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ABSTRACT
Popular techniques for data cleaning use integrity constraints to
identify errors in the data and to automatically resolve them, e.g.
by using predefined priorities among possible updates and finding
a minimal repair that will resolve violations. Such automatic solu-
tions however cannot ensure precision of the repairs since they do
not have enough evidence about the actual errors and may in fact
lead to wrong results with respect to the ground truth. It has thus
been suggested to use domain experts to examine the potential
updates and choose which should be applied to the database.

However, the sheer volume of the databases and the large num-
ber of possible updates that may resolve a given constraint viola-
tion, may make such a manual examination prohibitory expensive.
The goal of the DANCE system presented here is to help to opti-
mize the experts work and reduce as much as possible the number
of questions (updates verification) they need to address. Given
a constraint violation, our algorithm identifies the suspicious tu-
ples whose update may contribute (directly or indirectly) to the
constraint resolution, as well as the possible dependencies among
them. Using this information it builds a graph whose nodes are the
suspicious tuples and whose weighted edges capture the likelihood
of an error in one tuple to occur and affect the other. Page-rank
style algorithm then allows us to identify the most beneficial tu-
ples to ask about first. Incremental graph maintenance is used to
assure interactive response time. We implemented our solution
in the DANCE system and show its effectiveness and efficiency
through a comprehensive suite of experiments.

1 INTRODUCTION
Data cleaning is a long-standing problem that has attracted much
research interest in the past years in the databases community.
Many key business decisions are made based on underlying databases.
Yet, real-life databases sometimes contain incomplete, wrong or
inconsistent data, that may lead to incorrect output and bad deci-
sion making. Consequently, much effort has been targeted to the
development of techniques to clean the underlying data.

Popular techniques for data cleaning use data-integrity and con-
sistency rules to identify errors in the data and to automatically
resolve them, e.g. by finding a minimal repair that will resolve
the constraints violation [35], or by using predefined priorities
among possible resolutions [21]. Such automatic solutions, how-
ever, cannot ensure the precision of the repairs since they do not
have enough evidence about the actual errors and thus may, in fact,
lead to wrong results with respect to the ground truth. In order
to overcome the limitations of such automatic techniques it has
been suggested to use domain experts that have extensive knowl-
edge about the ground truth, to examine the potential updates and
choose which should be applied to the database [9, 21, 32, 36].
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However, the sheer volume of the databases and the large number
of possible updates that may resolve a given constraint violation,
may make such a manual examination prohibitory expensive. The
goal of the DANCE system presented here is to help to optimize
the experts’ work and reduce as much as possible the number
of questions (updates verification) they need to address. As we
will describe, our algorithms effectively prune the search space
to minimize the amount of interaction with the experts while, at
the same time, tries to maximize the potential “cleaning benefit"
derived from the experts’ answers. DANCE can be used to opti-
mize the initial cleaning of a database as well as to assist in its
ongoing maintenance - whenever a constraint violation is reported,
DANCE can take over to efficiently clean the underlying database
by interacting with the experts.

Given a constraint violation, our algorithm first identifies the
tuples in the database whose update may contribute (directly or
indirectly) to the constraint resolution. We call those suspicious
tuples. Database constraints may be inter-related and thus when
analyzing a constraint violation these relationships must be taken
into consideration. To determine which tuples should be consid-
ered first, we examine for each suspicious tuple t (1) the potential
effects of updates to t , namely what tuples may potentially become
unsuspicious if t is found to be incorrect and correspondingly
updated/removed, (2) the number of potential updates (attribute
errors) to t that may lead to such an effect, and (3) the uncertainty,
if known, for the values in the database relation to which t belongs.
Using this information we build a graph whose nodes are the sus-
picious tuples and whose weighted edges capture the likelihood
of an error in one tuple to occur and affect the other. Page-rank
style algorithm is then used to identify the most beneficial tuples
to ask about first.

Example 1.1. To illustrate let us consider the following sim-
ple example. The database in Figure 1 shows a portion of UEFA
Champions League 2016/17 statistics database. The dark gray
rows represent wrong tuples and lightgray rows represent miss-
ing tuples. The Games relation describes the results of a match
between two teams, it stores the team’s name, goals score and the
stage. The Teams relation describes a football team, it stores the
team name and country. The Countries relation describes the name
of the country and number of teams that advanced to the group
stage. We consider in our work integrity constraints described by
standard tuple-generating and condition-generating dependencies
[18]. The following two integrity constraints are relevant to this
database: (i) two teams from the same country cannot play against
each other on a group stage, and (ii) if a country has at least one
representative, its team must appear in the teams table. These are
captured by the following constraints.

• Games(x1,x2,x3,x4,x5) ∧ x5 = ”GroupStaдe”∧
Teams(x1,y1) ∧Teams(x2,y2) → y1 , y2
• Countries(x1,x2) ∧ x2 > 0→ Teams(y1,x1)

We assume that all the given constraints are correct and reflect the
ground truth. In our running example, the constraints are derived
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team1 team2 goals1 goals2 stage
Celtic Manchester City 3 3 Group Stage

Celtic Barcelona 0 3 Group Stage

Celtic Hapoel Beer Sheva 5 2 Qualification

Celtic Astana 2 1 Qualification

Celtic Lincoln Red Imps 3 0 Qualification

name country
Celtic UK

Manchester City UK 

Hapoel Beer Sheva Israel

CSKA Moscow Russia

Astana Kazakhstan

name num_teams
Israel 1

Russia 2

UK 5 

England 4

Scotland 1

Games

Teams Countries

Figure 1: Sample of UEFA Champions League DB

from UEFA official regulation. Since the database is aggregated
from multiple sources it contains mistakes and violates some of
the constraints. One can notice for instance that the database mis-
takenly associates both the Celtic and the Manchester City football
clubs to the United Kingdom. However, despite the fact that Celtic
and Manchester City are actually located in the United Kingdom
they belong to distinct federations (that represent Scotland and
England separately), hence can play against each other.

When applying the integrity constraints to the database, we
discover several inconsistencies. Each such inconsistency involves
several tuples that when assigned together to the atoms in the
body of the constraint yielded a constraint violation. For exam-
ple, a violation of the first constraint involves a set of three tuples:
Games(Celtic, Manchester City, 3, 3, Group Stage), Teams(Manchester
City, UK), Teams(Celtic, UK), whose existence in the database
lead to the violation. Intuitively, each of the tuples is suspicious
and at least one is wrong and needs to be updated/deleted (other-
wise the constraint is incorrect which we assume is not the case).
Also note that since the two constraints are inter-related, when a
given tuple is suspicious other tuples become suspicious as well.
Consider for example the second constraint, that requires that for
each country in the Countries relation with a positive number of
teams, there must be at least one team in Teams relation from
this country. Relation Countries contains the tuple (UK, 5), which
enforces the existence of teams from United Kingdom. Since the
Teams(Celtic, UK) and Teams(Manchester City, UK) tuples are
suspicious (and may generally both be wrong), we may suspect
also the tuple Countries(UK, 5).

