
DiRec: Diversified Recommendations for
Semantic-less Collaborative Filtering

Rubi Boim, Tova Milo, Slava Novgorodov

School of Computer Science
Tel-Aviv University

{boim,milo,slavanov}@post.tau.ac.il

Abstract—In this demo we present DiRec , a plug-in that
allows Collaborative Filtering (CF) Recommender systems to
diversify the recommendations that they present to users. Di-
Rec estimates items diversity by comparing the rankings that
different users gave to the items, thereby enabling diversification
even in common scenarios where no semantic information on the
items is available. Items are clustered based on a novel notion
of priority-medoids that provides a natural balance between
the need to present highly ranked items vs. highly diverse
ones. We demonstrate the operation of DiRec in the context
of a movie recommendation system. We show the advantage
of recommendation diversification and its feasibility even in the
absence of semantic information.

I. INTRODUCTION

Online shopping has grown rapidly over the past few years.
Besides the convenience of shopping directly from one’s home,
an important advantage of e-commerce is the great variety
of items that online stores offer. However, with such a large
number of items, it becomes harder for vendors to determine
which items are more relevant for a given user and, given the
limited size of the screen, which of these possibly relevant
items should be presented first.

Much research has been devoted recently to the development
of Recommender systems[1]. These systems predict the rating
(e.g., a grade on a scale of 1 to 5) that a user would assign
to an unseen item, and consider items with a high predicted
rating to be relevant. But, which of these highly rated items
should be presented first to the user? A naive solution would be
to simply sort the items by their estimated rating and present
the top-k that fit onto the screen. This however may result
in an over-specialized items list. For example, suppose that
a user is interested in movie recommendations. Assume that
only 5 movies may fit onto the screen and that the top-5 ranked
movies, for this user, all happen to be Star Wars sequels. While
the given user may indeed like this series, a more diverse (and
wider) view of the highly ranked movies may be desirable. For
instance one that includes a Star Wars movie, but also other
movies like Star Trek or E.T., (with the access to more Star
Wars movies enabled via a “more of that” zoom-in button).

The DiRec plug-in presented in this demo provides pre-
cisely such a diversification and zoom-in facility. To support
this, DiRec has to address two main challenges. The first
challenge is how to measure the similarity/diversity of two

This work was partly supported by the EU project Mancoosi, by the Israel
Science Foundation and by the US-Israel Binational Science Foundation.

given items. Previous proposals are typically based on the
assumption that some semantic information on items (e.g.
the genre of the movie, the director, the actors) is given. In
practice, however, many recommender systems do not carry
such semantic information [1]. But even when they do, it is
not always clear how to define item diversity based on the
given semantic information [2]. For example, some movies of
the same director/leading actor may indeed be similar, whereas
others may not. To overcome this difficulty, DiRec takes a
different approach, inspired by work on Collaborative Filtering
(CF)[3]. Instead of relying on semantic information, it defines
item similarity (and correspondingly diversity) based solely on
ratings that previous users gave to the items. Intuitively, each
item is viewed as a vector of ratings, with vector distance
(measured, e.g., by cosine, Li distance, or Pearson correlation
coefficient) used as measure of similarity/diversity.

The second challenge is the need to balance, when choosing
items, between two possibly conflicting objectives: presenting
highest ranked items vs. choosing highly diverse ones. Pre-
vious works attempted to resolve this by assigning a weight
to each objective and selecting an items set that maximizes
the weighted sum. But the question is which weights to
choose?[4]. Here again DiRec resolves the problem by taking
an alternative novel approach that avoids the use of weights
altogether. We introduce the notion of priority-medoids, an
adaptation of the classical notion of medoids[5] to a context
where items have priorities (ratings). Priority-medoids (to be
defined formally in the sequel) allow for natural clustering
of items and the selection of cluster representatives that
balance rank and diversity. While we show that identifying
the best priority-medoids is NP-hard, we present a heuristics
based on priority cover-trees (an adaptation of the classical
cover-trees [6] to our context) which is used by DiRec and
provides satisfactory results along with fast response time, as
demonstrated in the demo.

DiRec is designed as a plug-in that can be deployed on
CF-based recommender systems, by implementing a simple
API, to diversify the recommendations presented to users.
Alongside each presented item, DiRec provides a ”more of
that” zoom-in button that allows to view similar recommended
items. Here again, no semantic information is required to
identify the similar items, and they are once more presented
in an as diversified as possible manner. (Users can then, again,
zoom-in on each of presented items, and so on). An interesting



property of our implementation is that the priority cover-tree
constructed for the initial recommendations set contains most
of the information required to support such zoom-in, thus only
very minimal further computational effort is required.

