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ABSTRACT
Many e-commerce platforms serve as an intermediary between
companies/manufacturers and consumers, receiving a commission
per purchase. To increase revenue, such sites tend to offer a wide
variety of items. However, in many situations a smaller subset of the
items should be selected and offered for sale, e.g., when opening an
express branch or expanding to a new region, or when maintenance
costs become prohibitive and redundant items should be disposed
of. In all these cases selecting a reduced inventory which covers
most consumer needs is an important goal.

In this demo we introduce ReducE-Comm - a highly paralleliz-
able and scalable system that given a large set of items, a bound on
the number of items that can be supported and information about
consumer preferences/items relationships, allows to select a subset
of the items which maximizes the likelihood of a purchase. Our
system is interactive and facilitates real-time analysis, by providing
detailed per-item impact statistics. We demonstrate the effective-
ness of ReducE-Comm on real-world data and scenarios taken
from a large e-commerce system, by interacting with the CIKM’19
audience who act as analysts aiming to intelligently reduce the
inventory.

ACM Reference Format:
Shay Gershtein, Tova Milo, and Slava Novgorodov. 2019. ReducE-Comm:
Effective Inventory Reduction System for E-Commerce. In The 28th ACM
International Conference on Information and Knowledge Management (CIKM
’19), November 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3357384.3357861

1 INTRODUCTION
Due to the rapid growth of the e-commerce industry, online selling
has become one of the most trending businesses of today. Many
e-commerce platforms serve as an intermediary between compa-
nies/manufacturers and consumers, receiving a commission per
purchase. To increase the number of sales, such sites tend to offer
a large number of items . Nevertheless, they often pursue comple-
mentary projects where selecting and offering a reduced inventory
is required. For example, when companies provide express deliv-
ery services (alongside existing services), offering items which are
ready for next-day-delivery, these should be available in different
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warehouses for immediate shipping. It is often not feasible to ensure
immediate availability for all items, as seen for example in Ama-
zon Prime which offers a small percentage of the entire Amazon
catalog. Similarly, expansion to new regions is often done gradu-
ally due to regulations, initially offering a small backlog of items.
Finally, maintaining large inventories incurs a substantial mainte-
nance overhead, hence companies tend to periodically dispose of
some small percentage of items deemed to be least valuable. In all
these examples the goal is to adhere to some size constraints while
minimizing the loss in the number of predicted sales compared to
offering the entire catalog.

A naïve, yet popular, solution is to focus on the top-k best selling
items. This approach however entirely ignores the hidden relations
between items. In particular, studies show that consumers, even
when searching for a specific item, are often willing to buy in
its absence what they consider to be a satisfying alternative [9].
For example, in the absence of a specific 50 inch Samsung TV a
consumer may be willing to settle for a slightly bigger Samsung
TV or for the same size TV from Philips. Retaining a set of items
which are not only popular in-and-of-themselves, but are also likely
to “cover" the inventory by serving as suitable alternatives for
omitted items, can significantly improve the overall satisfaction of
the customers.

The problem we address in this demo, which we call the Pref-
erence Cover problem, is to select, given a large set of items and
a bound on the number of items that can be supported, which
items to retain, such that consumer satisfaction and the likelihood
of a purchase are maximized. To solve this problem we introduce
ReducE-Comm, an end-to-end system, which, in addition to items
selection, also facilitates real-time analysis. ReducE-Comm models
consumer preferences via a preference graph - a directed graph with
weights on both nodes and edges. The nodes correspond to items,
and their weights reflect the items’ purchase popularity (% out of
total sold items). A directed edge from item A into item B indicates
that, in A’s absence, consumers consider B as a possible alternative.
The edge weight reflects the probability that a consumer is willing
to buy B as an alternative to A, if A is missing1. We discuss how
ReducE-Comm derives the graph structure and edge weights from
the available clickstream data in the System Architecture section.

