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ABSTRACT
Data has become a major priority for customer facing businesses

of all sizes. Companies put a lot of effort and money into storing,

cleaning, organizing, enriching and processing data to better

meet user needs. Usually in large scale systems such as big e-

commerce sites these tasks involve machine learning methods,

relying on training data annotated by domain experts. Since

domain experts are an expensive resource in terms of monetary

costs and latency, it is desired to design algorithms that minimize

the interaction with them.

In this paper we address the problem of minimizing the num-

ber of annotation tasks with respect to a set of queries.We present

a dedicated algorithm based on efficient labeling, that dictates

the strategy for constructing a minimal set of classifiers sufficing

to answer all queries. Our approach not only reduces monetary

costs and latency, but also avoids data redundancy and saves

storage space. We first consider a typical scenario of two expres-

sions per query, and further discuss the challenges of extending

our approach to multiple expressions. We examine two common

models: batch and stream configurations, and devise offline and
online algorithms, respectively. We analyze the number of anno-

tations, and demonstrate the efficiency and effectiveness of our

algorithm on a real-world dataset.

1 INTRODUCTION
Data has become a major priority for customer facing businesses

of all sizes. Companies put a lot of effort and money into stor-

ing, cleaning, organizing, enriching and processing data to better

meet user needs. For example, news articles published on news

websites, are often annotated, e.g., tagged with "World Cup 2018"

or "Elections in the United States", enabling readers to easily

consume relevant content, hereby improving personalization

and accessibility. E-commerce websites invest in generating a

reliable catalog of products combining human and machine in-

telligence [4, 10, 17]. This allows potential customers to find

the best matching product either by navigating through faceted

categories, or by executing search queries. Since catalogs are

often huge and cannot be maintained solely by human experts,

automatic solutions based on machine learning (ML) are also

employed. Combining both experts and ML is a widely-used

approach also in fraud detection applications [9], text catego-

rization [15] and other classification tasks [19, 20]. One of the

most common usages of ML with human in the loop is harness-

ing domain experts to generate adequate labeled data as a base-

line for supervised learning. Thus, generating sufficient annota-

tions, while minimizing domain experts’ effort, is highly desired.

This trade-off between high quality and low cost is the holy

grail of training data preparation. Much research has been de-

voted in the literature to minimizing the interaction with regular

crowds [8, 12, 20]. However, these techniques are best suited for
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mundane classification tasks, whereas for questions that require

particular expertise, as shown in [6], gathering multiple answers

from various crowd workers does not always produce a desired

accuracy level. In light of this, we present a novel query driven ap-

proach with human experts that avoids redundant labeling tasks

and finds the minimal set of necessary tasks. We note that our

approach may be combined in a regular crowdsourced schema

with probabilistic settings. To illustrate our approach, consider

the following example.

Example 1.1. A database Products contains a relation Shirts
with attributes product_id , product_title , product_description,
product_imaдe , product_price , color andmaterial . This relation
contains a list of shirts sold on an e-commerce website. While the

product title and description are provided by the seller, its color

and material are usually missing and should be automatically

extracted from the title, description or image using ML classifiers.

Assume a customer performs a keyword-based search for orange

cotton shirts, which translates into the following SQL query via

NLP-based methods
1
:

SELECT * FROM Shirts
WHERE `color` = 'Orange'
AND `material` = 'Cotton';

Providing an answer to such queries, should rely on correctly

enriched color and material attributes values for every product.

Toward this end, one may train various classifiers with respect

to suitable labeled data. Classifiers shall be incorporated to an-

swer "Is this product’s color is X and material is Y?". Given that

any classifier needs N labeled examples for training, in order to

answer the query above one can either train two classifiers: one
for detecting orange shirts and one for detecting cotton shirts,

and separately apply them for each product. This requires 2N
labeled examples. Alternatively, one could train a more specific

classifier that detects orange cotton shirts, using only N labeled

examples. Clearly, for this specific case, it is better to choose the

latter. However, given a general list of queries with different val-

ues of colors or materials, minimizing the number of classifiers

may be difficult.

