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Abstract—Writing rules to capture precisely fraudulent trans-
actions is a challenging task where domain experts spend signif-
icant effort and time. A key observation is that much of this
difficulty originates from the fact that such experts typically
work as “lone rangers” or in isolated groups, or work on
detecting frauds in one context in isolation from frauds that
occur in another context. However, in practice there is a lot of
commonality in what different experts are trying to achieve. In
this paper, we present the GOLDRUSH system, which facilitates
knowledge sharing via effective adaptation of fraud detection
rules from one context to another. GOLDRUSH abstracts the
possible semantic interpretations of each of the conditions in the
rules at the source context and adapts them to the target context.
Efficient algorithms are used to identify the most effective rule
adaptations w.r.t a given cost-benefit metric. Our extensive set of
experiments, based on real-world financial datasets, demonstrate
the efficiency and effectiveness of our solution, both in terms of
the accuracy of the fraud detection and the actual money saved.

I. INTRODUCTION

Financial frauds are unauthorized financial operations
(called transactions) that obtain money or goods illegally from
accounts. Financial frauds are a billion dollar industry and
financial companies (banks, credit card companies, etc.) invest
significant resources to detect frauds and prevent them. Online
fraud detection systems monitor incoming transactions and
use models based on data mining and machine learning (ML)
techniques to detect frauds [17]. A typical approach is to score
each transaction and every transaction whose score is above a
threshold is classified as fraudulent.

However, such approaches may still not achieve high preci-
sion and recall as legitimate transactions may be misclassified
as fraudulent and, likewise, fraudulent transactions may be
missed. Also, the derived threshold does not provide a seman-
tic explanation of the underlying causes of the frauds like the
ways rules do. For this reason, financial companies typically
rely, in addition to ML models, on rules that are carefully
specified by domain experts. The rules refine the ML scores
with domain specific conditions, for automatically determining
fraudulent transactions.

Writing rules to capture precisely fraudulent transactions
is a challenging task where domain experts spend significant
effort and time. A key observation is that much of this
difficulty is due to the fact that experts typically work as
“lone rangers” or in isolated groups to define the rules, or
work on detecting frauds in one context in isolation from
frauds in another context. However, in practice there is a lot of

commonality in what different experts are trying to achieve.
Very often, rules defined by experts in one given context
may be useful for understanding how to detect frauds in
another context. Such collaboration between experts is desired
between the different branches of financial entities, and even
between competitors that are willing to share knowledge for
the greater cause of battling financial crime (as imposed by
local regulations [30]). The goal of the GOLDRUSH system
presented here is to facilitate knowledge sharing via effective
adaptation of fraud detection rules from one context to another.

We examine the conditions of the rules, and the source
and target contexts, to map rules from one context to an-
other. The possible semantic interpretations of each condition
are abstracted and then instantiated to the target context.
As the number of possible abstractions (and corresponding
instantiations) may be large, each rule can be mapped to the
target context in many different ways. The efficient algorithms
underlying GOLDRUSH identify the most effective ones, in
terms of improving the fraud detection accuracy in the target
context.

To illustrate, let us consider the following example.
Example 1.1: Consider two fraud detection experts, A and

B, working in two different collaborating companies, located
in the USA and Germany, respectively. Figures 1 and 2 show a
portion of each company’s transaction relation (for simplicity,
we present here just some real-world attributes, including
the transaction time, amount, type, and country). We also
present in the last column the ground truth labeling for each
transaction: fraud (marked as F) or legitimate (L).

ϕA :Type = “Stock Trade” ∧ Amount ≥ 100K ∧
Time ≥ 16:00 ∧ Country ∈ {Dinotopia, Jamonia}

The above rule is designed by expert A to detect the
frauds in Figure 1. In practice each rule also includes a
threshold (not shown) on the transaction score as derived by a
Machine Learning module, i.e., the degree of confidence that
the transaction is fraudulent, as well as additional conditions
on the user/settings/etc. We will omit the scores and the
additional conditions for simplicity and focus only on the rules
in this example.

The rule defined by expert A in her context may be useful,
after some appropriate adaptation, for the context of expert
B, and different interpretations will yield different target
conditions. Observe that the condition over Time may refer



Time Amount Type Country
15:58 107K Stock Trade Dinotopia L
16:01 104K Stock Trade Dinotopia F
16:02 111K Stock Trade Jamonia F
16:04 102K Stock Trade Dinotopia F
16:15 96K Stock Trade Dinotopia L

: : : : :
Fig. 1: Expert A Transactions

Time Amount Type Country
19:53 140K Stock Trade Orsinia L
20:02 97K Stock Trade Orsinia F
20:03 230K Stock Trade Orsinia F
20:05 92K Stock Trade Orsinia L
20:07 206K Stock Trade Orsinia F

: : : : :
Fig. 2: Expert B Transactions

to the local time or the time after the closing of the local
Stock Exchange Market (i.e., 16:00 for the New York Stock
Exchange). A time-zone adaptation should be applied for the
former interpretation (+6 hours) to adapt it to the time in Ger-
many. However, the target condition should be Time ≥ 20:00
(the Frankfurt Stock Exchange closing time) if it is the latter
interpretation. Similarly, Country ∈ {Dinotopia, Jamonia}
may refer to all over the world attacks originating from these
two specific (fictional) countries, in which case an identity
mapping should be employed. Conversely, if the condition
deals with a specific attack against the local market (USA
in this case), we should map it by the rule target country
market attackers, e.g. Orsinia. Finally, Amt ≥ 100K may be
a condition in terms of the local currency, in which case a
translation from US dollars to Euro may be applied (translates
to about 95K). Or, it may be a condition that captures
“exceptionally large amounts”, which, considering the trade
amounts distribution in context B, should be mapped to 200K
Euro. A resulting possible translation for rule ϕA then may
be the following:

ϕB :Type = “Stock Trade” ∧ Amount ≥ 95K ∧
Time ≥ 20 : 00 ∧ Country ∈ {Orsinia}

Our goal is to facilitate meaningful and effective rules
mappings between different contexts. A fundamental challenge
is that rule semantics is often undocumented. To overcome
this, we focus on the individual rule conditions and derive a set
of candidate value abstraction and concretization functions that
may capture the possible mappings between the conditions in
the given contexts. These include common built-in mappings
(e.g. currency and distribution-based mappings) as well as
semantic-aware mappings, derived by analyzing the given data
instance. To choose between the possible mappings we define
an intuitive cost-benefit model that reflects the improvement
in fraud detection that the resulting rules may bring. Finally
we provide a set of efficient algorithms to choose the best
translation among the candidates set. We show that finding
the optimal rule adaptation is NP-hard (intuitively, as all
the combinations between the conditions adaptation candidate
values need to be considered), but the problem can be modeled
as an Integer Linear Programming (ILP) problem. As the
performance of ILP solvers often deteriorates for large number
of variables (which is the case here), we employ a dedicated
data reduction technique that clusters together transactions that
“behave uniformly” w.r.t the conditions in the rule, dramati-
cally reducing the number of variables and yielding efficient

performance1. We further consider the top-k rule adaptation
problem and present an effective optimization technique that
allows to prune redundant ILP computations.

Our contributions can be summarized as follows.

• We formulate and present a novel rule adaptation frame-
work that employs value abstraction and concretization
to map individual rule conditions from one context to
another. An intuitive cost-benefit model measures the
improvement in fraud detection that the resulting rules
may bring.

• We show that the problem of identifying the best rule
adaptation is NP-hard and propose an effective data
reduction technique which, together with a dedicated ILP
formulation of the reduced problem, yields nevertheless
a practically efficient performance.

• We further consider the generalized problem of com-
puting, given a set of rules, the top-k best adaptations
and present an optimization technique which computes
an upper bound on the potential cost-benefit contribution
of a given rule, and then uses it to successfully prune
redundant ILP computations.

• We have implemented our solution in the GOL-
DRUSH prototype system and applied it on real use
cases, demonstrating the effectiveness and efficiency of
our approach as a whole, as well as the individual
contribution of each components. We performed exper-
imental evaluations on five real-life datasets of financial
transactions that showed how our algorithms consistently
outperformed alternative baseline solutions, both in terms
of the accuracy of the frauds detection and the actual
money saved.

We note that while some previous work has studied the
problem of adapting rules to changes in the data (e.g. [31],
[13], [18]), they mainly focus on incremental maintenance
of rules in a given context as new transactions come in.
In contrast our work examines rule adaptations entailed by
context switching. Closest to our work is research on transfer
learning, that attempt to reuse knowledge gained while training
a model in one context to save training cost in another context.
In particular fraud detection rules may be viewed as a form
of decision trees to be transferred between contexts. However,
since their objective function is different, as we show in our
experiments, not only the resulting decision trees after the
ML-based transfer are less meaningful in terms of (semantics)

1While the ILP solver still goes through exponentially many combinations,
we have found that it gives very good performance in practice on the reduced
data.



understability to the human expert, they are also less effective
in terms of fraud detection. We further discuss related work
in Section VI.

While we focus here on a particular application domain, our
techniques are generic and may be generally utilized to adapt
classification rules under similar cost-benefit objectives.

The paper is organized as follows. Section II presents the
data and cost-benefit model that we employ and formalizes the
rule adaptation problem. The problem complexity as well as
the optimized algorithms to solve it are considered in Section
III. The classes of value mappings that we consider are detailed
in Section IV. The experiments are described in Section V.
Related work is presented in Section VI, and we conclude in
Section VII.