ReducE-Comm uses the preference graph to devise effective algo-
rithms for the selection of items. Before discussing the algorithms
let us first illustrate through a simple example how the information
provided in the graph is employed, and why selecting the top-k
most sold items is not necessarily ideal.

Example 1.1. Assume that there are five available items - iPhone
8 64GB in three different colors (A - Gold, B - Space Gray, C - Silver),

1We assume that all transitive relationships, when/if exist, are directly represented in
the graph by single edges.
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Figure 1: Sample graph of items

iPhone 7 Silver 64GB (D) and iPhone 6 Silver 64GB (E). Out of these
items we wish to select and retain only two. Consider the preference
graph depicted in Figure 1. We can see that A is the best selling item
(purchased by 33% of the customers) while D is the least sold (6%).
We can also see that consumers interested in item E (resp. D) are
likely to settle in its absence for D (C), but will not transitively buyC .
Such behavior is common, for instance, when D (resp.C) is a one-step
upgrade of E (D): people are often flexible and willing to add a small
amount of money in return for an upgrade, but a two-steps delta may
be overly expensive. We can also see in the graph that consumers
interested in C (B) will settle in its absence for B (C), and that B is a
more likely replacement for A than C .

If we select the top two most sold items, A and B, we are likely to
cover about 77% of the requests (the ones interested in A and B, as
well C , who in its absence are likely to purchase B). Interestingly, a
more careful analysis (which we only describe here intuitively and
will formalize in the following section) shows that in fact retaining
B and D (the least sold item!) is the optimal solution, covering about
87.3% of the requests. Intuitively this is because B covers much of the
requests for A, B, and C , whereas D covers most of the requests for
itself as well as for E. In this simple example the set of requests served
by the two retained items are disjoint, but a similar analysis can be
applied to general overlapping cases.

The explicit formula for determining the probability of a pur-
chase is contingent on the dependencies between choosing different
alternatives. Such dependencies can be complicated, hence for a
model to be practical it should simplify them in a manner which
approximates well real life settings. We consider in this demo two
variants of the Preference Cover problem, the Independent and the
Normalized variants, which differ by the semantics of edge depen-
dencies. We have shown in our experiments [2] that consumer data
from different e-commerce settings tends to be captured well by
at least one of these variants. The Independent variant assumes
independence between all alternatives. Whereas, the Normalized
variant assumes that each consumer has at most one item that she
considers as a suitable alternative, and thus the sum of weights of
outgoing edges from any given item is bounded by 1 (hence the
name Normalized).

Due to the NP-Hardness of both variants of the problem, ReducE-
Comm employs a dedicated highly parallelizable and scalable greedy
scheme which provides approximated solutions for both. The solu-
tions come with approximation guarantees, which differ for each
variant. For the Independent variant the approximation guarantee
is optimal for a polynomial time algorithm, as it tightly matches an
inapproximability bound. For the Normalized variant, optimality is

an open problem but the algorithm matches the best approximation
factor known for practical algorithms of an extensively studied
equivalent problem. We prove all the results stated above in [2].

Our solution has several added values. First, our algorithms also
allow to directly solve the complementary minimization problem,
where, instead of an upper bound on the number of items to retain,
one is given a lower bound on the percentage of item requests that
should be covered (and the goal is to identify a minimal size set
of items that achieves the required coverage). Note that a naïve
solution for this complementary problem can be obtained, via bi-
nary search on the target set size, by running any algorithm for
the original problem. But this incurs a O(logn) factor overhead, n
being the number of available items. Our direct greedy approach
allows to avoid this overhead. Additionally, the data computed by
the algorithms also allows to support real-time analysis. In par-
ticular, ReducE-Comm produces, on top of the selected subset of
items, detailed statistics for each item. The analyst can see for every
non-selected item, what percentage of the requests for this item
each retained alternative covers, and adjust the requirements (e.g.
requiring specific items to be selected or omitted from the selected
subset), with the system computing a modified solution in real time.

