

CrowdPlanr: Planning Made Easy with Crowd

Ilia Lotosh Tova Milo Slava Novgorodov

Goal

Crowd-sourcing can be used effectively to solve problems that are difficult for computers.

An example of a problem

Prepare a schedule for a vacation trip

Input:

Dates, budget, location, interests

CrowdPlanr uses the power of the crowd to solve a problem of planning a sequence of actions, when the goal is hard to formalize.

Model presentation

We assume that we have a set of possible items **S**.

All possible sequences of items from **S** are presented as a tree (order is important!).

Desired output:

A detailed schedule of what to do and when on your vacation

<u>Goal:</u> Enjoy your vacation the most!

Example input:

I am in Brisbane for an ICDE'13 conference. In my spare time I would like to explore the city. What should I do?

Possible output:

City Hall \rightarrow Treasury Building \rightarrow Customs House \rightarrow City Botanic Gardens \rightarrow Brisbane Arcade \rightarrow South Bank Parklands \rightarrow Wheel of Brisbane \rightarrow Streets Beach

Algorithm

- For every path calculate a potential min and max scores
- Continue asking questions until the top-1 path is known for sure (it's potential minimum score will be higher than all other potential maximum scores)

Represents an end of a path

Score can be calculated for every path

$$p = (u_1, u_2, ..., u_n)$$

score(p) = $\prod_{i=2}^{n} \frac{c(u_i)}{d(u_{i-1})}$

We shall return a path with a highest score

Challenges

- The tree of all the plans is exponential in the length of a plan
- Most of the plans are irrelevant (will have very low score)
- Asking questions is expensive (in time and possibly money)

- Allow an error of up to $\boldsymbol{\epsilon}$ in the score
- Ask the next question on:
 - A path with the highest potential maximum score (a highest node of this path)

Benefits

 $\bigotimes_{\epsilon} \frac{1}{\epsilon}$ -optimal algorithm (in instance optimality sense)

 \bigotimes Every deterministic algorithm is at most $\frac{1}{\epsilon}$ -optimal

Experimental Results