Which of these four suspicious tuples is more beneficial to
consult about first with the expert? To determine this we build a
directed graph whose nodes are the suspicious tuples and whose
(weighted) edges capture the dependency between the suspicious
tuples. Let β be the uncertainty of the values in the relation R to
which a tuple t belongs to where β is between 0 (all the values are
valid) and 1 (all the values are wrong). Intuitively, there is an edge
from tuple s to t with a weight n × β if there are n attributes in
t that one can change in order to eliminate at least one violating
assignment that involves s. For example, data from official UEFA
website will get a β close to 0 while user-generated content in
the other relations should get much more We use 0.5 as a default
value. The graph for the four tuples that we obtain is depicted in
Figure 2 (ignore for now the number labels on the nodes).
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T1 = Teams(Celtic, UK)
T2 = Teams(Manchester City, UK)
G = Games(Celtic, M. City, 3, 3, Gr. St.)
C = Countries(UK, 5) 

βTeams= 0.5, β Games= 0.9, β Countries= 0.5

Number of attributes for fix:
Rule #1: T1=2(all), T2=2(all), 

G=3 (Celtic, M.City, Gr. St.)
Rule #2: T1=1(UK), T2=1(UK), C=2(all)

Figure 2: Suspicious tuples graph

To decide which tuple to verify first, we process the graph
using a PageRank-style [11] algorithm, to rank the nodes, and ask
the experts about the nodes with the highest rank. Intuitively, to
minimize the number of questions, we would like to catch early
errors whose correction may have the largest effect. When answers
are gathered, the database is updated accordingly, and incremental
computation is applied to update the graph and identify the next
candidates. The resulting ranks for our running examples are
depicted on the nodes, and so we will ask about C (which is
indeed incorrect and will be removed, instead (England, 4) and
(Scotland, 1) will be inserted by the expert),T 1 (incorrect, updated
to (Celtic, Scotland)) and T 2 (incorrect, updated to (Manchester
City, England)). G is then no longer suspicious and no constraint
is violated.

Data cleaning with the help of experts has been previously
considered in [9] where the goal was to update the database for
eliminating incorrect query answers. The problem studies there
is simpler because it does not consider transitive dependencies
as the ones entailed by constraints. While [9] notes that further
optimization could have been achieved by using the available
database constants, this path is not followed there. Interestingly,
our experiments show that, even in the absence of constraints,
when applied to the same problem the algorithm presented here
achieves superior performance compared to [9], since it better
factors the dependencies between suspicious tuples.

A first prototype of DANCE was demonstrated in [8]. The short
paper accompanying the demonstration gave only a high level
overview of the system’s capabilities and user interface whereas
the present paper provides a detailed description of the model and
the algorithms underlying the solution.

Our contributions can be summarized as follows.

(1) We formulate and present a constraints based framework
for data cleaning with experts. Under this framework, the
database is updated by (minimally) interacting with domain
experts in order to fix the violations of the constraints.
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(2) To address this problem we focus on a suspicious tuples
group of tuples, that are the potential cause of the con-
straints violation, which we infer by analyzing the available
data and constraints.

(3) We present an effective algorithm that, using the suspicious
tuples and the inferred dependencies among them, builds a
weighted graph that captures the potential “cleaning ben-
efit" that a correction/verification to one suspicious tuple
may yield to its neighbors. Page-rank style ranking, applied
to the graph, determines the order of questions issued to
the experts. Incremental computation is applied to main-
tain the graph as experts answers are gathered and further
knowledge about the ground truth accumulates.

(4) We further show that our solution can be applied to repair
database errors signaled through the identification of wrong
query answers. This allows to compare DANCE to previous
work in this context such as [9].

(5) We have implemented our solution in the DANCE proto-
type system and applied it to real use cases, demonstrating
the efficiency of our constraints-based approach using do-
main experts. We performed experimental evaluations on
real datasets showing how our algorithms consistently out-
perform alternative baseline algorithms, and effectively
clean the data while asking fewer questions.

Outline of paper. Section 2 provides the basic definition and
formalisms. The graph construction is explained in Section 3 and
its incremental maintenance is described in Sections 4. Section 6
explains how the same principles may be used not only to correct
constraints violation but also to handle errors identified in query
answers. The implementation of DANCE prototype system, as
well as experimental results, are described in Section 7. Related
work is in Section 8, and we conclude in Section 9.

2 PRELIMINARIES
We start formalizing the database, the types of questions that may
be posed to experts in order to clean it, and the supported integrity
constraints. We will then define the set of suspicious tuples over
which the cleaning algorithm is applied.

2.1 Basic definitions
Database We assume a relational schema S to be a finite set
{R1, ...,Rm } of relational symbols, each with a fixed arity. A data-
base instance D of S is a set {RD1 , ...,R

D
m }, where RDi is a finite

relation of the same arity as Ri . We use Ri to denote both the
relation symbol and the relation RDi that interprets it. We refer to
a tuple t of a relation R or fact R(t) interchangeably.
LetV be a fixed set of variables and C be a fixed set of constants
called the underlying vocabulary. Under the open world assump-
tion, a fact that is in D is true and a fact that is not in D can be true
or false. To model real-world data, we adopt the truly open world
assumption where a fact that is in D can also be true or false, in
addition to the assumption that a fact that is not in D can be true or
false. In other words, we assume that a given database can contain
mistakes, in addition to being incomplete. The truth of a tuple is
given by the ground truth database DG that contains all true tuples
and only them. Hence, a database D is dirty w.r.t. DG if D , DG .

Questions to the Expert We assume, for simplicity of presen-
tation, that there is a domain expert that has an extensive knowl-
edge about the ground truth database DG . (Otherwise, multiple

experts may be consulted and standard techniques [29] may be ap-
plied to aggregate multiple answers to the same question.) In each
question to the expert, the system can ask two types of questions.
• The first type is an update question, where the expert is

asked to examine and possibly update a database tuple t ,
denoted by q = Update(t). The answer of an update ques-
tion can be one of the following options:
– t is correct as is, denoted by Answer (q) = true, which
means that t ∈ DG .
– t is wrong and should be deleted, denoted byAnswer (q) =
f alse, which means that t < DG .
– Update the tuple t with another tuple t ′, denoted by
Answer (q) = t ′, which means that t < DG but t ′ ∈ DG .
• The second type is a fill question. During the operation of

DANCE, the system can decide (e.g. based on a constraint)
that a new tuple should be added to the database. While
adding it, DANCE may fill some of the fields automatically
and ask the expert to complete the rest. The missing values
may be required to satisfy a given constraint, for example,
q = Fill(R(val1,val2,missinд))where missinд > 20.

Constraints The integrity constraints in DANCE are database
assertions that are given as a part of the schema or added to the sys-
tem at run time. We consider in our work constraints similar to the
standard tuple-generating and equality-generating dependencies
[6].

Specifically, the first type of constraints that we consider here
are tuple-generating constraints (tgcs) in the spirit of the tuple-
generating dependencies with arithmetic comparisons of [6]. These
are a first order logic formulas of the form:
∀x1, ...,xnφ(x1, ...,xn ) → ∃z1, ..., zmR(x1, ...,xn , z1, ..., zm )

where the left hand side (LHS) of the implication, φ, is a con-
junction of relational atoms over the quantified variables and
conditions. A condition is a boolean expression of the form v opw
wherev,w are quantified variables or constants and op is a boolean
operation defined on the variables’ domain. For example, if v and
w value are numbers then op ∈ {=,,, ≤, ≥, >, <}. The right hand
side (RHS) contains only one relational atom. Intuitively, given
a particular combination of tuples satisfying the constraint of the
LHS, tgcs expresses an assertion about the existence of a tuple in
the instance on the RHS.
The second type of constraints is condition-generating constraints
(cgcs). They have the same form as tgcs but the RHS is a conjunc-
tion of conditions, and are defined as the arithmetic-comparison-
generating dependencies of [6]. Both tgcs and cgcs have a “safety"
restriction i.e. all LHS variables should appear in relational atom.

Example 2.1. Consider the database in Figure 1 and the con-
straints from Example 1.1.
• Games(x1,x2,x3,x4,x5) ∧ x5 = ”GroupStaдe”∧
Teams(x1,y1) ∧Teams(x2,y2) → y1 , y2
• Countries(x1,x2) ∧ x2 > 0→ Teams(y1,x1)

The first constraint is a cgc and the second is a tgc.

