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Abstract. We consider a generalization of the secretary problem where
contracts are temporary, and for a fixed duration γ. This models online
hiring of temporary employees, or online auctions for re-usable resources.
The problem is related to the question of finding a large independent set
in a random unit interval graph.

1 Introduction

This paper deals with a variant of the secretary model, where contracts are tem-
porary. E.g., employees are hired for short-term contracts, or re-usable resources
are rented out repeatedly, etc. If an item is chosen, it “exists” for a fixed length
of time and then disappears.

Motivation for this problem are web sites such as Airbnb and oDesk. Airbnb
offers short term rentals in competition with classic hotels. A homeowner posts a
rental price and customers either accept it or not. oDesk is a venture capitalizing
on freelance employees. A firm seeking short term freelance employees offers a
salary and performs interviews of such employees before choosing one of them.

We consider an online setting where items have values determined by an
adversary, (“no information” as in the standard model [15]), combined with
stochastic arrival times that come from a prior known distribution (in contrast
to the random permutation assumption and as done in [21,7,16]). Unlike much
of the previous work on online auctions with stochastic arrival/departure timing
([18]), we do not consider the issue of incentive compatibility with respect to
timing, and assume that arrival time cannot be misrepresented.

The temp secretary problem can be viewed

1. As a problem related to hiring temporary workers of varying quality sub-
ject to workplace capacity constraints. There is some known prior F (x) =∫ x
0
f(z)dz on the arrival times of job seekers, some maximal capacity, d, on

the number of such workers that can be employed simultaneously, and a
bound k on the total number than can be hired over time. If hired, workers
cannot be fired before their contract is up.

2. Alternately, one can view the temp secretary problem as dealing with social
welfare maximization in the context of rentals. Customers arrive according



to some distribution. A firm with capacity d can rent out up to d boats
simultaneously, possibly constrained to no more than k rentals overall. The
firm publishes a rental price, which may change over time after a customer
is serviced. A customer will choose to rent if her value for the service is
at least the current posted price. Such a mechanism is inherently dominant
strategy truthful, with the caveat that we make the common assumption
that customers reveal their true values in any case.

We give two algorithms, both of which are quite simple and offer posted
prices for rental that vary over time. Assuming that the time of arrival cannot
be manipulated, this means that our algorithms are dominant strategy incentive
compatible.

For rental duration γ, capacity d = 1, no budget restrictions, and arrival
times from an arbitrary prior, the time-slice algorithm gives a 1

2e competitive
ratio. For arbitrary d the competitive ratio of the time-slice algorithm is at
least (1/2) · (1− 5/

√
d). This can be generalized to more complex settings. The

time slice algorithm divides time into slices of length γ. It randomly decides
if to work on even or odd slices. Within each slice it uses a variant of some
other secretary problem (E.g., [26], [2], [24]) except that it keeps track of the
cumulative distribution function rather than the number of secretaries.

The more technically challenging Charter algorithm is strongly motivated
by the k-secretary algorithm of [24]. For capacity d, employment period γ, and
budget d ≤ k ≤ d/γ (the only relevant values), the Charter algorithm does the
following:

– Recursively run the algorithm with parameters γ, bk/2c on all bids that
arrive during the period [0, 1/2).

– Take the bid of rank dk/2e that appeared during the period [0, 1/2), if such
rank exists and set a threshold T to be it’s value. If no such rank exists set
the threshold T to be zero.

– Greedily accept all items that appear during the period [1/2, 1) that have
value at least T — subject to not exceeding capacity (d) or budget (k)
constraints.

For d = 1 the competitive ratio of the Charter algorithm is at least

1

1 + kγ

(
1− 5√

k
− 7.4

√
γ ln(1/γ)

)
.

Two special cases of interest are k = 1/γ (no budget restriction), in which case

the expression above is at least 1
2

(
1− 12.4

√
γ ln(1/γ)

)
. We also show an upper

bound of 1/2 + γ/2 for γ > 0. As γ approaches zero the two bounds converge to
1/2. Another case of interest is when k is fixed and γ approaches zero in which
this becomes the guarantee given by Kleinberg’s k-secretary algorithm.

