
DANCE: Data Cleaning with Constraints and Experts
Ahmad Assadi

Tel Aviv University
Tova Milo

Tel Aviv University
Slava Novgorodov
Tel Aviv University

Abstract—We demonstrate DANCE, a system that assists do-
main experts in the efficient resolution of integrity constraints
violation. DANCE is demonstrated on the UEFA Champions
League database, employing the ICDE’17 audience for effective
data cleaning.

Video: https://youtu.be/IssLjM2WQQQ

I. INTRODUCTION

Data cleaning is a long standing problem that has attracted
much research interest in the past years in the databases
community. Popular techniques for data cleaning use data-
integrity and consistency rules to identify errors in the data
and to automatically resolve them, e.g. by fining a minimal
repair that will resolve the constraints violation [1], or by
using predefined priorities among possible resolutions [2].
Such automatic solutions however cannot ensure precision of
the repairs since they do not have enough evidence about
the actual errors and thus may in fact lead to wrong results
with respect to the ground truth. In order to overcome the
limitations of such automatic techniques it has been suggested
to use domain experts that have extensive knowledge about
the ground truth, to examine the potential updates and choose
which should be applied to the database [2], [3], [4], [5].
However, the sheer volume of the databases and the large
number of possible updates that may resolve a given constraint
violation, may make such a manual examination prohibitory
expensive. The goal of the DANCE prototype system presented
here is to help optimizing the experts work and reduce as much
as possible the number of questions (updates verification)
they need to address. As we will describe, our algorithms
effectively prune the search space and minimize the amount of
interaction with the experts while, at the same time, maximize
the potential “cleaning benefit” derived from the experts’
answers. DANCEcan be used to optimize the initial cleaning
of a databases as well as assist in its ongoing maintenance -
whenever an constraint violation is reported, DANCEcan take
over to efficiently clean the underlying database by interacting
with the experts.

We will demonstrate DANCE over a UEFA Champions
League database, employing the ICDE’17 audience for the
effective resolution of real-life integrity constraints violation.
We will show how DANCE’s underlying optimization mecha-
nism accelerate the data cleaning process and minimizes the
number of questions that need to be posed to the crowd.

II. TECHNICAL BACKGROUND, IN BRIEF

Given a constraint violation, our algorithm first identifies
the tuples in the database whose update may contribute

(directly or indirectly) to the constraint resolution. We call
those suspicious tuples. Database constraints may be inter-
related and thus when analyzing a constraint violation these
relationships must be taken into consideration. To determine
which tuples should be considered first, we examine for each
tuple t (1) the potential effects of updates to t, namely what
tuples may potentially become unsuspicious if t is found to
be incorrect and correspondingly updated/removed, (2) the
number of potential updates (attribute errors) to t that may
lead to such an effect, and (3) the probability, if known, for
errors in the database relation to which t belongs. Using this
information we build a graph whose nodes are the suspicious
tuples and whose weighted edges capture the likelihood of an
error in one tuple to occur and effect the other. Page-rank style
algorithm is then used to identify the most beneficial tuples to
ask about first.

Example: To illustrate let us consider the following simple
example. The database in Figure 1 shows a portions of UEFA
Champions League 2016/17 statistics database. The dark gray
rows represent wrong tuples and lightgray rows represent
missing tuples. The Games relation describes the results of
a match between two teams, it stores the teams name, goals
score and the stage. The Teams relation describes a football
team, it stores the team name and country. The Countries re-
lation describes the name of the country and number of teams
that advanced to the group stage. We consider in our work
integrity constraints described by standard tuple-generating
and equality-generating dependencies [6]. The following two
integrity constraints are relevant to this database: (i) two teams
from the same country cannot play against each other on a
group stage (ii) if country has at least one representative, its
team must appear in the teams table. These are captured by
the following rules.

• Games(x1, x2, x3, x4, x5) ∧ x5 = ”GroupStage” ∧
Teams(x1, y1) ∧ Teams(x2, y2)→ y1 6= y2

• Countries(x1, x2) ∧ x2 > 0→ Teams(y1, x1)

We assume that all the given rules are correct and reflect
the ground truth. In our running example, as well as in the
demo, the rules are derived from UEFA official regulation.
Since the database is aggregated from multiple sources it
contains mistakes and violates some of the constraints. One
can notice for instance that the database mistakenly associates
both the Celtic and the Manchester City football clubs to
United Kingdom. However, despite the fact that Celtic and
Manchester City are actually located in the United Kingdom
they belong to distinct federations (that represent Scotland and



team1 team2 t1_goals t2_goals stage
Celtic Manchester City 3 3 Group Stage

Celtic Hapoel Beer Sheva 5 2 Qualification

name country
Celtic UK

Manchester City UK 

Hapoel Beer Sheva Israel

CSKA Moscow Russia

name num_of_teams
Israel 0

UK 5 

England 4

Scotland 1

Games

Teams Countries

Fig. 1: Sample of UEFA Champions League DB
England separately), hence can play against each other.