Assignments and constraints satisfaction Let Var (φ) be the
variables that appear in the constraintφ. An assignmentv:Var (φ) →
C for a constraint φ is a mapping from the constraint variables
to constants. We denote by Assiдn(φ) all the assignments for the
constraint φ. An assignment v satisfies a relational atom R(x̄) if
and only if R(v(x̄)) ∈ D, denoted by v �D R(x̄). In a similar way
an assignmentv satisfies a constraint φ → ψ if and only ifv 2D φ
or v �D φ and v �D ψ , denoted by v �D φ → ψ .
By the definition,v 2D φ → ψ if and only ifv �D φ andv 2D ψ .
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We say that a database D satisfies a constraint φ if and only if, for
all assignment v ∈ Assiдn(φ) it holds that v �D φ.

Remark. Let φ be a constraint and A1,. . . , An be the relational
atoms in φ. By the constraints definition, each variable x in φ can
be assigned to any attribute in any relational atom, for example, in
the second constraint from Example 2.1, the variable x1 is assigned
to the attribute name in the relational atom Countries(x1,x2) and
to the attribute country in the relational atom Teams(y1,x1). To
simplify the exposition, in the rest of this paper we assume that, in
each constraint, it holds that each variable could be assigned to at
most one relational atom attribute. For example, the first constraint
in Example 2.1 satisfies our assumption. This assumption is not
restrictive because each constraint can be easily converted to a
logically equivalent constraint that satisfies the requirement by
duplicating each variable that is mapped to more than one attribute
and adding suitable equality conditions of the variable duplicates.
For example, the second constraint from Example 2.1 can be
converted to the constraint:

Countries(x1,x2) ∧ x2 > 0 ∧ x1 = x1′ → Teams(y1,x1′)

2.2 Suspicious tuples
In our context, the cleaning process is triggered when the given set
of constraints is not satisfied. Note that the constraints are satisfied
by the ground truth database DG but violated by the dirty database
D. To clean D, we identify the suspicious tuples that may be
(directly or transitively) the cause of the problem. Some auxiliary
definitions are useful here. We first define the notion of violation
set - a set of tuples that is a direct cause of a constraint violation.
Namely, when assigned together to atoms of the constraint they
cause its violation. Next, we define the notion of a Proof tuples -
the tuples that (through the same or other constraints) assert the
existence of some violating sets members. The suspicious tuples
are then the union of the violation and proof tuples.

Violation sets Intuitively, we define a violation set of a con-
straint φ in a database D as a minimal set of tuples in D that
implies ∃v s.t. v 2D φ, denoted by Vio(φ,D).
The formal definition depends on the constraint type (cgc or tgc):

• Cgc: Letφ : ∀x̄A1∧...∧Ak∧C1∧...∧Cj → ∃z̄Cj+1∧...∧Ct
be a cgc where Ai is a relational atom andCi is a constraint.
Then {t1, ..., tk } ∈ Vio(φ,D) if and only if exists an assign-
ment v s.t. v 2D φ and ∀1 ≤ i ≤ k : ti = Ai (v(x̄)).
In other words,Vio(φ,D) contains all sets of tuples {t1, ..., tk }
that caused the database D to violate the constraint φ.
• Tgc: Let φ : ∀x̄A1 ∧ ... ∧Ak ∧C1 ∧ ... ∧Cj → ∃z̄R(x̄ , z̄)

be a tgc where Ai is a relational atom andCi is a constraint.
Then {t1, ..., tk , t̃} ∈ Vio(φ,D) if and only if exists an as-
signment v s.t. v 2D φ and ∀1 ≤ i ≤ k : ti = Ai (v(x̄)) and
t̃ is the RHS that is not satisfied. In t̃ the bounded variables
of the RHS are replaced with a wildcard “*” which repre-
sents an unknown value, as the value is not defined by the
assignment v(x̄).

In other words, each tuples setT ∈ Vio(φ,D) is a set of tuples that
caused the database D to violate the constraint φ. In case that φ
is a tgc, T may also contain a tuple template that may be missing
from D.
Therefore, each T ∈ Vio(φ,D) must contain at least one tuple that
is wrong or its last tuple may be missing from the database, other-
wise, the constraint is invalid and this contradicts our assumption

about the constraints correctness.

For a set of constraints, the violation sets are the union of the
violation sets of the individual constraints.

Vio(f ,D) =
⋃
φ ∈f

Vio(φ,D)

Example 2.2. Consider the database and the constraints from
Example 1.1. The first constraint represents the constraint: two
teams from the same country cannot play against each other on
a group stage. Therefore, according to the Games and Teams
table, the set of tuples { Games(Celtic, M. City, 3, 3, Group Stage),
Teams(Celtic, UK), Teams(M. City, UK)} is a violation. The second
constraint represents the constraint: if a country has at least one
representative, its team must appear in the teams’ table. Therefore,
the set of tuples { Countries(Israel, 1), Teams(*, Israel)} is also a
violation, because Israel has no representatives in the Teams table.

Proof tuples To determine which tuples (transitively) assert
the existence of tuples in the violation sets, we examine each
individual attribute and identify the tuples that assert its value. We
call these set of tuples tuple-value proof.
Tuple Values Proof Let t = (v1, ...,vn ) be a tuple of the relation R

in D with arity n, let V = (vi1 , ...,vim ) be a sub-tuple of the tuple
t and let φ = ∀x̄A1 ∧ ... ∧ Ak ∧C1 ∧ ... ∧Cj → ∃z̄R be a tuple
generating constraint, where Ai and R are relational atoms and
Ci is a condition. Intuitively, a set of tuples {t1, ..., tk } “proves”
the validity of the values of V in t if by using only φ and the
assumption that the tuples {t1, ..., tk } are valid we can conclude
that the values of V in t are also valid. Formally, we say that
{t1, ..., tk } proves the values of V in t via φ if and only if exists
an assignment v(x̄ , z̄) s.t. :

(1) v �D φ
(2) ∀1 ≤ i ≤ k ti = Ai (v(x̄))
(3) t = R(v(x̄ , z̄))
(4) All the values in V are mapped by the assignment v to a

variable quantified within the head of the constraint φ.
We denote the proofs of the values of V in t via φ by the set
ValProo f (φ, t ,V ).

Example 2.3. Consider the database in Figure 1 and let φ2 be
the second constraint from Example 2.1. Let V = (UK) and t=
Teams(Celtic, UK). It holds that the set of tuples {Countries(UK,
5)} ∈ ValProo f (φ2, t ,V ). Because the tuple Countries(UK, 5)
implies the existence of the value UK in t . Observe, ifV = (Celtic)
then ValProof(φ2, t, V)=∅ because the value Celtic in t is mapped
to the variable y1 which is not quantified within the head of φ2.

Relevant proofs Note however that not all attribute values (and
their proofs) are suspicious.

First, as we interact with the expert, some attribute values may
be verified to be correct. This happens when the expert asserts,
as an answer to an update question, that the full tuple is correct,
or when she fills in herself the values as an answer to a fill ques-
tion. For a tuple t in D, we denote by VVal(D, t) its validated
attribute values. We will not include them (and their proofs) in the
suspicious set.

Second, not all the attributes of the violation tuples contribute
to the violation. For a constraint φ, we call the variables that
appear in a conditional atom constraint conditioned variables
and denote the set of such variables CVars(φ). We call the values
assigned to the conditional variables the conditional values. One
may notice that, if there is a violation T ∈ Vio(φ,D) then the
assignment v that caused the violation satisfies the body of φ
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and dissatisfy the head and changing the assignment of the non-
conditioned variables will not change the dissatisfaction of the
head, because, in case φ is a cgc, the head of φ contains only
conditional atoms and they contain only conditional variables and
in case φ is a tgc, all the variables in the relational atom of the
head are conditional variables that defined in the body1. As a
result, in order to resolve the violation T , the expert must perform
one of the three following actions: (i) remove at least one of the
tuples inT that is responsible for the satisfaction of the constraint’s
body, (ii) insert a tuple which completes the incomplete tuple of
T (in case φ is a tgc) or (iii) update the conditional values of T .
Consequently we are interested only in proofs that assert these
conditional values (values that assigned to conditional variables).