For arbitrary d the competitive ratio of the Charter algorithm is at least

1−Θ

(√
ln d√
d

)
−Θ(γ log (1/γ)).
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We remark that neither the time slice algorithm nor the Charter algorithm
requires prior knowledge of n, the number of items due to arrive.

At the core of the analysis of the Charter algorithm we prove a bound on the
expected size of the maximum independent set of a random unit interval graph.
In this random graph model we draw n intervals, each of length γ, by drawing
their left endpoints uniformly in the interval [0, 1). We prove that the expected
size of a maximum independent set in such a graph is about n/(1 +nγ). We say
that a set of length γ segments that do not overlap is γ-independent. Similarly,
a capacity d γ-independent set allows no more than d segments overlapping at
any point.

Note that if γ = 1/n then this expected size is about 1/2. This is intuitively
the right bound as each interval in the maximum independent set rules out on
average one other interval from being in the maximum independent set.

We show that a random unit interval graph with n vertices has a capacity
d γ-independent subset of expected size at least min(n, d/γ)(1−Θ(

√
ln d/

√
d)).

We also show that when n = d/γ the expected size of the maximum capacity d
γ-independent subset is no more than n(1−Θ(1/

√
d)). These results may be of

independent interest.

Related work: Worst case competitive analysis of interval scheduling has a long
history, e.g., [30,28]. This is the problem of choosing a set of non-overlapping
intervals with various target functions, typically, the sum of values.

[19] introduce the question of auctions for reusable goods. They consider a
worst case mechanism design setting. Their main goal is addressing the issue of
time incentive compatibility, for some restricted set of misrepresentations.

The secretary problem is arguably due to Johannes Kepler (1571-1630), and
has a great many variants, a survey by [15] contains some 70 references. The
“permutation” model is that items arrive in some random order, all n! permu-
tations equally likely. Maximizing the probability that the best item is chosen,
when the items appear in random order, only comparisons can be made, and
the number of items is known in advance, was solved by [27] and by [12]. A
great many other variants are described in ([15,11]), differing in the number of
items to be chosen, the target function to be maximized, taking discounting into
account, etc.

An alternative to the random permutation model is the stochastic arrival
model, introduced by Karlin [21] in a “full information” (known distribution
on values) setting. Bruss [7] subsequently studied the stochastic arrival model
in a no-information model (nothing is known about the distribution of values).
Recently, [13] made use of the stochastic arrival model as a tool for the analysis
of algorithms in the permutation model.

Much of the recent interest in the secretary problem is due to it’s connection
to incentive compatible auctions and posted prices [18,24,2,3,1,10].

Most directly relevant to this paper is the k-secretary algorithm by R. Klein-
berg [24]. Constrained to picking no more than k secretaries, the total value of
the secretaries picked by this algorithm is at least a (1− 5√

k
) of the value of the

best k secretaries.
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Babaioff et al. [2] introduced the knapsack secretary problem in which every
secretary has some weight and a value, and one seeks to maximize the sum
of values subject to a upper bound on the total weight. They give a 1/(10e)
competitive algorithm for this problem. (Note that if weights are one then this
becomes the k-secretary problem). The Matroid secretary problem, introduced
by Babaioff et al. [4], constrains the set of secretaries picked to be an independent
set in some underlying Matroid. Subsequent results for arbitrary Matriods are
given in [8,26,14].

Another generalization of the secretary problem is the online maximum bi-
partite matching problem. See [25,22]. Secretary models with full information or
partial information (priors on values) appear in [5] and [29]. This was in the con-
text of submodular procurement auctions ([5]) and budget feasible procurement
([29]). Other papers considering a stochastic setting include [23,17].

In our analysis, we give a detailed and quite technical lower bound on the size
of the maximum independent set in a random unit interval graph (produced by
the greedy algorithm). Independent sets in other random interval graph models
were previously studied in [20,9,6].

2 Formal Statement of Problems Considered

Each item x has a value v(x), we assume that for all x 6= y, v(x) 6= v(y) by
consistent tie breaking, and we say that x > y iff v(x) > v(y). Given a set of
items X, define v(X) =

∑
x∈X v(x) and Tk(X) = maxT⊆X,|T |≤k v(T ).