II. PRELIMINARIES

In the following section we present all the necessary defini-
tions to formally define the problem. We start by explaining the
data model (transactions and rules) followed by the definition
of rule adaptation and the cost/benefit model that we employ.

A. Transactions

Our model consists of a transaction relation
T (A1, A2, . . . , Am) = {t1, . . . , tn}, which is a set of
tuples (or transactions) over the attributes A1, A2, . . . , Am.
In a financial context, a tuple ti captures an operation (i.e.
transfer, payment) made through some bank or credit card.
The transaction relation is appended with more transactions
over time. For brevity, when the attributes and the transactions
set are clear, we will omit them and use just T . Every attribute
Ai belongs to a domain dom(Ai) which has a partial order
that is reflexive, antisymmetric and transitive, with a greatest
element >A and a least element ⊥A. Attributes associated
with a partial order but not with a total order are called
categorical attributes. The elements in such partial order are
sometimes referred to as concepts. W.l.o.g. we also assume
that >A and ⊥A do not appear in any of the tuples 2. These
special elements will be useful when defining rule mappings.
For brevity, when an attribute name is clear from the context
we omit it and simply use the notations > and ⊥.

A transaction may be classified fraudulent which means that
the transaction was carried out illegally. Conversely, a transac-
tion may be verified to be legitimate and classified accordingly.
The labeling is assumed to correspond to the (known part
of the) ground truth. Given a transaction relation T we
denote the set of fraudulent (legitimate resp.) transactions as
fraud(T ) (legit(T )). In addition, each transaction is attached
with a score between 0 and 1, (computed automatically using
machine learning techniques) which represents the estimated
probability of each transaction to be fraud. Figures 1 and 2
depict two sample transaction relations. For the simplicity of
the presentation, the score is omitted from the figures. Also, we
assume (for simplicity) that all contexts have the same schema.

2If not the case, add a new special element to the domain and set it
smaller/greater, in the partial order, than all other elements.

Otherwise one may apply schema matching techniques before
employing our algorithms.

B. Rules

Fraud detection experts specify rules that can be applied
to a transaction relation to identify the fraudulent tuples. For
efficiency of execution, the rules are typically written over
a single relation, which is a universal transaction relation
that includes all necessary attributes (possibly aggregated
or derived from many other database relations) for fraud
detection. Hence, it is not necessary to consider explicit joins
over different relations in the rule language. A rule ϕ in our
setting is defined as a conjunction of one or more conditions
over the attributes of a transaction relation T , For simplicity,
each rule includes only one condition over each attribute, but
multiple disjunctive conditions over the same attribute can be
expressed using multiple rules. Note that the rule language
that we consider, albeit simple, forms the core of common
rule languages used by actual systems and real-world industry
companies [18]. Indeed, shown in the experiments, it covered
all the obtained rules.

A rule ϕ is defined as a conjunction of one or more
conditions over the attributes of a transaction relation T , i.e. it
is of the form ϕ =

∧
1≤i≤m αi where αi is a condition of the

form ‘Ai opi vi’, opi ∈ {=, 6=, <,>,≤,≥,∈, /∈}. We assume
that the rules are well-defined: the vi values belong to the
corresponding attribute’s domain and the operators’ semantics
is the corresponding from the domain. For readability, in our
examples we show only the non-trivial conditions on attributes,
namely omit conditions of the form Ai ≤ >. Note that,
for simplicity, each rule includes only one condition over
each attribute, but multiple disjunctive conditions over the
same attribute can be expressed using multiple rules. Other
extensions to the rule language are possible but will not be
considered here. Note that the rule language that we consider,
albeit simple, forms the core of common rule languages used
by actual systems [18].

The semantics of a rule ϕ is defined as a boolean function
over the tuples of a relation T such that for a tuple t =< A1 :
a1, A2 :a2, . . . , Am :am >,

ϕ(t) =
∧

1≤i≤m
αi[ai/vi]

Here ai/vi denotes the replacement of vi by ai in αi, and
the semantics of αi[ai/vi] is defined by the standard opi
semantics, except for the case where ai = > for which αi
is always satisfied. Similarly, the semantics of applying a rule
ϕ on T denote the set of all tuples that are captured by ϕ,
i.e.: ϕ(T ) = { t ∈ T | ϕ(t) = True}. Let Φ denote a set of
rules over T , then Φ(T ) =

⋃
ϕ∈Φ ϕ(T ). In other words, Φ(T )

denotes the result of the union of evaluating every rule in
Φ over T . Observe that for every T and for every ϕ ∈ Φ,
ϕ(T ) ⊆ Φ(T ) ⊆ T , since every rule selects a subset of
transactions from T .

As an example, the rules ϕA and ϕB from the Introduction
are rules in the presented language.



C. Rule-Driven Transactions Classification

Recall that transactions may be associated with a classi-
fication label that indicates whether they are fraudulent or
legitimate. Given a rule ϕ and a set of transactions T (typically
the full transaction relation), we define the set of fraudulent
transactions captured by ϕ as FC(ϕ, T ) = fraud(T ) ∩ ϕ(T ).
Conversely, the set of uncaptured fraudulent transactions is
defined as FU (ϕ, T ) = fraud(T ) r FC(ϕ, T ). The set
LC(ϕ, T ) of legitimate transactions (wrongly) captured by ϕ
and the set LU (ϕ, T ) of uncaptured legitimate transactions are
similarly defined, by replacing fraud(T ) with legit(T ) (and
correspondingly replacing FC with LC in the LU formula).

Notice that these definitions can be extended also to be used
with a rule set Φ by simply replacing ϕ with Φ. For brevity,
when the rule/rules set and the transaction relation are clear,
we will omit them and simply use the notations FC , FU , LC
and LU . Ideally, we aim to build a set of fraud detection rules
in which FC and LU are as large as possible (and so FU , LC
are as small as possible).

D. Rule Adaptation

The context of an expert includes her transaction relation
and her current set of fraud-detection rules, as well as relevant
contextual information such as the company she works for, its
location, currency, language, local regulations, etc.

While there might be many ways to map rules from a source
context to a target, we center our attention here on mappings
that consider the individual conditions of the rule, substituting
(when needed) the values vi used in the rule conjuncts by those
that best match the target context. As we will see in Section
V, such value-based mappings are extremely effective.

Which value substitutions should one consider when adapt-
ing a rule from one context to another? As illustrated in our
running example from the Introduction, there are multiple
semantics to consider for each condition (attribute). For in-
stance, the value in the Amount attribute conjunct can represent
an absolute amount in the local context currency or some
regulatory value, or alternatively correspond to some percentile
in the amounts distribution. The candidate mappings are thus
obtained by first abstracting the value from the source context,
using each of these possible relevant semantics, and then
concretizing the abstracted values to the target context.

More formally, given an attribute Ai, we denote by Σ(Ai)
its given set of possible semantics. For a context s, an attribute
Ai and a possible value semantics σ ∈ Σ(Ai), the attribute
abstraction function αsσ : dom(Ai) → dom(σ) maps values
from the attribute domain dom(Ai) to the abstract semantic
domain dom(σ). Conversely, the attribute concretization func-
tion, γsσ , is the inverse function that maps an abstract semantic
value y ∈ dom(σ) to its set of possible origins in dom(Ai),
except for the special > element which is mapped to itself:
γsσ(y) = {x|αsσ(x) = y if y 6= >, else >}

To map a rule ϕ from a source context s to a target context t,
we will consider, for each conjunct Ai op vi in ϕ, its possible
abstractions (under the different semantic Σ(Ai)), and then
concretize each to the target domain. Formally,

Semantics Abstraction Concretization
Identity [ID] 100K 100K
Exchange Rate [CC] 97K (CHF) 95K(EUR)
Distribution [VP] upper 5% 200K
Regulation Limits [RL] after hours 120K

Fig. 3: Mapping of {Amount ≥ 100K} from context A to B

Definition 2.1 (Attribute Mapping Candidates):
Given a source context s, a target context t and an attribute
Ai, the mapping candidates for a value vi ∈ dom(Ai) are the
values

V sti (vi) =
⋃

σ∈Σ(Ai)

γtσ(αsσ(vi))

When s, t and vi are clear from the context, we will omit
them and use just Vi.

Example 2.2: To continue with our example from the In-
troduction, consider the two financial institutes A and B that
want to share the knowledge about fraud attacks. Let us focus
on the Amount attribute of the first rule ϕA. Naturally, there
are several possible mappings for this attribute. For example
one of them may use the exchange rate of US Dollars (the
local currency of A in USA) to Euros (the local currency of B
in Germany). In this case the abstraction here maps the local
amount to some agreed upon reference currency (Swiss Francs
in the example); a conversion from the reference currency to
Euro is then used as the concretization function (marked as CC
in Figure 3). A second possible option is a distribution-based
mapping that maps the value to its corresponding percentile
(e.g. upper 5%) among the transaction amounts in context A.
The concretization function then maps the abstract percentile
to the corresponding concrete value in the target context B
(marked as VP). Another possibility is using semantics that
maps the amount to some local financial regulation, assuming
that the value of the attribute in the rule is exactly the
regulation limit. Here the abstraction will be the “type of
regulation” (e.g. after hours trade) and the concretization is the
value of the corresponding regulation limit in the target context
country (marked as RL). In addition, there is an identity
mapping that leaves the value unchanged (marked as ID). The
summary of the different mappings discussed is depicted in
Figure 3.