Example 2.4. Let φ1 be the first constraint from Example 2.1.
Consider the assignment v(x1,x2,x3,x4,x5,y1,y2)= (Celtic, M.
City, 3, 3, Group Stage, UK, UK), it holds that x3,x4 < CVars(φ1).
Hence changing the value of x3 or x4 will not resolve the violation.

In summary, for a tuple t and a constraint φ,we are interested
only in tuple value proofs of its conditional attributes whose value
has not been verified yet. We denote these by Proo f (t ,φ) and
define them formally as follows:

Proo f (t ,φ) = {P ∈ ValProo f (φ, t ,V ) | V ⊂ t[CVars(φ)]\VVal(D, t)}

where t[CVars(φ)] are the values of the conditional attributes in t .
Note that when the all the conditional values of a tuple t are

validated, it holds that, t may no longer be responsible for the
dissatisfaction of φ in the database D, in which case t[CVars(φ)] \
VVal(D, t) = ∅ and Proo f (t ,φ) = ∅.

Suspicious tuples We are now ready to define the set of suspicious
tuples. First we close transitively the set of tuple value proofs,
considering the proofs of previously identified tuples. For that
we define the proofs of a database D via a set of constraints f as
follows:

• Proo f s0(f ,D) =
⋃
φ ∈f

Vio(φ,D), the proofs calculation starts

from the violations
• Let Si−1 =

⋃
Proo f si−1(f ,D) then,

Proo f si (f ,D) =
⋃
φ ∈f
[

⋃
t ∈S i−1

Proo f (t ,φ)]

Note that by Proo f (t ,φ) definition, we use ValProo f to
calculate it. Then we use it to execute a step of Proo f s
recursion.
• Proo f s(f ,D) =

⋃
i ∈N

Proo f si (f ,D)

Observe that the proofs of a database D can be computed in a
polynomial time using a fixpoint-based recursive algorithm.

For a database D and a set f of constraints, the set of suspicious
tuples includes all the tuples in the proofs, excluding those who has
already been verified by the expert (through update questions). We
denote the set validated tuples byValidated(f ,D). The suspicious
tuple are then

Susp(f ,D) =
⋃

P ∈Proof s(f ,D)

P \Validated(f ,D)

Note that the violation sets are included in the suspicious tu-
ples because they are included in the formal definition of proofs.
1Note that rules such as, e.g., R(a, b) → R(b, a) are not valid in our setting, since
it is assumed (see Section 2.1) that rules are written s.t. in each constraint, every
variable is assigned to at most one relational atom attribute.

Also by the tgcs violation definition, in addition to complete tu-
ples Susp(f ,D) may also contain tuples templates (i.e. tuples that
contain unknown missing value represented by the wildcard “*”.)

3 BUILDING THE TUPLES GRAPH
As we mentioned in the Introduction, to determine which tuples
should be considered first (the next question that will be posed to
the expert), DANCE builds a graph whose nodes are the suspicious
tuples and whose weighted edges capture the likelihood of an error
in one tuple to occur and affect the other. We call this graph the
tuples graph. Page-rank style algorithm is then applied to the
graph to identify the most beneficial tuples to ask about first. For
regular tuples we will ask an update questions q = Update(t),
whereas for tuple templates we will ask a fill question q = Fill(t).

The tuples graph is an edge-weighted directed graphG(V ,E,W )
where V is the set of nodes, E the set of edges andW : E → R is
the weight function. We formally define them below.

3.1 Vertices and edges
The graph vertices V = {vt |t ∈ Susp(f ,D)} are the set of sus-
picious tuples. The graph edges capture the potential effect of
updates to t , namely what tuples may potentially become un-
suspicious if t is found to be incorrect and correspondingly up-
dated/removed. To define this formally we use the following aux-
iliary definition.

More formally, recall that the expert’s answer to the ques-
tion q = Update(t) is interpreted as a database edit eq where
eq could be (i) do nothing, in case that Answer (q) = true, (ii)
delete t , in case that Answer (q) = f alse, or (iii) replace t by t ′,
in case Answer (q) = t ′. We say that a tuple t could cancel a
violation/proof set T if and only if, the answer to the question
Update(t) could potentially generate an edit eq such that, the
tuples set T ′ = T ⊕ eq will not be a violation/proof set.

To illustrate, consider the database and the constraints from
Example 1.1 and the violations from Example 2.2 (which de-
fined the set of tuples {Games(Celtic, M. City, 3, 3, Group Stage),
Teams(Celtic, UK), Teams(M. City, UK)} as a violation set). No-
tice that the tuple t = Teams(Celtic, UK) could cancel the violation
because, if the system asks the expert to update this tuple one
possible (and in fact correct) answer may be t ′=Teams(Celtic,
Scotland). If the system replaces the tuple t by t ′ in D, the set {
Games(Celtic, M. City, 3, 3, Group Stage), Teams(Celtic, Scot-
land), Teams(M. City, UK)} will no longer be a violation set.

Consider two suspicious tuples tsrc , tdst and their correspond-
ing vertices vtsrc , vtdst respectively. We include in E an edge e =
(vtsrc , vtdst ) if and only if the tuple tdst could cancel at least
one proof/violation set T that contains tsrc . Note that from the
definition of proof/violation sets, this happens if and only if tsrc
and tdst both participate in T . Consequently,

e = (vtsrc ,vtdst ) ∈ E
⇐⇒

∃T ∈ Proo f s(f ,D) : vtsrc ,vtdst ∈ T
Note that this in particular means that all edges are bidirectional,

and the tuples graph is a union of a collection of cliques where
each clique is defined by some violation/proof set.

Example 3.1. Consider the database from Example 1.1 and let
φ1, φ2 be the first and the second constraints from Example 2.1
respectively. As we mentioned in Example 2.2, the set of tuples
{Games(Celtic, M. City, 3, 3, Group Stage), Teams(Celtic, UK),
Teams(M. City, UK)} is a violation and by the Proofs definition,
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it holds that, the tuple Countries(UK, 5) is a proof of the tuples
Teams(Celtic, UK) and Teams(M. City, UK) by the constraint φ2.
Therefore, the four tuples Teams(M. City, UK), Teams(Celtic, UK),
Countries(UK, 5) and Games(Celtic, M. City, 3, 3, Group Stage)
are suspicious.
Figure 2 depicts the Tuples Graph of these four suspicious tuples.
The tuples T1, T2 and G are connected to each other because of
the violation {G, T1, T2}. The existence of the proofs {C,T1} and
{C,T2} implies the connection between T1, T2 and C.
The weights on the graph edges will be explained in details in the
next section.

3.2 Edge weights
The edge weights capture the likelihood of an error in one tuple to
occur and to affect the other. We assume that for each relation R
we are given a parameter 0 ≤ β ≤ 1 that describes the uncertainty
of the values in R. (If no such information is available a default
value of 0.5 is used). Intuitively, the weightwe assigned to an edge
e = (vtsrc ,vtdst ) is n × β where β is the uncertainty of the values
in the relation to which tdst belongs, and n is overall number
of attributes in tdst that one can update in order to eliminate a
violation/proof set that involves tsrc and tdst .