Finally, we note that in the problem setting that we study here
(which is common tomany intermediary platforms [1]) the commission-
per-purchase is considered fixed and the intermediary platform is
indifferent to the items’ cost/revenue or the physical storage that
they require.

Demonstration Overview. Wedemonstrate the operation of ReducE-
Comm over real-world e-commerce data. Our demonstration reen-
acts a scenario where an e-commerce platform is opening a new
express branch, and wishes to select items for this reduced store
variant. The audience will play the role of the analysts that design
the new store and need to offer the optimal subset of items.

2 TECHNICAL BACKGROUND
We next intuitively introduce the Preference Cover problem, and
briefly describe its two concrete variants - Independent and Nor-
malized. Full technical details can be found in [2].

Formally, we represent consumer preferences via a preference
graph which, along with an integer k , serve as input for the Prefer-
ence Cover problem. A preference graph G = (V ,E,WV ,WE ) is a
directed graph with weighted vertices and edges. The vertex set V
corresponds to n items. For each vertexv , its weight,WV (v) ∈ [0, 1],
is defined as the probability of v being requested by a consumer.
The sum of all node weights is therefore 1. For each edge from v
into a node u, its weight,WE (v,u) ∈ (0, 1], implies the probability
of u matching a request for v as an alternative.

Given a number k , our goal is to choose a subset S ⊆ V , |S | = k ,
of items, marking them as retained. Given a request for item v , if
it is retained, the request is considered matched. Otherwise, if v is
not retained, a request has some probability of being matched by
another retained neighboring item ofv , as indicated by the weights
of edges outgoing from v . We define a target function, termed as
the cover function, C : 2V → [0, 1], s.t. assuming S ⊆ V is the
retained set of items, C(S) is the probability a request drawn from
the distribution indicated by the node weights is matched. The
Preference Cover problem aims to compute argmaxS, |S |=k C(S).



Raw Data

-----------
-----------
-----------
-----------

A
33%

B
23%

C
21%

D
 6%

E
17%

 1
 1

 9/10

 9/10

 2/3

 1/3

A
33%

B
23%

C
21%

D
 6%

E
17%

 1
 1

 9/10

 9/10

 2/3

 1/3

Preference graph Retained items

k / threshold

Data Adaptation
Engine

Preference Cover
Solver

Coverage: 0.873
A: 0.67, B: 1, C:1, D: 1, E: 0.9

User Interface

analysis

Figure 2: System Architecture

An explicit formula for computing C(·) is contingent on the de-
pendencies between the probabilities indicated by the edges. In this
demo we consider two variants of the problem which approximate
well common real life scenarios: the Independent variant assumes
that the probabilities modeled by edges are independent, while the
Normalized variant assumes that each given consumer considers at
most one item as a most suitable alternative.

In both variants when considering alternatives for an item v , we
only take into account v’s neighbors, and do not consider longer
paths, corresponding to the process of considering an alternative
followed by an alternative to that alternative and so on. Such paths
are already taken into account into the edges and their weights,
thus intuitively the preference graph is the transitive closure of a
graph modeling the probabilities to correspond to such paths.

We now formally describe the two variants. In the presenta-
tion below, given a set S of retained items and a node v , Rv (S) =
{u |(v,u) ∈ E,u ∈ S} denotes its set of retained alternatives.

Independent variant. In the Independent variant we assume
complete independence between edges - the probability a given
alternative matches a request is not affected by whether or not a
different alternative matches it. Thus, the probability of notmatch-
ing a request for a non-retained item v , which occurs when no
retained alternative is suitable, is, due to independence, the product
of all such probabilities,

∏
u ∈Rv (S )(1−WE (v,u)), implying that the

probability of the complement of this event, which is matching the
request, is 1 −

∏
u ∈Rv (S )(1 −WE (v,u)). Hence, the formula is:

C(S) =
∑
v ∈S

WV (v) +
∑

v ∈V \S

[
WV (v) · (1 −

∏
u ∈Rv (S )

(1 −WE (v,u)))
]

Note that the first addend in the last formula is due to the fact
that requests for retained items are matched w.p. 1. Similarly, the
second addend corresponds to summing over all items not in S , for
each such itemv adding the probability it is both requested (WV (v))
and covered by S ( (1 −

∏
u ∈Rv (S )(1 −WE (v,u))).