We are now ready to define the set of candidate rule
mappings. Intuitively, it includes all the rules obtained by
substituting each of the values appearing in ϕ by one of its
corresponding possible mappings.

Definition 2.3 (Rule Mapping Candidates): Given a
source context s with a rule ϕ =

∧
1≤i≤m Ai opi vi, and a

target context t. Let Vi (1 ≤ i ≤ m), be the set of attribute
mapping candidates for vi. The set of rule mapping candidates
for ϕ is the set of rules

Ψst(ϕ) = {ϕ[v′1/v1, . . . , v
′
m/vm] | v′1 ∈ V1, . . . , v

′
m ∈ Vm}

Here again, when s and t are clear from the context we omit
them and simply use Ψ(ϕ).



E. Cost & Benefit model

As previously explained, to compare between the different
rule candidates in Ψ(ϕ) and determine which is the most
suitable mapping, we need to measure the “cost & benefit” it
entails. Intuitively, the gain from a new rule can be measured
by the increase in the number of fraudulent transactions that
are captured by adding it (i.e. the fraudulent transactions that
were not captured by the existing rules), minus the number
of legitimate transactions that it misclassifies (i.e. legitimate
transactions that were correctly classified by previous rules).

Problem 2.4 (Best Rule Adaptation Problem):
Let s be a source context with a rule ϕ. Let t be a target
context with transaction relation Tt and an existing set of rules
Φt. Let FC , FU , LC and LU denote the set of captured and
uncaptured fraudulent and legitimate transactions in t w.r.t to
Tt and Φt (as defined above). Let Ψ(ϕ) be the rules mapping
candidates set as previously defined.

The BEST RULE ADAPTATION PROBLEM is to compute
a rule adaptation ϕ′ ∈ Ψ(ϕ) such that:

w(ϕ′) =(α · |ϕ′(FC)|+ β · |ϕ′(FU )|) −
(γ · |ϕ′(LC)|+ δ · |ϕ′(LU )|)

(1)

is maximized for a given α, β, γ, δ ≥ 0.
The term (α · |ϕ′(FC)|+β · |ϕ′(FU )|) represents the benefit

that can be obtained from adding the rule adaptation ϕ′ to
the existing rule set Ψt in terms of the fraudulent transactions
captured, while the term (γ ·|ϕ′(LC)|+δ ·|ϕ′(LU )|) represents
the rule costs (in terms of legitimate transactions captured). By
weighting each of the components one can tune, depending
on the application, the precision and recall of the selected
rule. For instance, setting α = 1, β = 1, γ = 0, δ = 0
will maximize the recall of the new rule set, while the dual
assignment (α = 0, β = 0, γ = 1, δ = 1) will maximize
its precision. A more balanced function (which represents the
common policy of financial companies) can be α = 0.5, β =
1, γ = 0.5, δ = 1. This function aims to capture as much
uncaptured fraudulent transactions as possible (especially new
ones), while at the same time maintaining a low number of
(new) false positives.

Additional constraints (e.g. thresholds on the precision/re-
call/number of captured legitimate transactions) may be added
to the problem definition, to fine tune the adaptation. For
simplicity we omit this here but our algorithms extend to such
more refined definition.

III. FINDING THE BEST RULE ADAPTATION

Let us first assume that we have a single rule that we wish
to adapt. We will discuss the case where multiple rules are
available afterwards. From the exposition in the previous sec-
tion it follows that there are two main challenges to overcome
to yield a good rule adaptation: (1) the choice of suitable
abstraction/concretization functions that will allow to build an
effective yet not too large set of candidate mappings for each
rule attribute, and (2) the design of efficient algorithms to
identify the best, cost&benefit-wise, rule adaptation. We will
first discuss (2) in this section, assuming that the set of possible

mappings for every attribute value is given. Then, in the next
section, we will explain which mappings are used.

A naı̈ve algorithm to identify the best rule adaptation would
iterate over all possible attribute mappings, evaluate Equation
1 for each of the mappings, and choose the one with maximal
value. However, this algorithm’s complexity is exponential in
the number of attributes and becomes prohibitively expensive
when the relations contains many attributes, each with multiple
possible mappings, as it is often the case in practice (see
Section V). Indeed, we can show the problem to be NP-hard.

Theorem 3.1: Testing whether a rule ϕ has an adaptation
ϕ′ ∈ Ψ(ϕ) whose score w(ϕ′) exceeds a given threshold θ is
NP-Hard in the number of attributes in the transaction relation,
even if each attribute has only two possible mappings.

The proof is presented in Appendix A.
However, as we will show below, the problem can be

modeled as an Integer Linear Programming (ILP) problem.
While this is still NP-hard, ILP solvers are known to be
efficient in practice especially if the number of variables is
not too large. Unfortunately, in our setting, the variables in
the ILP formulation correspond to the number of transactions,
which are typically in the order of millions of them. Hence,
we employ a dedicated preprocessing data-reduction step that
clusters together transactions that behave uniformly w.r.t the
conditions in the rule, representing them as a single tuple,
and thereby significantly reducing the ILP problem space.
Our experimental results (shown in Section V) on real-world
datasets prove the efficiency of our solution.

We will start our exposition by describing the direct ILP
formulation of the problem, then explain how it is optimized
via data reduction. Finally, we will consider the general case
which, given a set of candidate rules, computes a set of top-k
rule adaptations.

A. ILP Formulation of the Best Rule Adaptation Problem

Consider a rule ϕ =
∧

1≤i≤m Ai opi vi, and let Vi,
i = 1 . . .m, be the set of attribute mapping candidates for vi.
Intuitively, our ILP problem consists of a boolean variable for
every value in each Vi (with the value 1 symbolizing that the
corresponding mapping was chosen, and 0 that it was not).
We also have a boolean variable for each of the tuples in the
target transaction relation Tt (with the value 1 symbolizing
that it satisfies the rule under the chosen mapping). The
objective function will be analogous to the one defined in
problem 2.4. We also have a constraint for every attribute Ai
in the rule, ensuring that a single value is selected from Vi.
Formally, we define the ILP as follows:

Notations Let π(Γ) be the set of indexes of transactions in
Tt belonging to the set Γ for Γ ∈ {FC , FU , LC , LU}. Let
ci = |Vi| be the number of different mapping candidates for
attribute Ai and let n = |Tt|, then:
Boolean (0-1) Variables:



xi = 1 iff transaction ti was captured by the chosen rule
adaptation

Aij = 1 iff mapping candidate j of the set Vi was selected
for attribute Ai

Constants:
αijk = 1 if attribute Ai on transaction tk is satisfied by

mapping Aij , otherwise 0

Model Formulation Our goal is to maximize the following
objective function under the given set of constraints.

Objective Function:

∑
i∈π(FC)

α◦xi+
∑

i∈π(FU )

β ◦xi−
∑

i∈π(LC)

γ ◦xi−
∑

i∈π(LU )

δ ◦xi

Constraints:
First, we want to allow just one mapping to be selected for

every attribute i:

∀
1≤i≤m

ci∑
j=1

Aij = 1 (2)

Then, we have the constraints that define if transaction k
is satisfied by the selected adaptation: we require for every
attribute Ai that if j was the selected mapping among the
candidates in Vi, then the constant αijk must be equal to
1. For this purpose, we check the transaction satisfaction
by counting the number of attributes satisfied by the chosen
candidates. Thus, a count result of m is equivalent to a full
record satisfaction. We use a lower bound equation and an
upper bound one in order to force the variables xk to behave
as expected.
Upper bound: On the first hand, we want xk to be 1 only in
case of full satisfaction. Thus, we need an expression that will
allow xk to be 1 only if there are at least m attributes satisfied.

∀
1≤k≤n

m · xk ≤
m∑
i=1

ci∑
j=1

αijk ·Aij (3)

Lower bound: On the other hand, we want xk to be 1 in every
case of full satisfaction. Thus, we need an expression that will
require xk to be at least 1 if there are m attributes satisfied.

∀
1≤k≤n

m− 1 + xk ≥
m∑
i=1

ci∑
j=1

αijk ·Aij (4)

This concludes the construction.
The size of the ILP problem, as constructed above, is

quadratic in the number of transactions in the target relation
Tt. More precisely, it includes 3n + m + Σ|Vi| constraints
over n +

∑
|Vi| variables, where n,m are the number of

transactions and attributes in Tt, resp. As will be shown
experimentally in Section V, this presents a performance
bottleneck when the number of transactions in Tt is large. To
overcome this, we use a data reduction technique that allows to
represent a set of “indistinguishable” transactions by a single
tuple.

B. Optimization via Data Reduction

Given a rule ϕ, its sets Vi, i = 1 . . .m, of attribute mapping
candidates, and the target relations Tt, we build a reduced
relation T ′t which we call the RMC (Rule Mappings Clustered)
relation. Then we define a reduced ILP problem for the
compressed relation.

The reduced RMC relation: The RMC relation is built by
clustering together sets of transactions that would be equally
labeled by the adapted rule, independently of which specific
attribute mappings are chosen.