Algorithm 1 Calculating the weight of the edge e

1: procedure CalculateEdgeWeight(vtsrc , vtdst , β )
2: V ← {T |T ∈ Proof s(f , D) ∧ tsrc , tdst ∈ T }
3: we ← 0
4: Attrs ← дetCondit ionalAttr ibutes(tdst )
5: foreach T ∈ V do
6: ∆← 0
7: counter ← 0
8: foreach Attri ∈ Attrs do
9: b ← hasCancellationUpdate(Attri , T , tdst )

10: if b == true then
11: counter + +
12: end if
13: end for
14: ∆← counter ∗ β
15: we ← we + ∆
16: end for
17: return we
18: end procedure

This is formalized in Algorithm 1 for calculating we . The input
of the algorithm includes the endpoints of the edgevtsrc andvtdst
and the uncertainty β of the values in the relation to which the tdst
belongs. The variable V is assigned the proofs/violations sets the
include tsrc and tdst . In lines 3 and 4 the weight we is initialized
to 0 and Attrs is assigned to the set of all conditional attributes of
tdst . Then, in line 5, the algorithm iterates over all the relevant
proofs In each such iteration it counts the number of conditional
values in tdst that may be updated in order to cancel T , multiply
this number by the uncertainty measure and adds the result to the
overall weight. To check whether an updated to conditional value
at the attribute Attri may cancel T (line 9), we use the function
hasCancellationUpdate whose implementation is be explained
below.

hasCancellationUpdate The functionhasCancellationUpdate
gets as input (i) an attribute Attr , (ii) a violation/proof set T and
(iii) a tuple t . It then checks whether there is an update to the tuple
t , yielding a tuple t ′ that differs from t at the attribute Attr , s.t.
T \{t}∪{t ′} is no longer a violation/proof set. For that it considers

the constraint φ that is responsible for T being a violation/proof
set. It generates a new constraint φ ′ that captures the desired up-
dates, and tests whether φ ′ is satisfiable. We next explain how φ ′

is defined, then prove that it is satisfiable if and only if a desired
update exists.

We have that T ∈ Vio(φ,D) or T ∈ Proo f s(φ,D) \ Vio(φ,D).
Let us first consider the first case, where T ∈ Vio(φ,D). In this
case, there must be an assignment v, such that v 2D φ and exist
a relational atom Ri (x

t
1 , ...,x

t
k ) in φ where Ri (v(xt1), ...,v(x

t
k )) =

t . Let x ′ ∈ {xt1 , ...,x
t
k } be the variable at the attribute Attr in

the relational atom Ri (x
t
1 , ...,x

t
k ). Observe that, by updating t

by t ′ a new assignment v ′ is generated from v, where ∀x ∈
Var (φ), v(x) , v ′(x) if and only if x = x ′. Also if v ′ �D φ then
updating t by t ′ cancelsT . This is enforced by the constraint φ ′ as
follows. φ ′ contains the conditional atoms of φ with an addition
of a conditional atom for each variable x that appears in φ:
• If x = x ′ then the condition is x , v(x) because we want

an assignment v ′ that differs from v at the variable x’.
• If x , x ′ then the condition is x = v(x).

We can show the following:

CLAIM 3.2. φ ′ is satisfiable iff there is an update to the tuple
t , yielding a tuple t ′ that differs from t at the attribute Attr , s.t.
T \ {t} ∪ {t ′} is no longer a violation/proof set.

PROOF. If φ ′ is satisfiable then there is a satisfying assignment
v ′ for the constraint φ ′, then by φ ′ definition, v ′ satisfies all the
conditional atoms in φ. Also, because v ′ differs from v only at the
variable x ′, v ′ satisfies all the relational atoms in φ. However, v ′

does not satisfy the atom Ri (x
t
1 , ...,x

t
k ), because it is not ensured

that the tuple Ri (v
′(xt1) , ...,v

′(xtk )) exist in the database. But if
we say that Ri (v ′(xt1) , ...,v

′(xtk )) = t ′ then v ′ will satisfy φ if we
update t by t ′. The fact that v ′ �D φ implies that updating t by t ′

will cause the cancellation of T . The other direction of the claim
also holds because if φ ′ is not satisfiable, then each assignment
v ′ doesn’t satisfy at least one of the conditional atoms of φ or it
doesn’t yield a tuple t ′ that differs from t at the attribute Attr . �

The constraint φ ′ is of the formC1 ∧ ...∧Cj → Cj+1 ∧ ...∧Cn
where each Ci is a condition of the form v op w , v and w are
constants or variables and op is an operation on the domain of
v and w . In our implementation we use databases that contain
two data types: reals and strings, and constraints with predicates
{=,,, ≤, ≥, >, <} for reals and {=,,} for strings. To check the sat-
isfiability of constraints over integers we use linear programming
whereas for constraint over strings we have implemented a simple
algorithm that checks whether the given set of string (in)equalities
contain a contradiction. In the general case, this is a constraint
satisfaction problem (CSP) [25] whose complexity depends on
the values domain and the allowed constraints language.

Example 3.3. To illustrate, let φ1 be the first constraint from
Example 2.1 and T = {Games(Celtic,M .City, 3, 3,GroupStaдe),
Teams(Celtic,UK),Teams(M .City,UK)} the violation from Ex-
ample 2.2. In the call hasCancellationUpdate(“country”,T , Teams(Celtic,
UK)) the generated constraint φ ′′ is:

φ ′′ : x1 = Celtic ∧ x2 = M .City ∧ x3 = 3 ∧ x4 = 3 ∧ x5 =
GroupStaдe ∧ y1 , UK ∧ y2 = UK → y1 , y2

The call will return true, because the constraint is satisfiable by
assigning Scotland to y1 and keeping the other values as is.

The case where T ∈ Proo f s(φ,D) \Vio(φ,D) works similarly,
with the difference that now there must be an assignment v, such
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that v �D φ and we are looking for an assignment v ′ that is
generated from v as above but where v ′ 2D φ. It can be solved by
negating the constraint φ ′′ and looking for a satisfying assignment.
This is done by using the algorithms from the first case (when
T ∈ Vio(φ,D)), to check the satisfiability of the negation of φ ′′.

3.3 Node Weights
Finally, to decide which tuple to verify first, we process the graph
using a PageRank-style algorithm [11], to rank the nodes, and ask
the experts about the nodes with the highest rank. Intuitively, the
higher rank for a tuple captures the potential for higher influence
in terms errors (violations) elimination.

To complete our running example, the graph in Figure 2 is the
tuples graph for the suspicious tuple from Example 3.1 . The edge
weights are calculated with β = 0.5 for all relations. For instance,
the weight of the edge from G to T 1 is 1.5 because there are 3
values in G that can be updated in order to cancel the violation
(the values are "ManCity", "Celtic", "Group Stage") and β = 0.5.
The numbers on the graph nodes are their ranks after running our
PageRank algorithm on the graph. The node C has the highest
rank (7.7). Therefore, DANCE will ask the experts to check and
update the tuple C.

4 INCREMENTAL GRAPH MAINTENANCE
As the computation advances and we get more answers from the
users, the graph is updated to reflect the current database state and
the (remaining) constraints violations. To explain how this is done,
let us first examine what validated values can be inferred from the
users answers, and how those affects the graph’s shape.

Inferring validated values. As explained in Section 2, the val-
idated values VVal(D) are the set of tuples attributes that have
been validated by the experts. As the computation advances and
we obtain more answers from the users, the set grows. In particu-
lar, when DANCE poses a q = Update(t) question to the expert,
if the answer is true then we know that t is correct and all its
attributes are added to VVal(D), and if the answer is a new tuple
t ′ then we know that t ′ is correct and its attributes are added.

A simple observation is that more validated values can be
inferred by following the constraints. Recall from Section 2,
that a tgc expresses an assertion about the existence of a tu-
ple assignment to the RHS, given a tuples assignment satisfy-
ing the constraint of the LHS. Therefore, we can use the tgcs
to infer new valid values from the current valid values set. Let
φ : ∀x̄A1 ∧ ...∧Ak ∧C1 ∧ ...∧Cj → ∃z̄R(x̄ , z̄) be a tgc where Ai
is a relational atom and Ci is a conditional atom. Let {t1, ..., tk , t}
a set of tuples where exists an assignment v such that v �D φ and
∀1 ≤ i ≤ k : ti = Ai (v(x̄)) and t = R(v(x̄),v(z̄)). We can infer
new valid values based on the following claim:

CLAIM 4.1. Given an assignment as described above, if the
values assigned to the conditional variables of the LHS are valid
then so are the values assigned to the conditional variables of the
RHS.