When applying the integrity constraints to the database,
we discover several inconsistencies. Each such inconsistency
involves several tuples that when assigned together to the
atoms in the body of the rule yielded a constraint violation.
For example, a violation to the first rule involves a set of three
tuples: Games(Celtic, Manchester City, 3, 3, Group Stage),
Teams(Manchester City, UK), Teams(Celtic, UK), whose ex-
istence in the database of lead to the violation. Intuitively,
each of the tuples is suspicious and at least one is wrong and
needs to be updated/deleted (otherwise the rule is incorrect
which we assume is not the case). Also note that since the two
constraints are inter-related, when a given tuple is suspicious
other tuples become suspicious as well. Consider for example
the second constraint, that requires that for each country
in the Countries relation with a positive number of teams,
there must be at least one team in Teams relation from this
country. Relation Countries contains the tuple (UK, 5), which
enforces the existence of teams from United Kingdom. Since
the Teams(Celtic, UK) and Teams(Manchester City, UK) tuples
are suspicious (and may generally both be wrong), we may
suspect also the tuple Countries(UK, 5).

Which of these four suspicious tuples is more beneficial to
consult about first with the expert? To determine this we build
a directed graph whose nodes are the suspicious tuples and
whose (weighted) edges capture the dependency between the
suspicious tuples. Let β be the probability of an error in the
relation R to which a tuple t belongs to. Intuitively, there is an
edge from tuple s to t with a weight n× (1−β) if there are n
attributes in t that one can change in order to eliminate at least
one violating assignment that involves s. For example, data
from official UEFA website will get a β close to 1, while user
generated content in the other relations should get much less.
We use 0.5 as default value. The graph for the four tuples that
we obtain is depicted in Figure 2 (ignore for now the number
on the nodes).

To decide which tuple to verify first, we process the graph
using a PageRank-style [7] algorithm, to rank the nodes, and
ask the experts about the nodes with highest rank. When
answers are gathered, the database is updated accordingly,
and incremental computation is applied to update the graph
and identify the next candidates. The resulting ranks for our
running examples are depicted on the nodes, and so we will
ask about C (which is indeed incorrect and will be removed,
instead (England, 4) and (Scotland, 1) will be inserted by the
expert), T1 (incorrect, updated to (Celtic, Scotland)) and T2
(incorrect, updated to (Manchester City, England)). G is then
no longer suspicious and no constraint is violated.

T2
1.2

T1
1.2

C
7.7

G
2.1

1.5

1.5

1

1

11

0.5
1

0.5

1 T1 = Teams(Celtic, UK)
T2 = Teams(Manchester City, UK)
G = Games(Celtic, M. City, 3, 3, Gr. St.)
C = Countries(UK, 5) 

βTeams= 0.5, β Games= 0.9, β Countries= 0.5

Number of attributes for fix:
Rule #1: T1=2(all), T2=2(all), 

G=3 (Celtic, M.City, Gr. St.)
Rule #2: T1=1(UK), T2=1(UK), C=2(all)

Fig. 2: Suspicious tuples graph

III. DEMONSTRATION SCENARIO

We will demonstrate the functionalities of DANCE on the
UEFA Champions League database. Despite the fact that most
data comes from a trusted sources (UEFA official web-site and
related Wikipedia pages, official list of cities and countries),
some cames from user generated content (sport news websites)
as well as semi-automatic statistical tools, and so the integrated
databases contains errors originating from the data generation
and integration process. We will use UEFA official regulations
as integrity constraints and employ the ICDE’17 attendees as
experts for violations resolution.

During the demonstration we will explain the details and
nuances of our system and discuss the decisions taken by the
algorithm. In particular, we discuss why certain questions were
chosen by the system, explain the effect that experts’ answers
have on the system’s state, and show how the system infers
when sufficient information has been collected to determine
all the required corrective updates.

To stress the novelty of our solution and the effectiveness
compared to other systems, we run in parallel competitor
algorithms that do not use experts or alternatively employ them
but do not optimize their usage, and show how the former may
make mistakes whereas the latter ask many more questions to
the experts.
Related Work As mentioned before, many data cleaning
techniques has been proposed in the past. Experts have been
used for data cleaning in multiple contexts. [5] introduced the
idea of cleaning only a sample of data to obtain unbiased query
results with confidence intervals. [2], [4] employ experts to
resolve constraints violation which cannot be automatically
resolved using their predefined priority rules, but do not
optimize the experts exploration of the updates space. Closest
to our work is [3] that optimizes the use of experts for pruning
errors in query results, but ignores database constraints.
Acknowledgements Partially funded by the European Re-
search Council under the FP7, ERC grant MoDaS #291071

REFERENCES

[1] M. Yakout, L. Berti-Equille, and A. K. Elmagarmid, “Don’t be scared:
use scalable automatic repairing with maximal likelihood and bounded
changes,” in SIGMOD, 2013, pp. 553–564.

[2] F. Geerts, G. Mecca, P. Papotti, and D. Santoro, “The LLUNATIC data-
cleaning framework,” PVLDB, vol. 6, no. 9, pp. 625–636, 2013.

[3] M. Bergman, T. Milo, S. Novgorodov, and W. C. Tan, “Query-oriented
data cleaning with oracles,” in SIGMOD, 2015, pp. 1199–1214.

[4] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas,
“Guided data repair,” PVLDB, vol. 4, no. 5, pp. 279–289, 2011.

[5] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo,
“A sample-and-clean framework for fast and accurate query processing
on dirty data,” in SIGMOD, 2014, pp. 469–480.

[6] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, “Data exchange:
semantics and query answering,” TCS, vol. 336, no. 1, 2005.

[7] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer Networks, vol. 30, no. 1-7, pp. 107–117, 1998.