In this paper we propose an algorithm that minimizes the

number of classifiers (labeling tasks) that are sufficient to answer

all queries. We focus on the case of having at most two expres-

sions per query, which is the most common case in e-commerce

search [3]. The extension of our approach tomulti-criteria queries

is discussed in the future work section. We present a dedicated

algorithm based on efficient labeling, that dictates the strategy

for constructing a minimal set of classifiers sufficing to answer

all queries. Our approach not only reduces monetary costs and

latency, but also avoids data redundancy and saves storage space

entailed in the enriched attribute values. The contributions of

this paper can be summarized as follows:

• We formulate the problem of experts labeling effort mini-

mization with respect to a database and a list of queries.

1
This methods involve NER-based solutions and assumed to be given, hence it is

out of the scope of this paper.



Shirts
pr_id pr_title pr_description pr_image pr_price color material

P17892 Linen White 
Shirt

http://… $9.99

P42947 Cotton Shirt 
(White)

White shirt. Made 
from cotton. 

http://… $14.90

P68203 Red Cotton 
Shirt (D&G)

New collection by 
D&G

http://… $50

P31415 Umbro 
Black Shirt

Perfect cotton sport 
shirt by Umbro

http://… $39.99

P86229 Linen Shirt Material: Linen, 
Color: Blue

http://… $25

Figure 1: ‘Shirts’ relation example.

• We propose an algorithm that solves the special (yet highly

common) case of having at most two expressions per query

and provide theoretical analysis of this algorithm.

• We extend the solution to a streaming scenario, where

queries are processed piece-by-piece in a serial fashion,

and provide approximation guarantees for our approach.

• We conduct an experimental evaluation with a real-world

setting, demonstrating the efficiency and effectiveness of

our approach, with respect to the number of annotation

tasks and the additional storage required.

The paper is organized as follows. The next section defines the

model and the problem statement and describes the technical

details of the solution (Section 2). We then present our exper-

imental evaluation (Section 3). Finally, we discuss related and

future work (Sections 4-5).

2 OUR APPROACH
We start by explaining the data model composed of queries and

attributes, followed by the description of the algorithm and its

online fashion variant for the streaming scenario.

2.1 Preliminaries and Model
Data: Our model consists of a database D with relation R, a set

of attributes F occupied with values for all t ∈ R and a set MF
of attributes with missing values for some (or all) t ∈ R. Each of

the attributes has its domain, the set of all possible values per

attribute, i.e., dom(Ai ) = {v1i ,v
2

i , ..., }.

Binary Classifier: Missing attribute values can be discovered

with full certainty by constructing a proper binary classifier based
on labeled data generated by domain experts

2
. Formally, a binary

classifier maps every tuple t ∈ R with its predefined attributes val-

ues to {0, 1}, and can be used for filling holes in missing attribute

values. For example, followed our running example, the prede-

fined attributes F are all the product_∗ attributes (title, image,

price, etc.) while two missing attributes are color andmaterial .
In order to reveal missing values for colors, one can learn binary

classifiers for various colors that indicate whether a tuple t has
the objective color, e.g., Cr ed (t) = 1 if t is red. Figure 1 depicts a
small sample of such relation that contains products from “Shirts”

category. Note that since data is provided by various sellers, the

information is concealed within different patterns, usually semi-

structured or free-text fields. In some cases the relevant missing

values exist only in the title, in other in the description, or in a

combination of both. Hence, extracting the desired attributes is

a difficult task, which needs well-trained classifiers. We assume

that the construction of every classifier is the same. We discuss

how to relax this assumption in Section 5, which is a part of our

ongoing work.

2
A common method of multi-label classification amounts to independently training

one binary classifier for each label [16]. There are other solutions, e.g., reduction

to the multi-class classification problem or adaption methods, which are out of the

scope of this work.

SELECT * FROM `Shirts` WHERE `color` = ‘Red’ AND `material` = ‘Cotton’
SELECT * FROM `Shirts` WHERE `color` = ‘Black’ AND `material` = ‘Cotton’
SELECT * FROM `Shirts` WHERE `color` = ‘White’ AND `material` = ‘Polyester’
SELECT * FROM `Shirts` WHERE `color` = ‘Red’ AND `material` = ‘Linen’
SELECT * FROM `Shirts` WHERE `color` = ‘White’ AND `material` = ‘Linen’

Color Material
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Figure 2: Queries and their graph representation.