The proof is immediate from the definition of conditional vari-
ables and tgd semantics.

Example 4.2. To illustrate, consider the database from Example
1.1 and let φ2 be the second constraint from Example 2.1. Let
v(x1,x2,y1) ={UK, 5, Celtic} a satisfying assignment for φ2. Let
{Countries(UK, 5), Teams(Celtic, UK)} be the set that is defined by
v. Also assume that the expert validated the value UK in the tuple
Countries(UK, 5), this means that there exists a country named

UK. Therefore by φ2 there must be at least one team from the
country UK. Hence the value UK in the tuple Teams(Celtic, UK)
is valid, nevertheless the whole tuple may still be incorrect, i.e.
“Celtic”.

The inference performed in Claim 4.1 can be repeated recur-
sively to add further validated values, until a fix point is achieved.
In our implementation (described in the following section) we will
refer to this as the databaseUpdate function.

Graph Update. We can now use the updated set of validated val-
ues to update the graph, following the definitions is Section 2. For
that we maintain provenance of how Proo f (t ,φ) and Proo f s(t ,φ)
and Susp(f ,D) were computed in the previous iteration. Then
we update them as follows: We remove from each Vio(φ,D) and
Proo f (t ,φ) all the tuples that their conditional values are vali-
dated. We then recursively update Proo f si (f ,D) by removing the
tuples derived from these removed proofs, yielding an updated
value for Proo f s(f ,D). By definition, the updated set Susp(f ,D)
of suspicious tuples now includes only the remaining tuples, and
all other nodes can be deleted from the graph. Similarly, edges
that no longer belong to Proo f s(f ,D) can be omitted.

In an analogous manner, note that answers to fill questions
q = Fill(t) insert new values to the database which may lead to
new constraint violations. The Proofs for these new violations can
be computed following the iterative definition from Section 2, and
the new suspicious tuples (corresponding edges) are added to the
graph.

To conclude we note that to further speed up computation time,
an incremental page rank computation [17] can be applied to
update the node ranks. As the graphs in our experiments turn out
to be of moderate size, we did not use this here.

5 PUTTING EVERYTHING TOGETHER
To complete the picture, we explain how the different functionali-
ties of our system are combined together.

The System Manager module is the main component of DANCE
that interact with the databases and the experts. Given a set of
constraints f (tgcs and cgcs) it runs Algorithm 2 in order to edit
the database D, to obtain D ′ that satisfies f . The algorithms puts
together the components described in the previous sections. In
line 2 it calculates the violations of f in D. In line 3 it calculates
the proofs based on the violations V .

After calculating the proofs and the violations, Algorithm 2
sets Susp to be the set of the suspicious tuples (line 4), then it runs
on iterations until all constraints are satisfied (which means that
Susp = ∅). In each iteration it executes the commands in lines 6-13.
In line 6 it calculates the tuples graph including the edges weights.
In line 7 it executes PageRank on the tuples graph and identifies
the tuple t with the highest rank, which the expert will be asked
about. In line 8 the expert is asked to update the tuple t , the result
is stored in t ′. Note that if t ′ = t then t is valid and if t ′ = NULL
then t must be deleted from D, else t must be replaced with
t ′. The corresponding database update is performed by function
databaseUpdate (line 9) which also infers the consequent set of
validated values. After updating the validated values, the algorithm
executes the function tryToFillIncompleteTuples() (line 10) that
iterates over all incomplete tuples (tuples that contain wildcards
“*”). For each one of these values (denoted by t) it checks if
the known values of t are validated, and if so asks the expert to
also fill the unknown values of t , which is done by posing the
question Fill(t ′, true) to the experts. In lines 11- 13 the algorithm
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Figure 3: Suspicious tuples graph (second iteration)

recalculates the violations, proofs and the suspicious tuples. The
graph is updated accordingly in the following interaction.

Example 5.1. Consider the database and the constraints from
Example 1.1. Figure 2 is the tuples graph of the first iteration of
Algorithm 2 where the algorithm executed on the database from
Example 1.1 with injection of the two constraints from Example
2.1. The numbers on an edge is its weight and on a vertex is the
vertex rank (PageRank result). As it appears in the graph, the tuple
Countries(UK,5) has the highest rank, therefore the expert will
be asked to update the tuple which will cause its deletion. After
deleting the tuple Countries(UK,5), the algorithm will move to the
next iteration. Figure 3 is tuples graph of the second iteration. As
is appears in the graph, the tuple Countries(UK,5) was deleted and
the tuples Teams(Celtic, UK) and Teams(M. City, UK) have the
highest ranks. The algorithm will ask the expert to update one of
them randomly, because their ranks are equal. In the third iteration
the algorithm will ask the expert to update the other team tuple,
that will imply the satisfaction of the constraints by the database.

Since the ground truth database is finite, and the experts are
assumed to provide correct answers, each iteration brings us closer
to the ground truth database, and thus the algorithm is guaranteed
to converge to a database D ′ where all the constraints f are satis-
fied (where Susp(f ,D) = ∅).

Algorithm 2 The Manager Main Algorithm

1: procedure managerMain(D ,f )
2: V ← calculateV iolations(D, f )
3: P ← calculateProof s(D, f , V )
4: Susp ← calculateSuspiciousTuples(V , P )
5: while Susp , ∅ do
6: G ← buildTuplesGraph(D, f , Susp)
7: t ← дetMaxRankedTuple(G)
8: t ′ ← exper tsUpdate(t )
9: databaseUpdate(t, t ′)

10: tryToF ill IncompleteTuples()
11: V ← calculateV iolations(D, f )
12: P ← calculateProof s(D, f , V )
13: Susp ← calculateSuspiciousTuples(V , P )
14: end while
15: return
16: end procedure

6 QUERY ORIENTED DATA CLEANING
To conclude the presentation of DANCE we show that our solution
can also be applied to repair database errors signaled through
the identification of wrong query answers. This will alow us to
experimentally compare DANCE to previous work in this context
such as [9].

The scenario considered is the following. After executing a
query Q on the database D (where Q is a conjunctive Datalog
query without negations on relational atoms), a user may examine
the query result and identify a tuple r ∈ Q(D) that is a wrong
answer and should not be part of the result. This should trigger a
data cleaning process whose goal is to identify (and correct) the
errors in the database that led to the wrong answer.

We show below that an assertion that a given tuple should
not be included in the query result can be expressed as a simple
constraint violation in our formalism, and thus our algorithms
can be triggered to resolve the violation. Specifically, given an
assertion r < Q(D), DANCE translates the removed answer r to
a cgc φr such that for each database D, if the database satisfies
the constraint φr then r < Q(D). Therefore, adding the constraint
φr to the system’s set of constraints f will guarantee the answer
deletion. We next describe the construction of φr from the wrong
answer r ∈ Q(D).

Let Q be a conjunctive Datalog query without negations on
relational atoms of the form:

Q(x1, ...,xn ) : −A1 ∧ ... ∧Ak ∧C1 ∧ ... ∧Cm

Where each Ai is a relational atom and each Ci is a conditional
atom. Let r = (α1, ...,αn ) ∈ Q(D) be the wrong answer. Then we
define φr as:
φr = Cx1 ∧ ... ∧Cxn ∧A1 ∧ ... ∧Ak ∧C1 ∧ ... ∧Cm → f alse

Where eachCxi is a conditional atom that demands that xi is equal
to αi . Formally, ∀1 ≤ i ≤ n, Cxi is the conditional atom (xi = αi ).