Example 3.2: To illustrate, recall our running example from
the Introduction. Consider expert B’s transaction relation from
Figure 2, and rule ϕA that we wish to adapt to her context.
Assume that expert B has no other rules at the moment and
so, all the fraudulent and legitimate transactions in the figure
are currently uncaptured. Suppose that the attribute mapping
candidate for adapting ϕA to context B are VAmount =
{95K, 100K, 120K, 200K} and VTime = {16:00, 20:00}.
Consider the third and fifth transactions in the Figure. One
can verify that, independently of the chosen mappings, both
transactions will be both captured or uncaptured by the cho-
sen rule adaptation (since both Amounts are above 200K
and both Times are above 20:00). Our RMC construction,
described below, merges such indistinguishable tuples.

Intuitively, for every attribute Ai, we partition its domain
dom(Ai), using the values in Vi. We choose (as will be
explained below) a representative for each partition, then
replace each attribute value in the transaction relation by the
representative of the partition to which it belongs. Recall that
conjuncts in the rule are of the form Ai opi vi. The domain
partitioning (and chosen representatives), and consequently
the value replacements, are dictated by operator opi used for
value comparison. We use below hopii to denote the value
replacement function for attribute Ai.

To illustrate, let us consider the operators ≥ and = (the
other operators work similarly). For ≥, when the domain is
totally ordered, we use the values in Vi to partition the domain
into disjoint intervals [v, v′), v, v′ ∈ Vi ∪ {−∞,∞}, and set
each partition representative value as the minimal value in the
partition (v). (For the case of v = −∞ we use the special ⊥
symbol). The value replacement functions h≥i for attribute Ai
is then defined as follows:

h≥i (v) = argmaxb∈Vi
{v ≥ b}

For =, each element in Vi forms a partition of itself whereas
all the others values belong to a “complement” partition
whose representative is the ⊥ element. The value replacement
functions h=

i for attribute Ai is then defined as follows:

h=
i (v) = v if v ∈ Vi otherwise ⊥

Example 3.3: Following Example 3.2, the next table
presents for each Amount value in Figure 2, its partition and
representative as induced by VAmount and h≥Amt.



Time Amount FC FU LC LU

16:00 120K 0 0 0 1
20:00 ⊥ 0 0 0 1
20:00 95K 0 1 0 0
20:00 200K 0 2 0 0

Fig. 4: Expert B RMC Transactions Relation

vi v′is partition h≥Amt(vi)
92K (−∞, 95K) ⊥
97K [95K, 100K) 95K
140K [120K, 200K) 120K
206K [200K,∞) 200K
230K [200K,∞) 200K

Suppose also that VType = {Stock Trade, Payment}.
Clearly, using h=

Type, all the transactions in Figure 2 will
remain with the Stock Trade type.

Finally, we cluster indistinguishable tuples and attach, to
each representative tuple, counters for the four transaction
classes
(LC , LU , FC , FU ), counting the number of tuples in the
cluster belonging to the corresponding class.

Example 3.4: Continuing with Example 3.2, Figure 4
shows the RMC table for the 5 transactions in Figure 2 (we
assume that all of them are still uncaptured). We omit the Type
and Country attributes since they have the same values for all
the records in the example (and thus will be indistinguishable
for any possible adaptation).

The reduced ILP problem: We can now define, for the
reduced RMC table, a corresponding reduced ILP Model. In
this model, each of the xi variables represents a summarized
transaction in the RMC relation, and the αijk constants are
defined w.r.t the xi summarized tuples. The definition of the
Aij variables stays the same.

We use the same set of constraints as before and adapt
just the objective function. Let χΓ

i denote the number of
original transactions of class Γ ∈ {FC , FU , LC , LU} that were
summarized into the summarized tuple xi, then the updated
objective function becomes:∑

i∈π(FC)

α ◦ χFC
i ◦ xi +

∑
i∈π(FU )

β ◦ χFU
i ◦ xi−

∑
i∈π(LC)

γ ◦ χLC
i ◦ xi −

∑
i∈π(LU )

δ ◦ χLU
i ◦ xi

As demonstrated in the experiments, the smaller size of the
transaction relation, and consequently the smaller size of the
ILP model, leads to significant performance improvement.

C. k-Rule Adaptation

So far we have explained how the best rule adaptation, for
a single rule ϕ is computed. When a set of n rules is available
(from the same or different sources), the same algorithm can
be applied to each of the rules ϕ in the set (i.e. computing a
reduced RMC relation for ϕ and running ILP on it). The scores
of the best adaptation for each of the rules are compared, and
the one with the highest score may be selected and added
to the target rules set. The process may then be iterated, to

choose another rule adaptation, and so on. We refer below to
the available set of candidate rules as the rules pool. Let n
be the number of rules in the pool and let k the number of
iterations (selected rule adaptations) performed. The iterative
process just described takes time n×k ×I , where I is the time
it takes to compute the relevant RMC and solve its (reduced)
ILP problem. Interestingly, however, as we show next, much
of this work can be saved by avoiding useless RMC and ILP
computations, namely ones having no potential to yield a best-
score adaptation. We explain this next.

Consider an iteration i ≥ 1 and let ϕ1, . . . , ϕi−1 be
the rule adaptations selected in the previous iterations. Let
Φi = Φt ∪ {ϕ1, . . . , ϕi−1} be the target set of rules at the
ith iteration, where Φt is the existing set of rules at the target
context. Correspondingly, let F iC , F

i
U , L

i
C , L

i
U denote the

fraudulent/legitimate (un)classified transactions as induced by
Φi. Note that the update operation of the sets from round i−1
to round i can be computed in a fast way by updating just the
labels of the transactions captured by ϕi−1).

By this way, rule adaptations equivalent to the previous
selected have now a different target score (mostly much lower
in practical target functions) and new adaptations will be
selected.

The proposition presents the key insight of our pruning
technique.

Proposition 3.5: Let ϕ be a rule in the rules pool. Let wi(ϕ)
be ϕ’s best adaptation score as computed at the ith iteration.
Let ϕi−1 be the rule adaptation selected at round i− 1. Then,
wi(ϕ) bounded by:

ŵi(ϕ) = wi−1(ϕ) + α ◦ |ϕi−1(F i−1
U )|+ δ ◦ |ϕi−1(Li−1

U )|

where α, δ are the constants defined in the target score formula
in Problem 2.4.

The proof is presented in Appendix A.
Corollary 3.6: Let ϕ be a rule in the rules pool, and let

wi, ŵi be defined as in Proposition 3.5. The ILP computation
for ϕ may be skipped at iteration i if there exists another rule
ϕ′ in the candidate rules set, for which wi(ϕ′) ≥ ŵi(ϕ).

Algorithm 1 presents the k-RuleAdaptation algorithm which
utilizes the above Corollary to prune redundant (RMC and)
ILP computations. The rules are stored in an ordered data
structure (e.g., a max-heap) that maintains for each rule its
current maximal adaptation score (we assume that it has also
an increaseKeys function that allows to increase all its keys
by a given factor at the same time). Then, at each iteration,
we determine which ILP computations need to be performed
and which will be skipped.

The algorithm takes as input the transaction relation of the
target context Tt (with it’s initial transactions classification
F 1
C , F

1
U , L

1
C , L

1
U ), its current set of rules, Φt, the desired

number k of new rules, and threshold θ on the adapted rules
score (which can be used to prune rule adaptations with low
score). Line 1 initializes the initial rule set, Φ1, with the
existing rule set Φt and line 2 initializes the ordered rules
pool (e.g., heap), whose keys will be the best rule adaptation
score obtained at the current round (wi), or its upper bound



estimator (ŵi). Each rule ϕ will also contain an attribute which
indicates the last round in which the rule’s best adaptation was
last called for it (ϕ.round, initialized to null). Line 3 contains
the k-rounds for loop, and line 4 contains the while loop which
looks for the best rule adaptation among all the rules (w.r.t the
current transactions classification). Line 5 pops from the heap
the rule adaptation with the highest score into ϕi. Lines 6-7
check if the score went below the passed threshold, and if
so the algorithm ends and returns the list of rule adaptations
found up to this point. Lines 9-13 handle the case in which
ϕi’s best rule adaption was calculated in the current round.
In this case we rely on Corollary 3.6 to deduce that all the
other rules in the pool: (i) were evaluated in this round, with
score lower than ϕi, or (ii) it’s estimator is below ϕ.score.
At this step, we increase all the keys in the data structure
(to update the rule score to the estimator ŵi+1

3) through the
function increaseKeys, add ϕi to the new set of rules, Φi+1, and
calculate the labeled classification sets F i+1

C , F i+1
U , Li+1

C , Li+1
U (as

induced by Φi+1). Finally, lines 15-17 handle the case in which
ϕi’s best adaptation was not calculated in the current round,
then it calculates it’s best adaptation w.r.t the current Tt’s
classification labels and pushes ϕi back to the heap, this time
with the updated score. The effectiveness of the algorithm is
presented in Section V.