Queries: In addition to the information stored in D, there is a

set of queries Q that is used to extract the relevant tuples fromD.

The queries assumed to be only over missing attribute values
3
.

Formally, the query is of the following form:

SELECT * FROM R WHERE `A_1` = 'v_1_j1' AND
`A_2` = 'v_2_j2' AND ... AND `A_n` = 'v_n_jn';

We denote the queries that specify all the attributes fromMA as

full queries, while the queries that specify only subset ofMA as

partial queries.
Query Expressiveness: We assume that queries may specify

up to two equality expressions over a set of missing attributes

valuesMF . While this sounds limiting, having one or two tokens

is the most common case both in e-commerce [3] and general pur-

pose search engines [7]. Extending our solution to multi-criteria

queries is a part of the open problems and ongoing effort dis-

cussed in Section 5.

Graph Model: We represent the set of queries in an undirected

graphG = (V ,E), where the verticesV are the values that appear

in the queries (unique per attribute) and the edges E correspond

to the queries such that if a query clause consists of two equality

expressions with values v
j
1
and vl

2
of attributes A1 and A2, resp.,

we construct an edge between their corresponding nodes in the

graph. To support partial queries with one equality expression,

we use self edges on the corresponding node. Figure 2 illustrates

the set of unique queries and their corresponding graph repre-

sentation. The graph consists of 6 nodes, 3 unique value per each

of the attributes and 5 edges (the number of queries). Note that

the graph is not necessarily connected. For example, removing in

the mentioned example the “white linen shirt” query, splits the

graph into two separate connected components. In addition, the

provided example has no self-loops since all queries have two

expressions. Adding a query such as:

SELECT * FROM `Shirts` WHERE `color` = ‘Black’;

generates a self-loop in the graph (“B” node).

2.2 The Algorithm
We start by presenting the offline algorithm assuming the set of

queries is given as a whole. We extend our solution to support

streaming fashion in the next subsection. Considering the general

case, the algorithm should determine the set of suitable binary

classifiers: either a query-oriented classifier corresponding to spe-

cific query (denoted by “label the edges”) or a predicate-oriented
classifier corresponding to single attribute value (denoted by “la-

bel the nodes”). The goal is to minimize the number of classifiers

that are sufficient to answer all queries. Note that in order to

answer all queries, our algorithm must determine which edges

and nodes to assign a classifier.

Assuming a relation R and a set of queries Q. The algorithm

first constructs a graph representation of the queries, as described

3
Clauses that involve F attributes can be filtered without any classification.



in previous section. For every connected component C in the

graph, the algorithm determines whether labeling edges or nodes

(in accordance with query-oriented and predicate-oriented clas-

sifiers, resp.) by calculating |EC | and |VC |. If |EC | ≥ |VC |, the
algorithm labels nodes

4
and edges otherwise. Since we focus

on connected components, the number of edges |EC | is at least
|VC | − 1. Therefore, the algorithm labels edges if and only if

|EC | = |VC | − 1, i.e., if the connected component is a tree.

Lemma 2.1. Given a relation R and a set of queries Q with
a corresponding graph G = (V ,E), the algorithm minimizes the
number of classifiers that are sufficient to answer all queries.

Proof. Since connected components are independent, it suf-

fices to prove correctness with respect to a single connected

component C . Assume that there is a better solution with a

set of classifiers T , |T | < min(|EC |, |VC |). If C is a tree with

|EC | = |VC | − 1 < |VC | then there is an edge (vqi ,vqj ) with
no query-oriented classifier from T and at least one of vqi or
vqj does not have a predicate-oriented classifier in T . Thus, the
query corresponds to this edge is insoluble. On the other hand, let

|VC | ≤ |EC |, then some vqi does not have a predicate-oriented
classifier in T , thus all (vqi ,u) ∈ E must have query-oriented