THEOREM 6.1. Given a database D, a query Q , an answer
r = (α1, ...,αn ) and its corresponding constraint φr , the following
condition holds: if D satisfies the constraint φr , then r < Q(D).
Proof. If D satisfies φr then each assignment v also satisfies φr ,
therefore, v necessarily does not satisfy the LHS because the RHS
is always false. It means thatv 2D (Cx1∧ ...∧Cxn ∧A1∧ ...∧Ak ∧
C1 ∧ ... ∧Cm ). It follows that there is only two distinct options:

(1) v 2D A1 ∧ ... ∧Ak ∧C1 ∧ ... ∧Cm :
In this case, by the query definition, it holds that (v(x1)
, ...,v(xn )) < Q(D). especially r < Q(D)

(2) v 2D Cx1 ∧ ... ∧Cxn :
In this case, (v(x1), ...,v(xn )) , r therefor r < Q(D)

From theorem 6.1 we can conclude that, if the constraint φr is
injected to the database D then it holds that r < Q(D ′) where D ′

is the database after editing D and D ′ satisfies φr .

Example 6.2. Consider the database from Example 2.2 and the
query:

Q(x1) : −Countries(x1,x2) ∧ x2 > 2
It returns all the countries that have more than 2 representative
teams. Running the query on the database will return the values
{UK} therefore the expert may specify that she wants to remove
the answer UK. DANCE will build the constraint:

φ(UK ) : x1 = UK ∧Countries(x1,x2) ∧ x2 > 2→ f alse

Injecting the constraint φ(UK ) to the DANCE will cause the dele-
tion of the tuple {Countries(UK, 5)} that will remove the answer
(UK) from Q(D).
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7 EXPERIMENTS
In this section we first describe the system architecture of DANCE,
and then present the experimental results on several datasets com-
peting with other algorithms using different setups.

7.1 System Architecture
The architecture of DANCE is depicted in Figure 4. The experts
interact with the system through the User Interface. They can
provide integrity constraints that are added to the constraints DB.
The Violation Detector continuously validates the DB against the
constraints. When violations are detected, they are passed to the
Graph Builder along with their corresponding proofs (see Sec-
tion 2 for technical details). The Graph Builder is responsible
for generating and maintaining the graph (as detailed in Section
3). Once the graph is generated, the modules runs the PageR-
ank style algorithm to determine the most promising question to
the experts (tuple for verification/update). The module works in
an incremental manner, hence once the graph is generated it is
maintained and updated incrementally (see Section 4 for details).
Based on the experts answer (update/verification) the DB is up-
dated accordingly. The process repeats until there are no more
violations. As mentioned in Section 6, DANCE can also support a
query-oriented cleaning mode. This flow is depicted in the system
architecture figure with dashed lines. The query and the tuples to
be removed are passed to the Query-based Constraints Generator,
which generates the relevant constraint and adds it to constraints
DB. From there things run as described above.

7.2 Experiments
We have implemented the DANCE prototype system, using Java
and SQLite as the DBMS. All experiments have been executed on
an Intel i7 2.4Ghz processor and 16GB RAM. We run experiments
over real-life data sets and examined the system performance both
in terms of the number of questions posed to the experts and the
running time. We examined the full system, and contribution of
separate components of our solution. We start by describing the
considered algorithms, then the datasets and finally describe our
experiments.

Algorithms. The main algorithm in DANCE builds the tuples
graphs and ranks the nodes so that their rank reflects their po-
tential importance for the database cleaning. This is achieved by
assigning to the edges weights that not only reflect the potential
influence tuple updates but also the uncertainty of the values in the
corresponding relations. To assess the importance of this ranking,
we compare DANCE to three alternatives alternative algorithms.

• Random: a naïve algorithm that randomly picks tuples in
the graph to ask about
• DANCE v1: a simplified version of DANCE where all

edges are assigned an equal weight (equals to 1)
• DANCE v2: a simplified variant of DANCE where the

uncertainty of the values of all the relations are the same
(by setting β = 0.5 for all relation).

We will see that the full fledged algorithm yields fewer questions
than its restricted variants.

We have also compared DANCE to a related previous work,
described next. As mentioned in the Introduction, data cleaning
with the help of experts has been previously considered in the
QOCO system [9] where the goal was to update the database for
eliminating incorrect query answers. It is easy to show that an
assertion that a given tuple should not be included in the query
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Figure 4: DANCE framework architecture.

result can be expressed as simple constraint violation in our for-
malism (we omit the translation algorithm for space constraints).
We are thus able to compare the performance of DANCE to that of
QOCO for solving the same problem. Since QOCO allows users
only to add and delete tuples, whereas DANCE allows also tuple
update, we also examine here a restricted variant of DANCE :
• DANCE v3: a simplified version of DANCE that does not

include tuple updates
Interestingly, our experiments show that, even in the absence of
constraints (and even without tuple updates), when applied to the
same problem our algorithm requires fewer question compared to
QOCO, as it better factors the dependencies between suspicious
tuples.

Datasets, Constraints and Queries. We consider three datasets.
The first dataset is a soccer-related. It contains information about
World Cup games, goals, players, teams, etc. and consists of
around 5000 tuples. The teams and players relations are derived
from the FIFA official data [1] and are thus assigned β = 0.
The games relation is derived using automatic website scraping
tools from sites such as [4, 5]. We first cleaned the database by
comparing the games data with reference data from FIFA official
data and used the cleaned database as our ground truth database,
with the expert answers following this ground truth. Sampling
the games data and comparing to the ground truth we derived
an uncertainty measure β of 30%. We have experimented with
various integrity constraints based on FIFA competition rules and
show here the results for the following representative constraints,
informally described below.
• φWC

1 : If the winning and losing teams scores are not equal,
then their penalties are equal to 0.
• φWC

2 : If the winning and losing teams penalties are not
equal, then their scores are equal.
• φWC

3 : If the winning and losing teams penalties are equal,
then the winning team score is bigger than the losing team.

For the comparison with QOCO we examine the following two
queries and what it takes to remove wrong tuples from the result.
• QWC

1 : All games between a country from Asian and any
other country.
• QWC

2 : All games of ’Round of 16’ that ended without
penalties.

Since QOCO does not exploit constraints, to make the comparison
as “fair" as possible, we assume in this experiment no constraints
(other than the assertions on the erroneous query answers).
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Figure 5: Experimantal results

Our second dataset is a flights database from [3]. This database
records information about flights all around the world, and was
last updated on 2012. It contains data about flights (68K tuples is
a routes relation), airports (8.2K tuples in an airports relation) and
airlines (6.1K tuples in an airlines relation). We first cleaned the
flights database by comparing the data with current reference data
from Google flights website [2] and used it as our ground truth
database, again, with the expert answers corresponding to this
ground truth. By sampling the data and comparing to the ground
truth we derived the uncertainty measures β for routes, airlines and
airports to be 10%, 5% and 0% respectively. For our experiments
we used the following three real-life constraints that follow from
the fact that after 2012 there was a political conflict between
Russia and each of Ukraine, Egypt and Turkey that caused the
cancellation of the direct flights between that countries.

• φF l1 : There are no direct flights between Russia and Ukraine.
• φF l2 : There are no direct flights between Russia and Egypt.
• φF l3 : There are no direct flights between Russia and Turkey.

For the comparison with QOCO we examine here the following
two representative queries (again, assuming for fairness that no
constraints are available for DANCE as well).

• QF l
1 : All direct flights from any country to China or to

Greenland.

• QF l
2 : All direct flights from Russia or from USA to any

country.
To test scalability of performance, we used a third dataset

which was synthetically constructed by taking the flights databse
mentioned above and replicating data (with variations) to achieve
a 400K tuples dataset. Each tuple was replicated between 3 to 6
times, while generating new unique primary keys (airport ID for
airports, pair of source and destination airport IDs for the flight,
etc), by padding a number between 1-6 to the original key. The
constraints used for the third dataset experiments are similar to
the second dataset, with the addition of an extra constraint:
• φF l4 : There are no 2 different airlines with same code.