Given a set X and a density distribution function f defined on [0, 1), let
θf : X 7→ [0, 1) be a random mapping where θf (x) is drawn independently from
the distribution f . The function θf is called a stochastic arrival function, and we
interpret θf (x), x ∈ X, to be the time at which item x arrives. For the special
case in which f is uniform we refer to θf as θ.

In the problems we consider, the items arrive in increasing order of θf . If
θf (x) = θf (y) the relative order of arrival of x and y is arbitrary. An online
algorithm may select an item only upon arrival. If an item x was selected, we
say that the online algorithm holds x for γ time following θf (x).

An online algorithm A for the temp secretary problem may hold at most one
item at any time and may select at most k items in total. We refer to k as the
budget of A. The goal of the algorithm is to maximize the expected total value
of the items that it selects. We denote by A(X, θf ) the set of items chosen by
algorithm A on items in X appearing according to stochastic arrival function
θf .

The set of the arrival times of the items selected by an algorithm for the
temp secretary problem is said to be γ-independent. Formally, a set S ⊂ [0, 1) is
said to be γ-independent if for all t1, t2 ∈ S, t1 6= t2 we have that |t1 − t2| ≥ γ.

Given γ > 0, a budget k, a set X of items, and a mapping θf : X 7→ [0, 1)
we define Opt(X, θf ) to be a γ-independent set S, |S| ≤ k, that maximizes the
sum of values.
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Given rental period γ > 0, distribution f , and budget k, the competitive
ratio of an online algorithm A is defined to be

inf
X

Eθf :X 7→[0,1)[v(A(X, θf ))]

Eθf :X 7→[0,1)[v(Opt(X, θf ))]
. (1)

The competitive ratio of the temp secretary problem is the supremum over all
algorithms A of the competitive ratio of A.

Note that when γ → 0, the the temp secretary problem reduces to Kleinberg’s
k-secretary problem.

We extend the γ-temp secretary problem by allowing the algorithm to hold
at most d items at any time. Another extension we consider is the knapsack temp
secretary problem where each item has a weight and we require the set held by
the algorithm at any time to be of total weight at most W . Also, we define the
Matroid temp secretary problem where one restricts the set of items held by the
algorithm at any time to be an independent set in some Matroid M .

More generally, one can define a temp secretary problem with respect to some
arbitrary predicate P that holds on the set of items held by an online algorithm
at all times t. This framework includes all of the variants above. The optimal
solution with respect to P is also well defined.

3 The time-slice Algorithm.

In this section we describe a simple time slicing technique. This gives a reduc-
tion from temp secretary problems, with arbitrary known prior distribution on
arrival times, to the “usual” continuous setting where secretaries arrive over
time, do not depart if hired, and the distribution on arrival times is uniform.
The reduction is valid for many variants of the temp secretary problem, includ-
ing the Matroid secretary problem, and the knapsack secretary problem. We
remark that although the Matriod and Knapsack algorithms are stated in the
random permutation model, they can be replaced with analogous algorithms in
the continuous time model and can therefore be used in our context.

We demonstrate this technique by applying it to the classical secretary prob-
lem (hire the best secretary). We obtain an algorithm which we call Sliceγ for
the temp secretary problem with arbitrary prior distribution on arrival times
that is O(1) competitive.

Consider the 1/2γ time intervals (i.e. slices) Ij = [2γj, 2γ(j + 1)), 0 ≤
j ≤ 1/(2γ) − 1. We split every such interval into two, I`j = [2γj, 2γj + γ),

Irj = [2γj + γ, 2γ(j + 1)).1

Initially, we flip a fair coin and with probability 1/2 decide to pick points
only from the left halves (I`j ’s) or only from the right halves (Irj ’s). In each such
interval we pick at most one item by running the following modification of the
continuous time secretary algorithm.

1 For simplicity we assume that 1/(2γ) is an integer.
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The continuous time secretary algorithm [13] observes the items arriving
before time 1/e, sets the largest value of an observed item as a threshold, and
then chooses the first item (that arrives following time 1/e) of value greater than
the threshold. The modified continuous time secretary algorithm observes items
as long as the cumulative distribution function of the current time is less than
1/e, then it sets the largest value of an observed item as a threshold compute a
threshold, and choose the next item of value larger than the threshold.

