independent. The distribution-based is also particularly
effective, as both the cumulative distribution mapping (used
for numerical attributes) and the top-k frequent mapping (used
for categorical attributes) are employed. For the semantic-
based mappings, location-based mapping was very useful,
chosen in over 50% of the cases for adapting the location-
related attributes (country and city). Finally, we used the Any-
to-Any mapping for semantic-less categorical attributes (such
as internal code names) which generally had relatively small
value domains (up to 100 values). As appreciated from the
statistics, this mapping was critical for the successful mapping
of rules with those attributes. Table 10 provides some examples
of the resulting translated rules. We only show the conditions
that were modified in the translation.

2) Best Rule Adaptation: In this set of experiments we
compared the run-time performance of the GOLD algorithm
against the three competitors presented in Section V-B. We
show the results for the train datasets. The results for the test
datasets are similar.

Single rule: We start by considering the time it takes
to identify the best adaptation for a single rule. As for a
given dataset, the performance depends on the number of
attribute mapping candidates, we examine the run-time for
a varying number of attribute mapping combinations. In our
datasets, these ranged from 10 to almost 107, depending
on the attributes used in the given rule and their domain.
Figure 8d summarizes the results of all runs, comparing the
run-time of single rule adaptation performed with GOLD
(corresponding to the x-axis), to the competitors (y-axis).
Each point represents one experiment (performed on a given
dataset, a given rule with a given number of possible mapping
combinations, and a given competitor). The point is located
in the x-y coordinates representing the corresponding running
time for GOLD and the given competitor (identified by the
point color and shape). As expected, the results of naı̈ve BF
were significantly worse than all other algorithms and are thus
omitted. The points of the GOLD− algorithm for the dataset
D are also omitted, as it took more than 3 hours even for the
smallest set of mappings. By the construction of the graph,
points above the y = x line (in black) are the runs where our
GOLD algorithm outperforms its competitor, and as observed,
most of the points are there. A closer look at the few BF+

points below the line showed this happens only for the smallest
datasets (A and E), and with a rather small number of possible
mapping combinations (less than 100), due to overhead of
GOLD compared to BF. Also note that in all cases GOLD
terminated in less than 10 seconds, while for BF+ some inputs
required over 100 seconds and much more the GOLD−.

RMC compression: To highlight the source of efficiency
of GOLD, compared to GOLD−, we examine, for the different
datasets, the compression ratio between the RMC relations size
and that of the original relations (Figure 8e), as well as the
actual RMC size (Figure 8f). In both figures we show how they
vary as a function of the number of the possible value-mapping
combinations. Each experiment performed over a given dataset
is represented by a dot. The dots shape and color show
on which dataset the experiment was run. To highlight the
compression trends in Figure 8e, we added to the figure lines
that show the result of linear regression performed for each
dataset. As expected, the fewer the available mappings, the
greater is the compression. This is because, given a smaller set
of values, the domain is split to larger intervals. Consequently
more data values are represented by the same constant and
can be compressed together. From the shape of the linear
regression lines we can observe this trend holds for all datasets.
Yet note that the compression is extremely effective even for an
extremely large numbers of mappings: Even for 106 possible
mappings, the size is reduced by over 2 orders of magnitude
for dataset A, and by 3-4 orders of magnitude for the rest. Also
note that the larger the dataset is, the greater is the compression

ratio (for the same number of mappings). This is because more
tuples are unified and can be compressed together.

We can see the actual RMC sizes in Figure 8f. Since large
data sets get compressed more, the distribution of RMC sizes
of all datasets is even and we get, for all datasets, RMCs of
varying sizes. But in all cases they are much smaller than the
original relations. As a result, even for extremely large datasets
(such as dataset D with 4.2M transactions) and extremely large
number of mappings (above 107), the data is compressed into
a practical size that allows for efficient ILP solving.