Outline of the demonstration: We demonstrate the oper-
ation of DiRec in the context of a movie recommendations
system. We use real data provided by Netflix [7]. As men-
tioned above, DiRec is deployed on a CF-based recommender
system [8]. Given a user request, the underlying CF system
computes the top-100 most relevant movies and supplies them,
along with their ranking and similarity measures to DiRec .
DiRec then determines how (and which of) the movies should
be presented to the user.

To demonstrate the advantages of the diverse movies set
presented by DiRec , we first compare it to the naive, sorted-
by-rank movies list, that would have been provided by the
CF system, had DiRec not been used. We show this list on
another screen and let the audience experience navigation in
the two presentations. In particular we show how, with DiRec ,
movie sequels and TV program episodes are naturally grouped
together, represented by a single item on the screen, and can
be easily reached, if desired, via the zoom-in mechanism. This
is particularly interesting given the fact that no semantic infor-
mation (e.g. movie names, actors, etc.) is given to DiRec . The
quality of the item sets selected by algorithms will be evaluated
both based on the audience input, as well as by empirical
measures. Throughout the demonstration we will follow what
happens under the hood, using a surveillance panel. The panel
will present the constructed priority cover-tree, the resulting
approximated priority-medoids and the different steps of our
algorithm for choosing the item sets.

II. TECHNICAL BACKGROUND

We start with some background on CF (Section II-A).
Then we introduce the notion of priority-medoids (Section
II-B), followed by a brief description of the priority cover-
tree (Section II-C) used for their approximation. Finally we
present our zoom-in mechanism (Section II-D).

A. Collaborative Filtering

CF is the process of predicting users rating to items based
on previous ratings of (similar) items by (similar) users.
Unlike sematic-based methods [1], CF does not use semantic
properties of the items (e.g. actors, director, etc.). Instead, it
is based on the assumption that users who agreed in the past
on item ratings are likely to agree again in the future. A key
ingredient in CF algorithms is thus the estimation of similarity
between two items. Intuitively, each item is viewed as a
vector of ratings in a multi-dimensional domain, where each
dimension corresponds to a given user, (recording her rating
of that item). Given two items, the distance between their
corresponding vectors, measured, e.g., by cosine, Li distance,
or Pearson’s correlation coefficient [9], is used to define the
similarity between the items. (Most major systems use Pear-
son’s Correlation Coefficient). Ratings prediction thus consists
of two main steps: (1) choosing the right neighborhood for

the given item (that is, the items that are considered similar
to it), and (2) calculating the predicted rating by aggregating
(e.g. averaging) available ratings of neighborhood items. In
the reminder of this paper we use rate(i) do denote the rating
prediction for an item i and dist(i, j) to denote the distance
between items i and j. W.l.o.g. we assume below that distance
values are in the range of [0, 1]. (When this is not the case one
may naturally map the values to this range). The smaller the
distance is, the more similar (and less diverse) are the items.

B. Priority-Medoid

As mentioned in the Introduction, our solution is based on
the notion of priority-medoids, an adaptation of the classical
notion of medoids to this context. To explain this, let us
first briefly (and informally) recall what standard medoids are.
Consider a set I of items split into k disjoint subsets, referred
to as clusters. The medoid of a given cluster (also called the
cluster’s representative) is an element in the cluster s.t. the
sum of the distances from it to the other items in the cluster
is minimal. Other variants that consider e.g. the average,
min or max distance, also exist [5]. This sum is called the
cluster’s weight. The classical goal is to find a clustering that
minimize the overall sum of cluster weights. Note that, given
a set Ik ⊆ I of k items in I , the minimal-weight clustering
for which the Ik items serve as representatives (medoids),
is one where each item i ∈ I is associated (clustered) with
the element in Ik that is closest to it. Thus to find the best
clustering one essentially needs to identify the best Ik set.

In our context we are interested in representatives with
high rating. Priority-medoids therefore add the requirement
that the representatives are the ones having highest rating in
their corresponding clusters. More formally, consider a subset
Ik ⊆ I of size k of items, s.t. Ik contains, among others, an
item having the highest rating in I . We will explain below
why having such an item in Ik is important. For an element
i ∈ I , we denote by rep(i) the item within Ik satisfying the
following constraints:

• the rating of rep(i) is greater or equal to that of i and
• among all items in Ik satisfying the above, rep(i) is

the closest to i, namely there is no other j ∈ I with
dist(i, j) < dist(i, rep(i)).

The items with the same representative rep(i) form a cluster,
and thus Ik yields a clustering formation for the items of I .
Note that the fact that the highest rated element in I is a
member of Ik guarantees that all elements in I indeed have a
cluster to which they may belong.

The quality of the obtained clustering (and thereby the
quality of the set Ik that yielded the clustering), is measured,
as before, by the distance of the items to the corresponding
cluster representatives, namely by Σi∈Idist(i, rep(i)). When
I is known from the context, we overload notation and denote
this sum by weight(Ik). As for standard medoids, the lower
the weight, the better the clustering (and the set Ik of the
representatives) is. We are thus interested in a set Ik with
minimal weight(Ik). However, we point out that there may
be several sets with the same minimal weight, in which case



we break the tie by choosing the one where rating values are
lexicographically higher.