It is clear that any two points picked by this algorithm have arrival times
separated by at least γ.

Theorem 1. The algorithm Sliceγ is 1/(2e) competitive.

Proof. The analysis is as follows. Fix the mapping of items to each of the left
intervals I`j ’s and to each of the right intervals Irj ’s (leaving free the assignment
of items to specific arrival times within their the intervals they are assigned to).
Let OPT ` (OPT r) be the sum of the items of maximum value over all intervals
I`j (Irj ). Let OPT be the average optimal value conditioned on this mapping of
items to intervals. Clearly,

OPT ` +OPT r ≥ OPT. (2)

For any interval Ij ’s (I`j ’s) Sliceγ gain at least 1/e over the top value in the
interval conditioned on the event that Sliceγ doesn’t ignore this interval, this
happens with probability 1/2. Therefore the expected sum of values achieved by
Sliceγ is at least

1

2
· 1

e
OPT ` +

1

2
· 1

e
OPT r . (3)

Substitution (2) into (3) we get the lemma. ut

Appropriately choosing times (rather than number of elements) as a func-
tion of the prior distribution allows us to do the same for other variants of the
secretary problem, the Knapsack (achieving a competitive ratio of 1

2 ·
1

10e , see
[2]) and Matriod (O(ln ln ρ) when ρ is the rank of the Matroid, see [26,14]).

4 Improved results for the temp secretary problem for
the uniform arrival distribution

In this section we give an improved algorithm, referred as the charter algorithm
Ck,γ , for the temp secretary problem with uniform arrival times and capacity 1
(at most one secretary can be hired at any time).

As it is never the case that more than 1/γ items can be selected, setting k =
d1/γe effectively removes the budget constraint. Note that Ck,0 is Kleinberg’s
algorithm for the k-secretary problem, with some missing details added to the
description.

To analyze the charter algorithm we establish a lower bound on the expected
size of the maximum γ-independent subset of a set of uniformly random points
in [0, 1). We apply this lower bound to the subset of the items that Kleinberg’s
algorithm selects.
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4.1 The temp secretary algorithm, Ck,γ : a competitive ratio of
1/(1 + kγ).

This charter algorithm, Ck,γ gets parameters k (the maximal number of rentals
allowed) and γ (the rental period) as is described in detail in Algorithm 1. As
the entire period is normalized to [0, 1), having k > d1/γe is irrelevant. Thus,
we assume that k ≤ d1/γe.2

We show that Ck,γ(X) gains in expectation about 1/(1 + kγ) of the top k
values of X, which implies that the competitive ratio (see definition (1)) of Ck,γ
is at least about 1/(1 + kγ).

Note that for k = d1/γe, Ck,γ has a competitive ratio close to 1/2, while for
γ = 0, Ck,γ has a competitive ratio close to 1.

It is easy to see that Ck,γ , chooses a γ-independent set of size at most k.
The main theorem of this paper is the following generalization of Kleinberg’s

k-secretary problem:

Theorem 2. For any set of items S = {xi}ni=1, 0 < γ ≤ γ∗ = 0.003176 and
any positive integer k ≤ 1/γ:

Eθ:S 7→[0,1][v(Ck,γ(S, θ))] ≥ 1

1 + γk
(1− β(γ, k))Tk(S), (4)

where β(γ, k) = 7.4
√
γ ln(1/γ) + 5√

k
, and the expectation is taken oven all uni-

form mappings of S to the interval [0, 1). (Note that the right hand side of
Equation (4) is negative for γ∗ < γ ≤ 0.5.)

4.2 Outline of the proof of Theorem 2

We prove Theorem 2 by induction on k. For k ≤ 25 the theorem holds vacuously.
The profit, p[0,1/2), on those items that arrive during the time interval [0, 1/2)

is given by the inductive hypothesis3. However, the inductive hypothesis gives
this profit, p[0,1/2), in terms of the top bk/2c elements that arrive before time
1/2, and not in terms of Tk(X), the value of the top k items overall. Thus, we
need to relate p[0,1/2) to Tk(X). In the full version of this paper we show that
p[0,1/2) is about 1/2 of Tk(X).

Let Z>T be the set of items that arrive in the time interval [1/2, 1) and have
value greater than the threshold T . From Z>T we greedily pick a γ-independent
subset4. It is easy to see that this set is in fact a maximal γ-independent subset.