classifiers, d = |(vqi ,u) ∈ E |. Since a query-oriented classifier

matches a single edge, the number of edges is reduced by d while

the number of nodes is reduced by at most d , since otherwise
vqi and its neighbours form a tree. Thus, applying these query-

oriented classifiers induces a sub-graph C ′ ⊂ C with at least

|V |−d nodes and |E |−d edges. Sincemin(|V |−d, |E |−d) > |T |−d
it follows, by induction, that the set of classifiers is insufficient

to answer all queries. □

Corollary 2.2. Let q be a partial query, vq its corresponding
vertex and Cvq the connected component containing vq , then the
set of classifiers derived by labeling all nodes in Cvq is a minimal
set that suffices to answer all queries projected to Cvq .

Proof. Since partial query with one attribute corresponds to

a self-loop in a graph, a cycle is created. Therefore, the connected

component is not a tree and its nodes should be labeled. □

2.3 Online Algorithm
We now assume that the queries arrive in a streaming manner,

i.e., piece-by-piece in a serial fashion, and the algorithm makes a

decision based on limited information.

The practical motivation for this setting is the common sce-

nario where the already existing classifiers are not sufficient to

provide accurate answers to users’ query, thus a deficient result

is retrieved based on a simple full-text query against a text index.

to improve for future times where such a query will be issued,

suitable labeling tasks are generated.

Here again we assume a relation R and a set of queries Q

arriving in a streaming manner, one at a time, and our algorithm

makes labeling decisions thatmay later turn out to be sub-optimal.

Our algorithm initializes an empty graph and for every query q
being processed, it updates (or creates) the connect component

Cq with the corresponding edge and nodes. Similar to the offline

version, it labels the new edge if Cq is a tree, and the nodes o/w.

Lemma 2.3. Given a query q being processed from a stream of
queries, vq its corresponding vertex and Cvq the connected compo-
nent containing vq . If the algorithm decides to label the node vq ,
the optimal strategy henceforth w.r.t to Cvq is labeling nodes.
4
This decision has no effect in the offline case, but helps in the streaming scenario.
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Figure 3: Worst case analysis of "label the edges" strategy.
Proof. Given a query q with vertexvq within connected com-

ponentC . Assume that |EC | ≥ |VC | for the first time immediately

after updating the graph, and the algorithm decides to label vq .
Now, since every processed query q′ with v ′

q in C contributes

at most one vertex and at least one edge to C , it follows that
|EC | − |VC | can only increase and |EC | ≥ |VC | holds. □

For every connected componentC , we refer to the point when
C abandoned its tree structure, as the swapping point, since our
strategy swapped from label edges to label nodes.

Relative Bounds Analysis: First, as proven in Lemma 2.3, once

we have swapped strategy from labeling edges to labeling nodes,

the optimal strategy is labeling nodes henceforth. Thus, our error

derives in between those states, if exist. Till the swapping point

|VC | − 1 edge classifiers were generated and in the worst case,

each one of them turns out to be redundant. On the other hand,

since every solution must contain at least |VC | − 1 classifiers, our

approximation ratio is at most 2.

We now illustrate two unfortunate cases. In Figure 3a there are

|E | connected components, each consists of two nodes and one

edge. Figure 3b makes the original strategy sub-optimal, where

each connected component has one redundant edge classifier.

In this case, the ratio is (n + 2n)/(2n) = 3/2. Figures 3c and 3d

present the worst case scenario where the graph is a tree till the

swapping point. Therefore, the approximation ratio in the case is

(|VC | − 1 + |VC |)/|VC | = 2 − 1/|VC |, demonstrating we can make

the relative error as close as we like to 2.

3 EXPERIMENTAL EVALUATION
3.1 Experimental setup
Competitors: To evaluate our approach we implemented our

algorithm and its three natural competitors. Given a query graph:

• Predicate-Oriented - Regardless of any relationships

among the queries, the algorithm always labels nodes.

• Query-Oriented - Regardless of any relationships among

the queries, the algorithm always labels edges.

• Random - The algorithm randomly decides whether to

label nodes or edges, till it has sufficient information to

answer all queries.