Multiple rules: As mentioned, Figure 8d depicts the
running times for a single rule adaptation. Given a set of
candidate rules, the same process is applied to each rule in
the set and the best-score rule translation is selected. In our
experiments, for each FI, the candidate rules pool consists
of the rule sets from all other FIs, and the running time
to identify from this pool the best rule translation for FIs
A, B, C, D, and E, is 0.3, 1.8, 4.4, 7.9, and 0.6 minutes,
resp. (depending as expected on the size of the customer’s
transactions relation). Note that even for the largest dataset the
time is below 8 minutes, which is very reasonable for an offline
computation. More rule translations may be naturally obtained
by repeating the process (see Section III-C). This is where
our k-Rule threshold-based optimization comes into play,
pruning unpromising rule candidates and reducing drastically
the average iteration time for the FI’s to 0.03, 0.4, 0.5, 1.1 and
0.15 minutes, resp. See [13] for the full details.

VI. RELATED WORK

The identification of fraudulent transactions is essentially
a classification task which is a fundamental problem in ma-
chine learning (ML) and data management [17], [19]. The
relationship between ML and expert-written rules has been
widely discussed in the literature [5], [1], [4] for different tasks
including information extraction, conflict resolution in data
integration and entity linking. Other fraud detection techniques
include the use of decision tree [14], or genetic programming
[3] to classify transactions into suspicious and non-suspicious
ones. Our work is complementary to these lines of works and
the adapted rules derived by our algorithms may be used to
enhance any of these techniques.

Much of the previous research on rule-based classifiers
focus on how to learn rules from the training data. Some
systems, such as Chimera [23] and [16], build the rules
interactively by using both ML techniques and human experts
that write and refine the rules. These works however do not
consider the problem of rules sharing and adaptation between
different contexts. The incremental maintenance of rules in
response to new incoming data has also been extensively
studied in the literature (e.g. [25], [11]). In contrast our work
focuses on a full context switch and employs a dedicated
cost/benefit model to optimize the integration of the adapted
rules to the already existing rules in the target.

Our implementation uses a geopolitical-financial ontology
built with the help of our industry collaborators. Financial
information about countries was also used for the task of

preventing fraud in some previous work, such as [12]. Our
experiments indicate that such data can indeed be effective in
deriving rules with good prediction quality.

Collaboration between different parties for the improvement
of fraud detection systems is sometimes enforced by local
regulations (e.g. [24]). Works such as [6] present methods
to encourage this collaboration and are based on centralized
repositories that contain lists of fraud patterns built from
fraud attacks experienced by the clients. A main drawback
is that the patterns are either very general (so that they can be
used by broad range of clients) and thus have low precision
and/or recall, or conversely, they are specific to a certain
client and require context adaptation (such as the one we
provide in this paper) before they can be applicable to other
clients. Combining our framework with a privacy preservation
mechanism which assures that the source rule, or specific parts
of it, are not discoverable from the adapted rule is an intriguing
direction for future work.

Transferring knowledge from one context to another has
also attracted much interest of the ML community, in areas
referred to as transfer learning or domain adaptation (e.g. [18],
[2]). As mentioned, closest to our work is the work on transfer
learning for decision trees and random forests [20]. However,
as demonstrated in our experiments, as their objective function
is different the process yields rules that are less effective
for the given context and often not meaningful in terms of
semantics understandability.

Conceptually, the work on query reformulation (e.g., [10])
is similar to our approach. While they reformulate queries
written over a source schema to a target one (under a given
set of tuple/equality generating dependencies), we replace the
rule conditions over a single schema using source to target
condition mappings. Furthermore, our focus is on finding the
best translation in terms of capturing frauds and is different
from the query optimization goal which aims to minimize the
size of the query.

VII. CONCLUSION

In this work we introduced GOLDRUSH, a system which
facilitates knowledge sharing via effective adaptation of fraud
detection rules from one context to another. Our solution em-
ploys values abstraction and concretization to map individual
rule conditions from one context to another. An intuitive cost-
benefit model measures the improvement in fraud detection
that the resulting rules bring. We employ an effective data
reduction technique which, together with a dedicated ILP for-
mulation of the reduced problem, yields a practically efficient
algorithm. An extensive set of experiments on real-life datasets
demonstrates the effectiveness of our approach.

There are several challenging directions for future work.
Specifically, we plan to extend GOLDRUSH by supporting
richer rule languages, including time/event sequences, aggre-
gates and negation. Our mappings in this work focus on
individual attributes. Considering more complex mappings that
involve attribute combinations is also challenging and should
take into account the dependencies among rule components.