Algorithm 1: k-RuleAdaptation(Tt, Φt, k, θ)

1 Φ1 ← Φt
2 h← heap(RulesPool,∞)
3 for i← 1, . . . , k do
4 while true do
5 ϕi ← popMax(h)
6 if ϕi.score < θ then
7 return Φi

8 if ϕi.round == i then
9 Φi+1 ← Φi ∪ {ϕi}

10 increaseKeys(h,
α ◦ |ϕi(F iU )|+ δ ◦ |ϕi(LiU )|)

11 F i+1
C , F i+1

U , Li+1
C , Li+1

U ← calculateLabels(Tt,
Φi+1)

12 updateLabels(T , ϕ)
13 break
14 else
15 ϕi.round← i
16 findBestRuleAdaptation(ϕi, Tt)
17 push(h, ϕi, ϕi.score)

18 return Φk+1

3Note that the estimator used in the algorithm might be calculated using
the previous round estimator (ŵi). Even though, it is still a proper estimator
since it is an upper bound of the estimator presented in Proposition 3.5

IV. GENERATING MAPPING CANDIDATES

We employ in GOLDRUSH three classes of abstract-
based attribute mappings that may be used. The first class
consists of a standard build in set of value-based mappings.
The second includes distribution based mappings. The third
class is data driven and employs an ontological knowledge
to determine possible abstractions/concretizations. We briefly
overview each class below.

A. Mapping by Value
Our set of value-based mappings includes standard value

conversions for currency, temperature, time zone, length and
weight metrics. The corresponding abstraction (resp. con-
cretization) functions here map, in each context, every value
from (to) its local scale to (from) a universally agreed one.

We also include in this class three useful mappings:
Identity: This is the trivial mapping that leaves the values

unchanged. Here both the abstraction and the concretization
functions are simply the identity function.

Any-to-Any: This mapping allows to replace a value by
any other value in the domain. Such a mapping is useful
for semantic-less categorical attributes such as category code
names or internal user ids, where the corresponding value in
the target domain is unknown at mapping time, and allows
the algorithm to examine all possible instantiations. The ab-
straction function here maps all values to the abstract “Any”
element. The inverse concretization then facilitates all possible
mappings.

Wildcard: This mapping allows to replace a value by
the special > element, which satisfies all conditions, thereby
essentially removes the corresponding conjunct from the rule.
This is particularly useful when a given rule has conditions
that are relevant to the source context but not to the target.
For instance conditions on the state name may be relevant to
US bank branches but not for the European ones).

B. Mapping by Distribution
The second class includes distribution-based mappings such

as percentile and frequency (top/bottom-k). We distinguish
here between numerical and categorical attributes.

Numerical attributes: For numerical attributes there is
often a correlation between the value used in the condition
and the attribute’s value distribution in the underlying relation.
For example, assuming that only 5% of the money amounts
recorded in a transaction relation are above 100K, a condition
of the form of {Amount ≥ 100K} may in fact mean “in
the top 5% amounts”. To capture this we use an abstraction
function that maps each value to its corresponding percentile
in the attribute values distribution, in the source relation.
The inverse concretization function then uses the target’s
distribution to map back to the appropriate target value. (A
bottom n% mapping works in a similar manner.)

In our implementation we examined two standard methods
for estimating the percentiles and their values: building a Cu-
mulative Histogram and using 1-D Kernel Density Estimations
(KDE) [27]. As both methods yielded almost the same results
we show results only for Cumulative Histograms.
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Fig. 5: A sample of geopolitical ontology
Categorical attributes: The top-k (resp. bottom-k) most

frequent is the analogous version of the numerical top n% (bot-
tom n%), for categorical attributes. The abstraction function
here maps every attribute value to the corresponding maximal
(minimal) k. The inverse concretization function then maps
each k to the appropriate value in the target context.

C. Mapping by Semantics

For categorical attributes, we use ontologies to examine the
semantic relationship between the values mentioned in the
attribute condition (e.g. Dinotopia and Jamonia in country ∈
{Dinotopia, Jamonia}) and each of the values mentioned in
the source context attributes (e.g. USA in location = USA of
expert A in the Introduction). We use in GOLDRUSH general
purpose ontologies such as YAGO [28] and DBPedia [11] as
well as domain specific ontologies built by our collaborating
domain experts (details in the experiments section).

Specifically, the simple, yet effective, semantic inference
that we employ examines the ontology graph. It identifies,
for each semantically meaningful value mentioned in the
source context, simple path expressions (sequence of labeled
edges) connecting the value to the values mentioned in the
condition. Each such path expression captures a possible se-
mantic abstraction. To illustrate, two possible path expressions
connect the USA node to the two nodes labeled Dinotopia
and Jamonia: (1) a single (yellow) edge scams, semantically
representing the fact that both countries are the source of
common scams against USA, and (2) a sequence of two blue
inContinent edges, capturing that both countries belong to a
single continent as the USA. Each of the two path expressions
captures a possible semantic abstraction of the attribute value,
relative to the source context. The conjunction of the two
path expressions captures a third abstraction representing the
conjunction of the two semantic properties.

For each such abstraction, the inverse concretization func-
tion retrieves, in the ontology graph, values that are accessible
by the corresponding path expression(s) from the analogous
target context attribute value. For instance, when adapting the
rule to a context where country = Germany, the concretiza-
tion of the first semantic abstraction (the scams edge) includes
Orsinia, whereas the concretization w.r.t the second semantic
abstraction (same continent) includes Orsania and Qurac.

The concretization of the third semantic abstraction is the
intersection of the two sets and includes only Orsinia, the
only value connected to Germany by the two path expressions.

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented the algorithms described in the pre-
vious sections in the GOLDRUSH system. GOLDRUSH is
implemented in Python (backend service), PHP/JavaScript
(frontend) and uses MySQL as the database engine. The sys-
tem architecture is detailed in Appendix B. We next describe
the datasets used in our experiments, the compared algorithms,
and the experimental evaluation.

A. Datasets

We run the experiments over real-world financial transaction
relations obtained from our industrial collaborators4. Due to
the sensitivity of the financial information, we received a
masked version of the datasets in which personal information
such as user names, account IDs and IPs were omitted, and
locations were reduced to include only the city name. We
obtained five datasets belonging to five different financial
institutes (FIs) around the world, for the second quarter of
2016. Each dataset consists of (i) a transactions relation, of
two full months activity, and (ii) the full set of fraud detection
rules for that period 5. For each FI, we used the first month
data as our training set and tested our generated rules against
the second month.

Transactions and Rules: The transaction relations include
payment and authentication activities performed by the FI
clients. Each transaction is labeled as fraudulent/legitimate.
The labeling is done as part of the standard operation of the FIs
(using e.g. user notifications and periodic user approval/dis-
proval of transactions and fraud notifications) and we use these
labels as the ground truth. The relations have between 30-70
attributes, numerical attributes (such as the transaction amount,
number of actions in the last hour, etc.) and categorical ones
(location, client type, activity type, etc.). Each transaction also
includes a risk-score attribute (a value between 0 − 1000),
generated by the machine learning module of our industrial
collaborators, that indicates the probability of a transaction to
be fraudulent and is usually used as one of the conditions in
the rules. The rules contain between 3-20 conditions.

Figure 6 provides some additional statistics about the differ-
ent datasets used for the experiments. The statistics reported in
the figure are for the training set. The statistics for the test set
are quite similar. The number of transactions in the relations
varies from 50K to 4.2M transactions per month, where 0.1%
to 2% of them are labeled fraudulent and the rest legitimate.
The number of fraud detection rules for each FI varies from
44 to 110 (ignore for now the numbers in parentheses). The
rule sets have precision between 0.42 and 0.86 and for all the
datasets (except dataset A) the recall is often below 0.1. These

4Names omitted per companies request.
5As mentioned in Section II, the rule language that we consider, albeit

simple, forms the core of common rule languages used by actual systems and
covered all the obtained rules.



DS Monthly
Trx#

Fraud
Ratio

# of
Rules Precision Recall F1

Score

A 45K 0.02 80 (27) 0.86 0.53 0.65
B 800K 0.002 44 (9) 0.65 0.0007 0.001
C 2.5M 0.01 55 (14) 0.52 0.1 0.17
D 4.2M 0.001 110 (34) 0.42 0.1 0.16
E 250K 0.001 62 (14) 0.6 0.02 0.05

Fig. 6: Datasets used for GOLDRUSH experiments
low recall numbers are common for fraud detection rules in
the financial industry as fraud detection is often an extremely
challenging task. Even small percentage of improvement in
fraud capturing is considered a major success and yields great
financial savings.

Ontology: In the experiments we used a geopolitical-
financial ontology that was manually built and curated by the
FIs domain experts. According to our industry collaborators
such a one-time effort is cost-effective, as there are many
effective rules that can benefit from the derived mappings. The
ontology was built using DBPedia [11] and publicly available
datasets such as CIA Factbook [8] and FATF [9] which
contains lists of location-based known fraud schemes (i.e.
Western Union Scams [32]), known money-laundering regions,
sanctioned countries, as well as geographical properties such
as each country’s continent and bordering countries.

B. Algorithms

Our experiments evaluate each of the algorithms presented
in the previous sections, as well as the end-to-end GOL-
DRUSH system. We next list the various algorithms (and
competing variants) that we examine.