For example, assume k = 3 and we have two sets
I3 = {i1, i2, i3}, I ′3 = {i′1, i′2, i′3}, where weight(I3) =
weight(I ′3). If the rating values of the three elements in I3
(resp. I ′3), sorted in decreasing order are 5, 4, 1, (resp. 5, 3, 2)
then we choose I3 over I ′3. (An alternative could be to prefer,
e.g., item sets with higher average/sum of rating). Ties may
still occur when distinct items have the same rating, in which
case we break it arbitrarily.

Identifying the best priority-medoids is NP-hard (the proof
is by reduction to the problem of finding best regular medoids,
also known to be NP-hard). We thus use a heuristic based on
priority cover-trees (an adaptation of the classical cover-trees
[6] to our context) which provides satisfactory results along
with extremely good performance.
C. Priority Cover-Tree

A cover-tree is a data structure originally designed to speed
up of a nearest neighbor search [6]. The use of cover-trees as
a tool for selecting (classical) medoids was recently proposed
in [10], in the context of diversification of query results. A key
difference from the present work is that item ratings were not
taken into consideration. As it turns out, however, a simple
modification to the algorithm of [10] allows to account for
such ratings, as follows.

A (priority) cover-tree can be thought of as a hierarchy of
levels, where each node corresponds to a specific item, and
each level is a “cover” for the level beneath it. Each node
in the tree is associated with an item in I . An item can be
associated with multiple nodes but can appear at most once in
every level l. A conventional cover-tree obeys, for all levels,
the first three invariants below. A priority cover-tree further
obeys the forth invariant.

1) (Nesting) If a node is associated with an item i, then
one of its children must also be associated with i.

2) (Separation) All nodes at level l are at least 1
2l

far from
one another.

3) (Covering) Each node at level l is within distance 1
2l

to
its children in level l + 1.

4) (Priority) Each node has a rating higher or equal to that
of any of its children.

The construction algorithm for cover-trees inserts nodes into
the tree in an arbitrary order (see [6] for details). The construc-
tion of priority cover-trees follows exactly the same algorithm
except that items are inserted in an order that follows their
rating, from highest rated items to lowest. Interestingly, this
suffices to guarantee invariant 4 above. Once the priority cover-
tree is constructed, essentially the same algorithms as in [10]
can be applied to the tree to identify representative items.
As the algorithm selects items that are as high in the tree
as possible, invariant 4 assures that the selected items have
relatively high ratings. (We omit details for space constraints).

D. Recommendation Refinement
Alongside each item (representative) that is presented on

the screen, DiRec offers a “more of that” zoom-in button

Fig. 1. DiRec architecture

that allows to view further similar items, again, presented in
a diversified manner.

Here too, items similarity is determined via the distance
measure mentioned above (Section II-A). Given a selected
item i, we consider all items whose distance to i is smaller
than their distance to the other k − 1 items (representatives)
currently presented on the screen. Let sim(i) denote this set.
A straightforward approach to choose k representatives for
sim(i) is to apply the priority-medoids selection algorithm
described in the previous subsection. To speed up the computa-
tion, DiRec uses here an optimization based on the observation
that, in the previously constructed priority cover-tree, most of
the elements in sim(i) already appear in subtree rooted at i.
We thus use this subtree as a basis for the construction of the
priority cover-tree of sim(i). We prune redundant elements
and insert the missing ones (sorted by rating, from high to
low). The insertion follows the usual procedure except that
special attention is payed to cases where an element with high
rating is to be inserted below one with lower rating. In such
cases we first prune out the “problematic” subtree, adding its
items to the ”to be inserted” items priority queue. (Details
omitted). While the worse case complexity of the algorithm
equals to that of the naive, full priority cover-tree construction,
in practice many of the items indeed appear in the subtree and
only few conflicts are encountered.

III. SYSTEM OVERVIEW

DiRec is implemented in Java and PHP, and designed to
be deployed alongside any existing CF-based recommender
system. Figure 1 illustrates the system architecture, divided
into operating modules. When a user logs in, her id is passed
to the CF Recommender System module which generates
a customized list of recommended items, along with their
ratings, and computes pair-wise item similarities. This in-
formation is then passed to the Priority Cover-Tree module,
which constructs the corresponding tree. The Priority-Medoid
Approximation module then receives this tree and uses it to
select the representative items. These are presented to the user
via an intuitive User Interface (UI). Figure 2 presents the main
screen of DiRec , which shows top-5 item recommendations
within the movie domain. If the user clicks on the “more
of that” button, the corresponding item is passed to the
Recommendation Refinement module. This module uses the
previously generated priority cover-tree, to efficiently compute
a refined tree. The tree is again passed to the Priority Medoid
Approximation module for choosing item representatives.