Dataset: The dataset contains a real-world public dataset taken

from BestBuy with around 1000 search queries over the electron-

ics domain [1]. Each query is written in a structured format, e.g.,

the query "LG TV" is represented as {“Brand” : “LG”, “Cateдory” :
“TV ”}), which allows a straightforward execution of our experi-

ment. The dataset contains 7 different attributes (Category,Model,

Brand, ScreenSize, Price, Storage, RAM) with 97% of the queries

specify up to 3 attributes: Category, Model, Brand. Out of this

subset, around 95% of the queries are of length one or two (66.5%

and 29.2% respectively), which corresponds to our assumption on

the number of attributes in the e-commerce search queries being

small. Interestingly, the longest query in the dataset contains

only four attributes (Category, Brand, Model, ScreenSize).
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Figure 4: Experimental results.

3.2 Evaluation results
We evaluate our algorithm and its competitors with respect to

two configurations: offline and online. Considering the offline

configuration, we first execute the algorithms against two types

of sets: (i) the full set of relevant queries (that contain one or

two expressions), and (ii) randomly selected subsets of varying

sizes (200, 400, 600, 800). Considering the online configuration,

we simulate random arrivals of successive queries from a stream

of queries, and measure the number of classifiers generated by

every competitor. Furthermore, we evaluate a micro-batching
approach, where each iteration is executed with respect to a win-

dow of queries with varying sizes (5, 10, 20, 50).

Offline Evaluation: Results are depicted in Figure 4a. As ex-

pected, our algorithm outperforms the competitors and reduces

the number of classifiers as the dataset size increases. Observe

that the query-oriented algorithm is constantly superior to the

predicate-oriented algorithm. In general, the predicate-oriented

algorithm performs better when there is a small set of attributes

which covers multiple queries. On the other hand, for queries

that do not share many attributes the query-oriented algorithm

performs better. Since our algorithm decides the best strategy per

connected component, it outperforms both competitors. While

reducing “only” 5%, it may save hundreds of thousands of dollars

annually in workers cost [2] and terabytes of storage (entailed in

the labeled data and the additional attributes in the relation).

Streaming Scenario Evaluation: Results are depicted in Fig-

ure 4b. We can see that even in small micro-batches of size 5,

our algorithm outperforms all competitors, and significantly sur-

passes the competitors for larger windows. Observe that only in

the extreme case of completely online scenario it is sub-optimal.

Queries Dispersion Evaluation: In this set of experiment, we

examine the effect of attributes overlapping between queries on

the number of labeling tasks. To examine it, we fix the size of the

graph with n nodes and vary its density by increasing the size of

connected components, from 2 to n, which corresponds to the

queries dispersion. Figure 4c depicts the results for our algorithm

and its two deterministic competitors: predicate-oriented and

query-oriented algorithms. First, we can see that our algorithm

is consistently superior with comparable competitors in the two

extreme cases. In between those cases, our algorithm beats the

competitors by large margins and when |E | = |V |, it conducts

approximately two times less labeling tasks.

4 RELATEDWORK
In recent years, crowd workers and human experts are widely

employed with various tasks to amend the performance of su-

pervised ML models, e.g., contributing to feature selection [13],

learning of semantic attributes [18] and others. Several systems

propose hybrid mechanisms [5, 14, 17] that interweave humans

and machines. One family of algorithms focus on reducing the

error of crowd annotators [4, 8], e.g., combining crowd and ma-

chines for multi-predicate classification tasks [11]. In contrast

to the probabilistic models employed in these algorithms, they

are less suitable for the experts-based setting. To the best of our

knowledge, this is the first attempt that aim at minimizing the

effort of experts in annotation tasks and the required storage en-

tailed by obtaining classifiers sufficing to answer a set of queries.

5 FUTUREWORK
The most intriguing direction is extending our approach to sup-

port longer queries, which is our main ongoing process. Simply

extending our graph representation to queries with multiple

equality expressions results in a hypergraph representation, thus

other approaches might be more suitable. In addition, supporting

general weights for various classification tasks, is interesting.

Finally, extending our evaluation to additional datasets with dif-

ferent types of queries is a part of our future work.
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