The GOLDRUSH system: In our end-to-end experiments
we will use the full fledged GOLDRUSH . We use the
performance of the given rule sets as baseline. Note that these
rules reflect the execution of state-of-the-art ML to label the
transactions with risk-scores and to suggest thresholds6, along
with the work of professional domain experts to refine the
classification, and thus represent the strongest existing com-
petitor. We denote this baseline by ML+E). We measure the
contribution of GOLDRUSH by adding our generated rules to
the FI rules set, measuring the improvement in performance, in
terms of precision and recall, obtained for the extended rules
set, compared to the original set. To compare to a transfer
learning approach, we model the rules as decision trees and
apply a state-of-the-art transfer learning algorithm from [26]
(TL). (The construction details are given in Appendix C). Here
again we add the transformed rules to the original FI rules set
and examine the performance. To the best of our knowledge
none of the existing decision trees TL algorithms support
the incorporation of predefined mappings in the process. To
nevertheless examine if/how they may improve the TL results,
we also run an experiment where we first applied all possible
mappings to the rules, then gave the resulting set as input to
the TL algorithm (TLm).

Best Rule Adaptation: As detailed in Section III, GOL-
DRUSH solves the Best Rule Adaptation problem by: (1)
compressing the transaction relation into an RMC Relation,

6For the companies privacy, the algorithms details cannot be disclosed

Type Method k = 1 k = 5 k = 10 k = 20

Values

Identity 7 53 97 163
Any-to-any 5 20 43 78
Wildcard 4 17 28 52
Currency 0 0 1 3

Distribution Cum. Dist. 5 33 68 161
Top-k Frequent 6 29 53 119

Semantic Location Onto. 2 2 8 32
Fig. 7: Mapping Methods adoption rate

and (2) solving an ILP problem for the reduced relation. We
refer below to this two steps algorithm as GOLD. To examine
the contribution of each of these two steps, we compare GOLD
to the following competitors:
GOLD−: A restricted variant of GOLD that does not build
the reduced RMC and runs the ILP on the original relation.
BF: The naı̈ve brute-force algorithm which iterates over
all possible attribute mappings, computing the score of each
possible combination by issuing a corresponding SQL query
over the transaction relation.
BF+: Similar to BF, except that the queries are issued on the
summarized RMC relation.

k-Rule Adaptation: Finally, we compare here our opti-
mized k-Rule Adaptation Algorithm (Algorithm 1) to a naı̈ve
iterative solution without ILP pruning.

C. Experiments

To illustrate the efficiency and effectiveness of our approach,
we tested GOLDRUSH and its algorithms through three sets
of experiments. We first performed an end-to-end experiment
to examine GOLDRUSH as a whole, demonstrating its ef-
fectiveness for improved fraud detection and actual money
saving. This also allowed us to examine which mappings are
practical, thereby illustrating the usefulness of each mappings
class. We next examined the runtime performance of our
best rule adaptation algorithm, demonstrating its superiority
compared to the competing algorithms. Finally, we compared
the runtime of our optimized k-rule adaptation algorithm to
the naı̈ve iterative solution, demonstrating the effectiveness of
our ILP pruning technique.

1) End-to-End Benchmark: As a recommendation system,
we evaluated the quality of the recommended rule-sets pro-
posed by GOLDRUSH in terms of statistical measures such
as recall, precision, F1-score, and the amount of money that
the user would save if she adopts the recommended rules. For
each FI, the candidate rules pool consists of the rules set from
all other FIs, and we generated k rule recommendations for
k ∈ {1, 5, 10, 20}. The presented rule-set statistics refer to
the rule set consisting of the given FI rule set union those
recommended by GOLDRUSH. We run the experiments for
each of the FI’s training and test sets. Since the results in the
two cases were similar, we present both just for the F1-score
measure, and only those of the test set for the other measures.

We use here the balanced ILP target score function pre-
sented in Section II-E with α = γ = 0.5 and β = δ = 1.
We consider only adaptations that yield a positive cost-benefit
score. Figure 6 reports (in the parentheses) for each FI the
number of rules, out of all rules, for which at least one such
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Fig. 8: Experimental results

adaptation was found in the experiments. In some cases, this
implies that less than k rules would be recommended, and this
is the reason why there are experiments for which the results
for a given dataset remain unchanged from some k onwards.
A sample of the results for GOLD vs. ML+E are depicted in
Figures 8a-8c and 8e, and for GOLD vs. TL in Figure 8d.

Figure 8a depicts the recall for varying k. The first bar
for each dataset shows the recall of the ML+E on the test
data while the others present the recall obtained with GOLD
when adding the 1, 5, 10 and 20 recommended rules. The
recall naturally increases as more rules are added. For 10-rule
adaptation, the recall for all datasets more than doubles, and
for dataset B, where the ML+E rules set recall was extremely
low, the recall raises to almost 90%. Further note that for all
the datasets, an important improvement in the recall is shown
already at the 1-rule adaptation, demonstrating the great benefit
of even minimal rule sharing.

Regarding the precision, it increased in all the datasets (in
some cases over 50%) except dataset A (where it has decreased
by 18% for the large k values). Notice that to avoid such
decrease, a precision threshold constraint can be added to the
ILP model (not done here). We have further observed in the
experiments that the precision has always increased in the 1-
rule adaptation, then gradually decreased for higher k values

(yet generally stays higher than that of ML+E).
Figures 8b and 8c present the F1-score for ML+E and

GOLD for the training and test dataset, respectively. We use
this measure to highlight the trade-off between the recall
improvement and the precision decrease (which, as mentioned,
occurred just for a single dataset). First, note that the results
in the training and test sets are fairly similar (especially in
terms of the delta between the original rules set and ours).
One can also notice that, compared to the original rules set,
the F1-score is improved in all cases, even for dataset A with
a decreased precision.

To compare also to TL, Figure 8d depicts the recall and F1-
scores for ML+E, GOLD and TL for dataset A (the results for
the other datasets show similar trends). While the recall value
for TL is marginally higher than GOLD for k = 10 and 20, the
corresponding precision was extremely bad, as demonstrated
by the fact that the TL F1-scores are significantly lower for all
k. Morever, the rules generated by TL were not meaningful to
the experts in terms of semantic understability, as illustrated
in Appendix C. Interestingly, for TLm, not only that for each
input rule the algorithm now had to examine an exponential
number of rules (all possible mappings) but the results did not
improve relative to the original TL.

Finally, to highlight the monetary importance of our ap-



Original Rule Translated Rule
COUNTRY = Dinotopia ∧
TIME > 20 : 00 ∧ ...

COUNTRY = Qurac ∧
TIME > 21 : 00 ∧ ...

COUNTRY = Orsinia ∧
IP CHANGED TODAY > 3

COUNTRY = Dinotopia ∧
IP CHANGED TODAY > 1

ACTIVITY = Withdraw ∧
AMOUNT > 5K ∧ ...

ACTIVITY = Transfer ∧
AMOUNT > 100K ∧ ...

Fig. 9: Translated Rules

proach, Figure 8e presents the amount of money that could
be saved by adopting the rule sets recommended by GOLD.
The amount is calculated by summing up the amounts of all
the uncaptured fraudulent transactions (FU ) that were captured
by some rule in the recommended set. One can see that our
proposed rules might have saved between $50K USD (for
dataset A) to $100M (!) USD (for dataset B). Looking closer
at the generated rules, it is interesting to note that even when
they do not save much money (as e.g. in dataset A, or in the
1st added rule in datasets B,C and E) they are still very useful,
as they prevent non money-related fraudulent translations such
as faulty authentication.

To conclude the experiment we examined, for each attribute
mapping class, how often it was effectively used to construct
the rules derived in the experiment. Interestingly all classes
were useful. Figure 7 shows the results, for various mapping
classes, for varying k. The most dominant mapping is the
identity one, which reflects the fact that in many case values
are context independent. The distribution-based is also partic-
ularly effective, as both the cumulative distribution mapping
(used for numerical attributes) and the top-k frequent mapping
(used for categorical attributes) were broadly chosen for the
adapted rules. For the semantic-based mappings, we saw that
the location-based mapping was very useful, as in more than
50% of the cases it was chosen for adapting the location-
related attributes (country and city). Moreover, we noticed that
the resulting recommended rules were extremely precise, with
global precision (summing up all the captured transactions
by all the rules) of over 95% (not shown in the table for
space constraints). This supports our hypothesis that semantic
analysis accompanied by a relevant ontology allows to deduce
effective rule adaptations. Table 9 provides some examples of
the resulting translated rules. We only show the conditions that
were modified in the translation.

2) Best Rule Adaptation: In this set of experiments we
compared the run-time performance of the GOLD algorithm
against the three competitors presented in Section V-B. We
show the results for the train datasets. The results for the test
datasets are similar.

Single rule: We start by considering the time it takes to
identify the best adaptation for a single rule. As, for a given
dataset, the algorithm performance depends on the number
of attribute mapping candidates, we tested the run-time for
a varying number of attribute mapping combinations. In our
datasets, these ranged from 10 to almost 107, depending on
the attributes used in the given rule and their domain. Figure
8g summarizes the results of all runs, comparing the run-time
of single rule adaptation performed by GOLD (corresponding

to the x-axis) to the competitors (y-axis). Each point in the
graph represents one experiment (performed on a given dataset
with a given number of possible mapping combinations, and a
given competitor). The point is located in the x-y coordinates
representing the corresponding running time for GOLD and
the given competitor (identified by the point color and shape).

As expected, the results of the naı̈ve BF algorithm were
significantly worse than all other algorithms and we thus omit
them from the figure. The points of the GOLD− algorithm, for
the dataset D, are also omitted since it took more than 3 hours
even for the smallest set of attribute mapping combinations.