Fig. 2. DiRec user interface

We finally note that CF systems that wish to keep their
existing UI may still leverage DiRec by employing it in a
“behind the scenes” mode. In this case DiRec ’s UI is disabled
and DiRec acts as a service which is invoked by system calls.

IV. DEMONSTRATION

We start with a brief description of the system settings used
in the demonstration, then describe the demonstration scenario.

System Settings: DiRec uses a CF-based recommender
system [8] that we implemented. The distance measure used in
our implementation for estimating items similarity is Pearson’s
correlation coefficient. We use in the demonstration a real data
set from the cinema domain, provided by Netflix [7]. Given a
user request, the underlying CF system computes the top-100
most relevant movies for the given user, and supplies them,
along with their ranking and pair-wise item similarities to
DiRec . The data set contains over 100 million distinct movie
ratings, by approximately 500,000 users, to 18,000 different
movies. This data set provides only raw user ratings (such
as 1 to 5 “stars” given by individual users) and does not
hold any semantic properties besides the movie names. While
DiRec uses no semantic information, to evaluate the quality
of our results we used the movie titles as well as information
obtained from IMDB [11], to identify movie sequels and
multiple episodes of the same TV program. This allows us to
empirically measure whether the recommendations presented
to the users include such sequels/episodes, and how many of
these sequels/episodes are retrieved in the zoom-in process.

Demonstration Scenario: We demonstrate the operation
of DiRec by showing the diversified recommendations pre-
sented to various Netflix users. We recall that CF-based
recommender systems compute, for each user, a personalized
set of relevant items (movies in our context). To allow the
audience to better relate to, and judge, the presented rec-
ommendations, we choose Netflix users with taste similar
to audience members (by asking the audience for their top
favorite movies and selecting Netflix users with similar tastes).

To demonstrate the advantages of the diverse movies set
presented by DiRec , we compare it to the naive, sorted by
rank movies list, that would have been provided by the CF
system, had DiRec not been used. (We show the latter on
another screen.) We let the audience examine the differences
between the recommendations presented on screen in the two
settings. We then present the zoom-in mechanism by clicking
on one of the item’s “more of that” button. In particular,
we show how, with DiRec , movie sequels and TV program

Fig. 3. DiRec “more of that” (zoom-in) mechanism

episodes are naturally grouped together. Figure 3 presents
an example for such a refined recommendations set. In this
specific case, continuing with the example in Figure 2, the
user clicked on the “more of that” button of the “Star Wars
II: Attack of the Clones” movie. DiRec successfully identifies
the Star Wars sequels and presents in response three additional
sequels. It also presents two additional movies that do not
belong to this series, yet are related, and were chosen by
DiRec to provide a more diverse set of recommendations. This
is particulary interesting given that no semantic information
(e.g. movie names, genres, etc.) is made available for DiRec .

The quality of the movie sets presented by DiRec and the
refined sets generated by the zoom-in mechanism, will be
evaluated by the audience as well as by empirical measures
as described above. As mentioned in the Introduction, a
surveillance panel will show what happens under the hood:
the different steps of our algorithm, the constructed priority
cover-trees and the resulting approximated priority-medoids.

To conclude, the DiRec plug-in demonstrated here allows
CF recommender systems to diversify the recommendations
that they present to users, balancing the rating and the diversity
of the recommended items. DiRec provides a solution in
common scenarios where semantic information is unavailable.
Combining our ratings-based (quantitative) approach with a
semantic (qualitative) one, when such semantic information is
available, is an intriguing future research direction.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Towards the next generation of
recommender systems,” IEEE TKDE, 2005.

[2] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving
recommendation lists through topic diversification,” WWW, 2005.

[3] X. Su and T. Khoshgoftaar, “A survey of collaborative filtering tech-
niques,” Advances in Artificial Intelligence, 2009.

[4] C. Yu, L. Lakshmanan, and S. Amer-Yahia, “It takes variety to make a
world: Diversification in recommender systems,” EDBT, 2009.

[5] L. Kaufman and P. Rousseeuw, “Finding groups in data: An introduction
to cluster analysis,” Wiley’s Series in Probability and Statistics, 1990.

[6] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” ICML, 2006.

[7] J. Bennet and S. Lanning, “The netflix prize,” KDD Cup, 2007.
[8] R. Boim, H. Kaplan, T. Milo, and R. Rubinfeld, “Improved recommen-

dations via (more) collaboration,” WebDB, 2010.
[9] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the

correlation coefficient,” The American Statistician, 1988.
[10] B. Liu and H. Jagadish, “Using trees to depict a forest,” VLDB, 2009.
[11] “Imdb interface,” http://www.imdb.com/interfaces/.