. This constraint is added especially to stress-test the system, since
it has many violations in the dataset.

Experiments. Our first experiment compares the performance
of DANCE, in terms on the number of questions posed to the
experts, to that of Random and the restricted variants DANCE v1
and v2. The results for the two datasets are depicted in Figures
5a and 5b. In both figures, each vertical bar corresponds to one
of the algorithms. The height of each bar shows the maximal
number of possible questions (the number of suspicious tuples at
the beginning of the experiment). The lower part of the bar (in red)
denotes the number of questions asked by the algorithm to fix all
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violations. The remaining part represents the number of avoided
questions (compared to the maximum). The horizontal (black)
line indicates the number of questions the would have been asked
by an optimal algorithm that knows the underlying ground truth
and asks only about the actual erroneous tuples. In both cases
Random shows the worst performance, then come DANCE v1,
v2 and finally DANCE . This demonstrates the importance of the
ingredients in our solution.

To better understand the results we examined the effect of
choosing appropriate β values on the performance of our algo-
rithms. The results of varying β values are depicted in Figures
5c and 5d. We can see that while the use of β values that reflect
the uncertainty measure is useful, rough estimation suffices for
obtaining good results.

Our second experiment compares the performance of DANCE,
with and without tuples updates, to that of QOCO, for the queries
listed above. To get a clearer perspective on the performance of
the algorithm, we also add the results of Random for the same
problems. The results are depicted in Figures 5e-5h. The bars
for each of the algorithm have the same structure as in the first
experiment and the horizontal black line indicates again the op-
timum. We can see that both variants of DANCE perform better
than QOCO. This is interesting since the improved performance
is achieved even without this use of additional constraints. (In
the presence of constraints the gap grows. We omit the results or
space constraints). We can also see that allowing users to update
tuples, rather than only add and delete, results in fewer needed
updates.

To conclude this section we examine running time of DANCE
as a function of the number of suspicious tuples. We consider
here the extended flights database which contains around 400K
tuples. The results are shown in Figure 5i. To vary the number of
suspicious tuple have run four experiments each with a different
set of constraints (φF l1 in the 1st bar of figure, φF l1 and φF l2 in
the 2nd bar, φF l1 − φ

F l
3 in the 3rd, and all the four constraints

in the last bar). For each experiment we have measured the run
time of the main algorithm (Algorithm 2) in seconds from its start
until finding the first question that will be posed to the expert.
The number of suspicious tuples in each experiment (column) are
depicted on the X axis. In each case we also detail the time spent
on each part of the algorithm. As expected the time grows with
the number of suspicious tuples, but in all our experiments was
below 30 seconds. The iterations took just 1 to 4 seconds in all
cases, due to our incremental graph maintenance, thus sufficiently
fast to maintain an interactive user experience and work as a real
time data cleaning system.

8 RELATED WORK
Data cleaning has attracted much attention in recent years. A large
set of work focuses on fully-automated cleaning, using dedicated
object similarity measures, probabilistic and statistical methods,
and machine learning techniques [12, 24, 31, 35]. As mentioned
in the Introduction a problem with automatic solutions is that
they cannot ensure precision of the repairs since they do not have
enough evidence about the ground truth and may in fact lead to
wrong results [9]. It has thus been suggested to use domain experts
to examine the data and choose which updates should be applied.

Multiple data cleaning tools leverage the crowd to assist in data
cleaning (e.g. [9, 14, 16, 21, 30, 32, 36]), typically using the crowd
to identify problematic spots in the data, e.g. by running queries
and validating the results or by iteratively generating cleaning task

for the crowd. [32] introduces the idea of cleaning only a sample
of data to obtain unbiased query results with confidence intervals.
[9] uses experts to identify errors in query answers and attempts to
minimize the number of posed questions. However, as mentioned
in Section 7, ignores the databases constraints and its performance
is inferior than ours even in the absence of constraints. Our work
complements these previous efforts by using the set of integrity
constraints to identify data errors and to effectively use the crowd
(domain experts in our case) by identifying the potentially most
influential errors.

Several data cleaning tools employ integrity constraints in the
cleaning process (e.g. [13, 15, 21, 23, 30, 31, 36]). Some of the
papers (e.g. [19, 33]) rely on high quality reference data. Others
are fully automatics (hence suffer from the problems mentioned
above) and use predefined preferences among updates and/or
minimal-repair strategy. When no unique update may be inferred
from the available preferences, systems like [21] and [36] turn to
experts to assist in the constraint resolution. But they not optimize
the experts exploration of the possible updates space. Our work
may be integrated into such systems to optimize the experts work
in such scenarios. The authors of recent related research [30]
propose a framework for detecting functional dependencies (FDs)
violations. Their main focus is finding the (subset of) FDs that can
detect the errors and studying different types of questions that can
be asked from the experts under a limited budget (e.g. verifying
if the proposed FD is correct) in order to detect the errors in the
data. Our efforts are complimentary, since we are not focusing on
identifying FDs and only detecting the data errors, but given a set
of FDs we are trying to find and also fix underlying violations.

A complementary line of work employs data mining tools for
outlier detection [20] to complete missing values, correct illegal
values and identify duplicate records. Incorporating these tools
in our framework to provide experts with autocorrelation-style
suggestions for data correction is an interesting future research
direction. Another data cleaning research [28] that deals with
inconsistencies in databases introduces mining of forbidden item-
sets, i.e. invalid value combinations in dirty data. This work is
also complementary to ours as it tries to avoid forbidden itemsets,
while in our settings we are trying to clean the data under a set of
given integrity constrains.

The very recent [7] is the most related to our work. They study
user-guided cleaning of Knowledge Bases w.r.t violations of tgds
and a subset of denial constraints, called contradiction detecting
dependencies. While they too handle tgds these include only equal-
ities and they do not support cgds. This, together with the different
data model, make the works incomparable but complementary.

Crowdsourcing, using ordinary users and domain experts, has
been an active field of research in recent years. Crowdsourcing is
employed for a a variety of cleaning-related tasks such as entity
resolution [34], duplicate detection [10], schema matching [37],
and filling up missing data [27]. Our system may be employed to
resolve constraints violation in the database generated by these
methods.

An related line of work deals with the development of algo-
rithms to ensure answers quality, e.g. by aggregating multiple
answers [29], or evaluating workers quality [22]. As mentioned,
to simplify our presentation we assumed that there is a domain
expert that has an extensive knowledge about the ground truth
database. The above techniques can be used to aggregate multiple
users answers.

11



9 CONCLUSIONS
We presented DANCE, a system that assists in the efficient res-
olution of integrity constraints violation. DANCE identifies the
suspicious tuples whose update may contribute to the violation res-
olution, and builds a graph that captures the likelihood of an error
in one tuple to occur and affect the other. PageRank style algorithm
identifies the most beneficial tuples to ask about first. Incremental
graph maintenance is used to assure interactive response time.
Our experimental results on several different real-world datasets
demonstrate the promise that DANCE is an effective and efficient
tool for data cleaning.

There are several directions for future research. Supporting a
richer constraint language, and in particular constraints on ag-
gregations (i.e. a national team cannot have more then 23 active
players in the World Cup) is challenging. Violations of such con-
straints may be corrected in multiple ways, hence it is interesting
to investigate how to choose among them in the most efficient way.
Also, in the current architecture, the constraints are assumed to
be given as input. We plan to integrate our approach with mecha-
nisms that infer additional constraints, or corrections to existing
constraints, possibly also with the help of the experts, in order to
improve the cleaning process. Parallel processing for speeding up
the computation is another intriguing future direction.
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