To bound the expected profit from the items in Z>T we first bound the size
of the maximal γ-independent set amongst these items. To do so we use the
following general theorem (see also Section 6 and the full version of this paper).

2 To simplify the presentation we shall assume the in sequel that k ≤ 1/γ.
3 This profit, p[0,1/2) is Eθ:S 7→[0,1)

[
v(C

[0,1/2)
k,γ (S, θ))

]
, where C

[0,1/2)
k,γ (S, θ) the set of

items chosen by the algorithm during the time period [0, 1/2).
4 modulo the caveat that the arrival time of the 1st item chosen from the 2nd half

must be at least γ after the arrival time of the last item chosen in the 1st half.
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ALGORITHM 1: The Charter Algorithm Ck,γ .

1 if k = 1 then
/* Use the ‘‘continuous secretary’’ algorithm [13]: */

2 Let x be the largest item to arrive by time 1/e (if no item arrives by time 1/e —
let x be the absolute zero, an item smaller than all other items).

3 Ck,γ accepts the first item y, y > x, that arrives after time 1/e (if any)

4 else
/* Process the items scheduled during the time interval [0, 1/2) */

5 Initiate a recursive copy of the algorithm, C′ = Cbk/2c,2γ .
6 x← next element // If no further items arrive x← ∅
7 while x 6= ∅ AND θ(x) < 1/2 do
8 Simulate C′ with input x and modified schedule θ′(x) = 2θ(x).
9 if C′ accepts x then

10 Ck,γ accepts x

11 x← next element // If no further items arrive, x← ∅
/* Determine threshold T */

12 Sort the items that arrived during the time interval [0, 1/2): y1 > y2 > · · · > ym
(with consistent tie breaking).

13 Let τ = dk/2e.
14 if m < τ then
15 set T to be the absolute zero

16 else
17 set T ← yτ .

/* Process the items scheduled during the time interval [1/2, 1) */

18 do
19 if x > T AND (θ(x) ≥ θ(x′) + γ where x′ is the last item accepted by Ck,γ
20 OR no items have been previously accepted) then
21 Ck,γ accepts x

22 x← next element // If no further items arrive, x← ∅
23 until x = ∅ OR k items have already been accepted

Theorem 3. Let Z = {z1, z2, . . . , zn} be a set of independently uniform sam-
ples, zi, from the real interval [0, 1). For 0 ≤ γ ≤ 1,

EZ [m(Z, γ)] ≥ 1− α(γ)

γ + 1/n
=

(1− α(γ))n

1 + nγ
, where α(γ) = 3

√
γ ln(1/γ), (5)

where m(Z, γ) denotes the size of the largest γ-independent subset of Z.

We apply Theorem 3 to the items in Z>T . We can apply this theorem since
arrival times of items in Z>T are uniformly distributed in the 2nd half. Specif-
ically, we give a lower bound on the expected profit of the algorithm from the
items in the 2nd half as follows:

1. Condition on the size of Z>T .
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2. Subsequently, condition on the set of arrival times {θ1, θ2, . . . , θ|Z>T |} of the
items in Z>T but not on which item in Z>T arrives when. This conditioning
fixes the γ-independent set selected greedily by the algorithm.

3. We take the expectation over all bijections θ whose image on the domain
Z>T is the set {θ1, θ2, . . . , θ|Z>T |}. The expected profit (over the set Z>T
and over these bijections) is “approximately”

Size of maximal γ-independent set from Z>T
|Z>T |

·
∑

z∈Z>T

v(z). (6)

The “approximately” is because of some technical difficulties:
– We cannot ignore the last item amongst those arriving prior to time 1/2.

If one such item was chosen at some time 1/2−γ < t < 1/2 then arrivals
during the period [1/2, t+ γ) cannot be chosen.

– We cannot choose more than k items in total, if the algorithm choose λ
items from the time interval [0, 1/2), it cannot choose more than k − λ
items from the time interval [1/2, 1), but k− λ may be smaller than the
size of the γ-independent set from Z>T .

4. To get an unconditional lower bound we average Equation (6) over the pos-
sible sizes of the γ-independent set as given by Theorem 3.