Finally, applying our rule adaptation techniques to other
domains such as cyber security and medical classification is
another intriguing research direction.
Acknowledgements This work has been partially funded
by the European Research Council under the FP7, ERC
grant MoDaS, agreement 291071, and by grants from Intel,
the Blavatnik Cyber Security center, the Israel Innovation
Authority and the Israel Science Foundation. Work was done
while Tan was at UCSC. Tan was partially supported by NSF
grant IIS-1524382 at UCSC.

REFERENCES

[1] B. Alexe, M. Roth, and W. Tan. Preference-aware integration of temporal
data. PVLDB, 8(4):365–376, 2014.

[2] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan. A theory of learning from different domains. Machine
learning, 79(1), 2010.

[3] P. J. Bentley, J. Kim, G.-H. Jung, and J.-U. Choi. Fuzzy darwinian
detection of credit card fraud.

[4] D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. A
declarative framework for linking entities. In ICDT, 2015.

[5] L. Chiticariu, Y. Li, and F. R. Reiss. Rule-based information extraction
is dead! long live rule-based information extraction systems! In EMNLP,
2013.

[6] C.-C. Chiu and C.-Y. Tsai. A web services-based collaborative scheme
for credit card fraud detection. In EEE, pages 177–181, 2004.

[7] CIA Factbook. https://cia.gov/library/publications/the-world-factbook/.
[8] Financial Action Task Force. http://www.fatf-gafi.org/.
[9] DBPedia. http://dbpedia.org.

[10] A. Deutsch, L. Popa, and V. Tannen. Query reformulation with
constraints. SIGMOD Record, 35(1):65–73, 2006.

[11] F. J. Ferrer-Troyano, J. S. Aguilar-Ruiz, and J. C. R. Santos. Data
streams classification by incremental rule learning with parameterized
generalization. In SAC, pages 657–661, 2006.

[12] E. Grace, A. Rai, E. M. Redmiles, and R. Ghani. Detecting fraud,
corruption, and collusion in international development contracts: The
design of a proof-of-concept automated system. In BigData, 2016.

[13] A. Jarovsky, T. Milo, S. Novgorodov, and W.-C. Tan. Rule
sharing for fraud detection via adaptation (technical report).
http://slavanov.com/research/goldrush-tr.pdf .

[14] A. I. Kokkinaki. On atypical database transactions: Identification of
probable frauds using machine learning for user profiling. Knowledge
and Data Exchange, IEEE Workshop on, 0:107, 1997.

[15] Y. Kou, C.-T. Lu, S. S, and Y.-P. Huang. Survey of Fraud Detection
Techniques. ISNSC, 2:749–754, 2004.

[16] T. Milo, S. Novgorodov, and W.-C. Tan. Interactive Rule Refinement
for Fraud Detection. In EDBT, 2018.

[17] T. M. Mitchell. Machine learning. McGraw Hill series in computer
science. McGraw-Hill, 1997.

[18] S. J. Pan and Q. Yang. A survey on transfer learning. Knowledge and
Data Engineering, IEEE Transactions on, 22(10):1345–1359, 2010.

[19] R. Ramakrishnan and J. Gehrke. Database management systems (3rd
ed.). McGraw-Hill, 2003.

[20] N. Segev, M. Harel, S. Mannor, K. Crammer, and R. El-Yaniv. Learn
on source, refine on target: A model transfer learning framework with
random forests. TPAMI, 2016.

[21] B. W. Silverman. Density estimation for statistics and data analysis,
volume 26. CRC press, 1986.

[22] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge unifying wordnet and wikipedia. In WWW, 2007.

[23] C. Sun, N. Rampalli, F. Yang, and A. Doan. Chimera: Large-scale
classification using machine learning, rules, and crowdsourcing. PVLDB,
7(13):1529–1540, 2014.

[24] Data Sharing for the Prevention of Fraud:
https://gov.uk/government/publications/data-sharing-for-the-prevention-
of-fraud-code-of-practice.

[25] G. Widmer and M. Kubat. Learning in the presence of concept drift
and hidden contexts. Machine Learning, 23(1):69–101, 1996.

[26] Common types of western union scams.
https://www.westernunion.com/us/en/fraudawareness/fraud-types.html.