By the construction of the graph, points above the y = x
line (in black) represent cases where our GOLD algorithm
outperforms its competitor. As it can be observed, most of
the points are above this line. While in some cases we can
see that BF+ yielded better performance, a closer look at the
data shows that this happens only for the smallest datasets (A
and E), and with a rather small number of possible mapping
combinations (less than 100), due to overhead of GOLD
compared to BF. Also note that in all cases our algorithm
terminated in less than 10 seconds, while for BF+ some inputs
required more than 100 seconds and much more the GOLD−.

RMC compression: To get a better understanding for
the source of efficiency of GOLD, compared to GOLD−, we
examined, for the different datasets, the compression ratio be-
tween the RMC relations size and that of the original relations
(Figure 8h), as well as the actual RMC size (Figure 8i). In
both figures we show how these number vary as a function of
the number of the possible value-mapping combinations. Each
experiment performed over a given dataset is represented in
the figures by a dot. The dots shape and color show on which
dataset the experiment was run. To highlight the compression
trends in Figure 8h, we added to the figure lines that show
the result of linear regression performed for each dataset. As
expected, the fewer the available mappings, the greater is the
compression. This is because, given a smaller set of values,
the domain is split to larger intervals. Consequently more
data values are represented by the same constant and can be
compressed together. From the shape of the linear regression
lines we can observe this trend holds for all datasets. Yet
note that the compression is extremely effective even for an
extremely large numbers of mappings: Even for 106 possible
mappings, the size is reduced by over 2 orders of magnitude
for dataset A, and by 3-4 orders of magnitude for the rest. Also
not that the larger the dataset is, the greater is the compression
ratio (for the same number of mappings). This is because more
tuples are unified and can be compressed together.

We can see the actual RMC sizes in Figure 8i. Since large
data sets get compressed more, the distribution of RMC sizes
of all datasets is even and we get, for all datasets, RMCs of
varying sizes. But in all cases they are much smaller than the
original relations. As a result, even for extremely large datasets
(such as dataset D with 4.2M transactions) and extremely large
number of mappings (above 107), the data is compressed into
a practical size that allows for efficient ILP solving.



k-Rules Adaptation: As mentioned, Figure 8g depicts the
running times for a single rule adaptation. Given a set of
candidate rules, the same process is applied to each rule in
the set and the best-score rule translation is selected. In our
experiments, for each FI, the candidate rules pool consists
of the rule sets from all other FI’s, and the running time
to identify from this pool the best rule translation for FI’s
A, B, C, D, and E, is 0.3, 1.8, 4.4, 7.9, and 0.6 minutes,
resp. (depending as expected on the size of the customer’s
transactions relation). Note that even for the largest dataset the
time is below 8 minutes, which is very reasonable for an offline
computation. More rule translations may be naturally obtained
by repeating the process (see Section III-C). This is where
our k-Rule threshold-based optimization comes into play,
pruning unpromising rule candidates and reducing drastically
the average iteration time for the FI’s to 0.03, 0.4, 0.5, 1.1 and
0.15 minutes, resp.

The efficiency of our optimized k-Rules Adaptation algo-
rithm (Algorithm 1) relative to the naı̈ve iterative algorithm is
demonstrated in Figure 8f, for the different datasets and for
varying k. The figure presents, for each Dataset and each k, the
cummulative runtimes for the k-Rules Adaptation and the naı̈ve
algorithms (i.e., the total runtime for calculating the first k
rule recommendations). Recall that for k = 1 both algorithms
examine all the rules in the pool and thus have similar running
times. In consecutive iterations, our optimizations achieves
great time reduction. We can see that already at k = 10 the
number of ILP computations is reduced by more than a half,
and the advantage typically increases as k grows. For k = 20,
the number of ILP computations is reduced by a factor of 2.7x
to 5x. Note that for Datasets A and E, we present the results
up to k = 17 and k = 5, resp. The reason is that best score
rule in k-Rule Selection algorithm went below the threshold
θ at those k values and thus no more efficient rules could be
recommended from the rules pool.

VI. RELATED WORK

The identification of fraudulent transactions is essentially a
classification task which is a fundamental problem in machine
learning (ML) and data management [20], [24]. As mentioned
in the Introduction, fraud detection systems often employ
ML and data mining techniques (e.g. [17], [22]) to score the
incoming transactions. On top of this, it is common to use rules
written by experts (that may include among others conditions
on the ML transactions score), to refine the fraud detection
and tune it to the specific company policy [25], [18]. The
relationship between ML and expert-written rules has been
widely discussed in the literature [6], [1], [4] for a different
tasks including information extraction, conflict resolution in
data integration and entity linking. Other fraud detection
techniques include the use of decision tree [16], or genetic
programming [3] to classify transactions into suspicious and
non-suspicious ones. Our work is complementary to these lines
of works and the adapted rules derived by our algorithms may
be used to enhance any of these techniques.

Much of the previous research on rule-based classifiers fo-
cus on how to learn rules from the training data. Some systems,
such as Chimera [29] and [18], build the rules interactively
by using both ML techniques and human experts that write
and refine the rules. These works however do not consider
the problem of rules sharing and adaptation between different
contexts. The incremental maintenance of rules in response to
new incoming data has also been extensively studied in the
literature (e.g. [31], [13]). In contrast our work focuses on a
full context switch and employs a dedicated cost/benefit model
to optimize the integration of the adapted rules to the already
existing rules in the target. One technical difference is that
these works considered only domains over numerical values.
For such categorical values, GOLDRUSH employs dedicated
mapping methods that consider e.g. value frequency as well
as semantic ontology-based mappings.

Our implementation uses a geopolitical-financial ontology
built with the help of our industry collaborators. Financial
information about countries was also used for the task of
preventing fraud in some previous work, such as [14]. Our
experiments indicate that such data can indeed be effective in
deriving rules with good prediction quality.

Collaboration between different parties for the improvement
of fraud detection systems is sometimes enforced by local
regulations (e.g. [30]). Works such as [7] present methods
to encourage this collaboration and are based on centralized
repositories that contain lists of fraud patterns built from
fraud attacks experienced by the clients. A main drawback
is that the patterns are either very general (so that they can be
used by broad range of clients) and thus have low precision
and/or recall, or conversely, they are specific to a certain
client and require context adaptation (such as the one we
provide in this paper) before they can be applicable to other
clients. Combining our framework with a privacy preservation
mechanism which assures that the source rule, or specific parts
of it, are not discoverable from the adapted rule is an intriguing
direction for future work.

Transferring knowledge from one context to another has
also attracted much interest of the ML community, in areas
referred to as transfer learning or domain adaptation (e.g. [21],
[2]). As mentioned, closest to our work is the work on transfer
learning for decision trees and random forests [26]. However,
as demonstrated in our experiments, as their objective function
is different the process yields rules that are less effective
for the given context and often not meaningful in terms of
semantics understandability.

Conceptually, the work on query reformulation (e.g., [12])
is similar to our approach. While they reformulate queries
written over a source schema to a target one (under a given
set of tuple/equality generating dependencies), we replace the
rule conditions over a single schema using source to target
condition mappings. Furthermore, our focus is on finding the
best translation in terms of capturing frauds and is different
from the query optimization goal which aims to minimize the
size of the query. Similarly, schema matching (e.g.,[23]) can
be seen as a “translation” between two schemas. However, the



result of schema matching tools is a set of correspondences
between the elements of the schemas, as opposed to our
approach in which we map the condition values from the
source and the target conditions.

VII. CONCLUSION

In this work we introduced GOLDRUSH, a system which
facilitates knowledge sharing via effective adaptation of fraud
detection rules from one context to another. Our solution em-
ploys values abstraction and concretization to map individual
rule conditions from one context to another. An intuitive cost-
benefit model measures the improvement in fraud detection
that the resulting rules bring. While the problem of identifying
the best rule adaptation is shown to be NP-hard, we employ
an effective data reduction technique which, together with a
dedicated ILP formulation of the reduced problem, yields a
practically efficient algorithm. An extensive set of experiments
on real-life datasets demonstrates the effectiveness of our
approach, both in terms of the accuracy of fraud detection
and the actual amount of money saved.

There are several challenging directions for future work.
Specifically, we plan to extend GOLDRUSH by supporting
richer rule languages, including time/event sequences, ag-
gregates and negation. Event sequences introduce significant
complications as there are potentially numerous ways to map
event combinations, and pruning the search space to identify
the most adequate ones may be challenging. Our mappings
in this work focus on individual attributes. Considering more
complex mappings that involve attribute combinations is also
challenging and should take into account the dependencies
among rule components. In addition, we plan to consider richer
semantic mappings that may use, for example, NLP methods
may be employed here to infer the semantic meaning of a
condition based on textual rule description (if available). Fi-
nally, applying our rule adaptation techniques to other domains
such as cyber security and medical classification is another
intriguing research direction.
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APPENDIX

A. PROOFS

We provide below the proofs for the theorems and propo-
sitions presented in the paper.

Proof: [Theorem 3.1]
The proof works by reduction from 3-SAT. Given a 3-SAT
formula f with clauses c1, . . . , cn and variables v1, . . . , vm,
we build a transaction relation with attributes A1, . . . , Am
(corresponding to the variables v1, . . . , vm) each one with a
5 elements domain Dj = {N,T, F,⊥,>}, which satisfies the
partial order N ≤ F , N ≤ T . The transaction relation will
have a legitimate transaction ti for every clause ci ∈ f such
that:

ti[Aj ] =


F if vj ∈ ci
T if v̄j ∈ ci
N otherwise



where ti[Aj ] is the value of attribute Aj in transaction ti. The
rule to be adapted will be ϕ =

∧
1≤j≤mAj ≤ N , with the

sets of mapping candidates Vj = {T, F}. We will choose for
the target function α = β = δ = 0, γ = 1, and θ = −0.5 as
the threshold.