5 Upper bound for the temp secretary problem with
uniform arrival times and with no budget restriction

Theorem 4. For the temp secretary problem where item arrival times are taken
from the uniform distribution, for any γ ∈ (0, 1), any online algorithm (poten-
tially randomized) has a competitive ratio ≤ 1/2 + γ/2.

Proof. Let A denote the algorithm. Consider the following two inputs:

1. The set S of n-1 items of value 1.
2. The set S′ = S ∪ {xn} where v(xn) =∞.

Note that these inputs are not of the same size (which is ok as the number of
items is unknown to the algorithm).

Condition the mapping θ : S 7→ [0, 1) (but not the mapping of xn). If A
accepts an item x at time θ(x) we say that the segment [x, x+ γ) is covered. For
a fixed θ let g(θ) be the expected fraction of [0, 1) which is not covered when
running A on the set S with arrival times θ. This expectation is over the coin
tosses of A. Let G be Eθ:S 7→[0,1)[g(θ)].

The number of items that A picks on the input S with arrival time θ is at

most 1−g(θ)
γ + 1. Taking expectation over all mappings θ : S 7→ [0, 1) we get that

the value gained by A is at most (1−G)/γ + 1.
As n→∞ the optimal solution consists of d1/γe items of total value d1/γe.

Therefore the competitive ratio of A is at most

(1−G)/γ + 1

1/γ
= 1−G+ γ. (7)
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Note that g(θ) is exactly the probability that A picks xn on the input S∪{xn}
(this probability is over the mapping of xn to [0, 1) conditioned upon the arrival
times of all the items in S ⊂ S′). Therefore the competitive ratio of A on the
input S′ is

E[g(θ)] = G . (8)

Therefore the competitive ratio of A is no more than the minimum of the two
upper bounds (7) and (8)

min (G, 1−G+ γ) ≤ 1/2 + γ/2 .

ut

6 About Theorem 3: A Lower bound on the expected
size of the maximum γ-independent subset

Recall the definition of Z and m(Z, γ) from Theorem 3.
Define the random variable Xi, 1 ≤ i ≤ n to be the i’th smallest point in

Z. Define the random variable Ci to be the number of points from Z that lie in
the interval [Xi, Xi + γ). Note that at most one of these points can belong to a
γ-independent set.

The greedy algorithm constructs a maximal γ-independent set by traversing
points of Z from the small to large and adding a point whenever possible. Let
Ii be a random variable with binary values where Ii = 1 iff Xi was chosen by
the greedy algorithm. It follows from the definition that

∑
i Ii gives the size of

the maximal independent set, m(Z, γ), and that
∑
i IiCi = n.

Note that E[Ci] ≤ 1 +nγ, one for the point Xi itself, and nγ as the expected
number of uniformly random points that fall into an interval of length γ. If Ci
and Ii were independent random variables, it would follow that

E
[∑

IiCi

]
≤ (1 + nγ)

∑
Prob[ Ii = 1 ],

and, thus,

m(Z, γ) =
∑

I1 ≥ n/(1 + nγ).

Unfortunately, Ci and Ii are not independent, and the full proof of Theorem
3, that deals with such dependencies, appears in the full version of this paper
(on the Archive).

7 Discussion and Open Problems

We’ve introduced online optimization over temporal items under stochastic in-
puts subject to conditions of two different types:

– “Vertical” constraints: Predicates on the set of items held at all times t. In
this class, we’ve considered conditions such as no more than d simultaneous
items held at any time, items held at any time of total weight ≤ W , items
held at any time must be independent in some Matroid.
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– “Horizontal” constraints: Predicates on the set of items over all times. Here,
we’ve considered the condition that no more than k employees be hired over
time.

One could imagine much more complex settings where the problem is defined
by arbitrary constraints of the first type above, and arbitrary constraints of the
2nd type. For example, consider using knapsack constraints in both dimensions.
The knapsack constraint for any time t can be viewed as the daily budget for
salaries. The knapsack constraint over all times can be viewed as the total budget
for salaries. Many other natural constraints suggest themselves.

It seems plausible that the time slice algorithm can be improved, at least in
some cases, by making use of information revealed over time, as done by the
Charter algorithm.
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