Clearly, the reduction is polynomial in time. Next, we show
the reduction correctness, i.e., f is satisfiable if-and-only-if
there is an adaptation ϕ′ ∈ Ψ(ϕ) whose score w(ϕ′) exceeds
the threshold θ. First of all, note that from the target function
and threshold choice, it follows that such an adaptation ϕ′

exists if-and-only-if ϕ′ does not capture any transaction in T
(since every captured transaction contributes a negative unit to
the target score and we set the threshold θ = −0.5).

Now, assume that f is satisfied by the assignment <
u1, . . . , um >. Let ϕ′ = ϕ[u1/z1, . . . , um/zm] (where zj
stands for the value in Aj’s condition). We will show that ϕ′

does not capture any transaction ti ∈ T . Let vj be the variable
corresponding to the satisfied literal in clause ci. If the satisfied
literal in ci is vj itself, then uj = T and ti[Aj ] = F , and ti is
not satisfied since F � T . Conversely, if the satisfied literal is
v̄j , then uj = F and ti[Aj ] = T , and ti is not satisfied since
T � F .

Finally, assume that there is an adaptation in ϕ′ ∈ Ψ(ϕ)
(ϕ′ =

∧
1≤j≤mAj ≤ zj) that does not capture any transaction.

We will now show that every clause ci in f is satisfied by the
assignment < z1, . . . , zm >. Note that for every transaction ti
there is at least an attribute condition Aj ≤ zj which is not
satisfied. Clearly, from the partial order definition it follows
that ti[Aj ] 6= N . Assume that ti[Aj ] = F (and thus vj ∈ ci).
Since Aj � zj it follows that zj = T , satisfying literal vj
in clause ci. Conversely, assume that ti[Aj ] = T (and thus
v̄j ∈ ci). Since Aj � zj it follows that zj = F , satisfying
literal v̄j in clause ci.

Proof: [Proposition 3.5]
First of all, note that for any sets of transactions R, S and for
a rule ϕ the following statements are valid:
• S ⊆ ϕ(S)
• ϕ(S ∪R) = ϕ(S) ∪ ϕ(R)
• If R ⊆ S, then ϕ(R) ⊆ ϕ(S)
• ϕ(R \ S) = ϕ(R) \ ϕ(S)
• ϕ(R ∩ S) = ϕ(R) ∩ S
Next, we bound the elements

|ϕ(F iC)|, |ϕ(F iU )|, |ϕ(LiC)|, |ϕ(LiC)| used in the formula of
wi(ϕ):
F iC = F i−1

C ∪ ϕi−1(F i−1
U ). Then,

ϕ(F iC) = ϕ(F i−1
C ) ∪ ϕ(ϕi−1(F i−1

U )) ⊆ ϕ(F i−1
C ) ∪ ϕi−1(F i−1

U )

And thus,

|ϕ(F iC)| ≤ |ϕ(F i−1
C )|+ |ϕi−1(F i−1

U )| (1)

F iU = F i−1
U \ ϕi−1(F i−1

U ). Then, F iU ⊆ F
i−1
U . And thus,

|ϕ(F iU )| ≤ |ϕ(F i−1
U )| (2)

LiC = Li−1
C ∪ϕi−1(Li−1

U ). Then, LiC ⊇ L
i−1
C LC . And thus,

−|ϕ(LiC)| ≤ −|ϕ(Li−1
C )| (3)
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LiU = Li−1
U \ ϕi−1(Li−1

U ). Then,

ϕ(LiU ) = ϕ(Li−1
U \ ϕi−1(Li−1

U )) =

ϕ(Li−1
U ∩ ϕi−1(Li−1

U )) = ϕ(Li−1
U ) ∩ ϕi−1(Li−1

U ) =

ϕ(Li−1
U ) \ ϕi−1(Li−1

U )

And thus,

−|ϕ(LiU )| ≤ −|ϕ(Li−1
U )|+ |ϕi−1(Li−1

U )| (4)

Assigning (1), (2), (3) and (4) in the definition of wi we
obtain:

wi(ϕ) ≤ α ◦ |ϕ(F i−1
C )|+ α ◦ |ϕi−1(F i−1

U )|
+ β ◦ |ϕ(F i−1

U )|
− γ ◦ |ϕ(Li−1

C )|
− δ ◦ |ϕ(Li−1

U )|+ δ ◦ |ϕi−1(Li−1
U )|

and therefore wi(ϕ) ≤ ŵi(ϕ) as required.

B. SYSTEM ARCHITECTURE

As mentioned, GOLDRUSH is implemented in Python
(backend service), PHP/JavaScript (frontend) and uses MySQL
as the database engine. The system architecture is depicted in
Figure 10.

GOLDRUSH runs both offline and as a 24/7 service that
allows for both inter and intra company collaboration. In
the online mode, it continuously awaits for new rules from
its clients, builds candidate rule recommendations for their
collaborating parties and pushes them to the respective target
clients (domain experts). The Manager module acts as the
dispatcher for the rule adaptation task. When a new set of
rules is received, it triggers the Attribute Mapping modules,
which build the mapping candidates using the different at-
tribute abstraction classes. These are then passed to the k-
Rule Recommendations Generator module which runs the k-
RuleAdaptation algorithm (Algorithm 1) to compute and store
the selected rule adaptations in the Recommended Rules DB
(to be later retrieved by the user via the UI). The algorithm
invokes the Data Reducer module to build the relevant RMC
Relation, then invokes the ILP Model Builder, which builds
the ILP model and solves it using the IBM ILOG CPLEX
ILP solver [10]. We experimented also with other ILP solvers
such as GUROBI[15] and CBC[5], but they yielded inferior
performance. We use the PuLP python library[19] for Linear
Programming to connect to the solver.



(a) Original rule:

(IS_DINOTOPIA = 1) and (ISP_CHANGED_LAST_10_DAYS > 3) 

and (TIME_ZONE = 0) 

(b) Transfer Learning Resulting rules: 

1. (TIME_ZONE > 0.5) and (TIME_ZONE <= 5.75)

2. (TIME_ZONE > 9.5) 

3. (TIME_ZONE <= 0.5) and (ISP_CHANGED_LAST_10_DAYS > 3.5)

(c) GOLDRUSH Resulting rules: 

(IS_DINOTOPIA = 1) and (ISP_CHANGED_LAST_10_DAYS > 4) 

and (TIME_ZONE in [0, 4]) 

Fig. 11: Rule example

C. TRANSFER LEARNING EVALUATION RESULTS

To compare the performance of GOLDRUSH to that of
the transfer learning algorithm for decisions trees in [26],
we transformed each of the rules in datasets A to E into
an analogous decision tree. In order to do so, we have first
replaced the conditions on categorical attributes by conditions
on binary attributes (e.g. Country = ’Dinotopia’ was translated
to ’Is Dinotopia’ = 1), then built the decision trees top-
down, each time taking the attribute that provides the highest
information gain [26], yielding left-deep decision trees.

Applying the transfer learning algorithm in [26], we obtain
for each input tree (rule) a resulting, probably complex,
decision tree, which represent a set of fraud detection rules.
Each rule in the set corresponding to the conjunction of the
conditions along a root-to-leaf path. Finally, out of all the
generated rules, we select the top−k that maximize the target
function presented in Section II-E.

Besides of comparing the resulting rules quality to that
of GOLDRUSH (reported in Section V-C1), we have also
asked five domain experts to independently examine the rec-
ommended TL rules. All experts reported that the vast majority
of the rules were lacking meaningful semantics and were
difficult to understand or asses. To illustrate, an example of
such resulting rules is depicted in Figure 11. The original
rule, written by an expert in the company which dataset A
belongs to, captures knowledge about the location, time zone
and number of ISP (Internet Service Provider) changes in
the last 10 days. However, when adapted to the context of
dataset B, the resulting TL rules were much coarser and less
precise than both the original rule and the resulting GOL-
DRUSH adaptation (shown at the bottom of the figure). They
ignore the Dinotopia country condition, and while behaving
well on train data, they performed significantly worse on the
test one. In contrast, the adaptation chosen by GOLDRUSH,
is more specific and indeed performs well on both the train
and test data.

Finally, we also tried to incorporate the mapping knowledge
into the TL process. Since we are not aware of any prior work
that takes such mappings into consideration, we performed
the following process of enriching the TL with our mappings
(we names this method TLm). Recall that each input rule
is represented as a left deep decision tree. We processed
the tree top down, generating an alternative set of trees, by
replacing each rule condition by all possible attribute mapping
alternatives. Consequently we obtained an exponential number

of rule alternatives. We thus consider in this experiment only
rules where the overall number of mapping combinations is
smaller that 1000. We then run the TL on the obtained set of
trees, as in the previous experiment, and examined the best
generated rule from this set. Interestingly, in all experiments,
the quality of the generated rule was about the same as the one
obtained for standard TL (we thus omit the graph). Similarly,
here again, all experts reported that the vast majority of the
rules were lacking meaningful semantics and were difficult to
understand or asses.