NormalizedVariant. In theNormalized variant we assume that
each consumer considers at most one item as an alternative. Alter-
natives are therefore dependent, in the sense that an alternative
matching the request implies that all others do not. It follows that
the sum of the weights of all edges outgoing from any given node
is at most 1, and given a request for a non-retained item v , the
probability it is matched is:

∑
u ∈Rv (S )WE (v,u). Hence, the formula

for C(S) is:

C(S) =
∑
v ∈S

WV (v) +
∑

v ∈V \S

[
WV (v) ·

∑
u ∈Rv (S )

WE (v,u)
]

Intuitively, the Independent variant fits when the opinion on the
suitability of a given alternative is not demonstrated to be strongly
dependent on most consumers’ opinion of other alternatives. The
dependencies are either insignificant or cancel out when summed

over the entire user base. On the other hand, the Normalized variant
is suited for domains where consumer requests are often specific
in nature, and the number of suitable alternatives is very small.

Algorithms. Our greedy algorithm, that fits both variants, at
each of itsk iterations selects an itemwhichmaximizes themarginal
gain. Concretely, at each iteration it computes, for each item not
selected so far, the cover function value obtained by selecting it.
The item whose addition achieves the highest value is then selected.

Scalability and performance. Our greedy approach, along with
its parallelization properties, allows the solution to be highly scal-
able, to such an extent that we can in real time solve the problem
for k = n, thus simultaneously deriving solutions for all values
of k , by considering only the output prefix of the corresponding
size. Concretely, previous calculations are stored and leveraged
for efficient computation, focusing only on the effects of adding
new items, despite any overlap with previously added items. As the
computations of the gain obtained by adding different items are
independent, they can be performed in parallel. Moreover, for any
given added item, its cover as an alternative of any non-retained
item can be computed in parallel as well. The pseudocode of our
algorithm and a detailed performance analysis can be found in [2].

Approximation guarantees. While the problem is NP-hard, our
PTIME algorithm comes with approximation guarantees for each
variant. For the Independent variant the guarantee is optimal, as it
matches an inapproximability bound. For the Normalized variant,
optimality is an open problem but the algorithm matches the best
guarantee known for practical algorithms of an equivalent problem.

3 SYSTEM ARCHITECTURE
We implemented ReducE-Comm using Python and Flask. The sys-
tem consists of a User Interface and two main modules: the Data
Adaptation Engine and the Preference Cover Solver. The analyst in-
teracts with the system via the UI. The Data Adaptation Engine
takes as input raw e-commerce data and builds the corresponding
preference graph. The raw data is essentially a clickstream that is
collected by almost all e-commerce platforms for future analytics.
The most minimalist clickstream, which is assumed to be available,
consists of clicked and purchased items, grouped by separate user
sessions. The data is analyzed to derive the graph and determine
which of the two models - Independent or Normalized - fits the
data. For space constraints we omit the description of this process
and refer the reader to the technical report in [2] for full details.

The constructed preference graph is then passed as input to
the Preference Cover Solver, along with k , the required number of
retained items. The solver runs our greedy algorithm, adapted to
the given variant. The solver produces a list S of retained items
(in the order in which the items were added by the algorithm),
accompanied with valuable metadata, such as C(S), and how well
each item is covered by its retained alternatives.



Figure 3: Graph creation

4 DEMONSTRATION SCENARIO
We demonstrate the operation of ReducE-Comm, a system that
enables efficient inventory reduction, supports various types of
“what-if” analysis and provides detailed statistics about the effects
of the proposed reduction. Our demonstration reenacts a real-life
scenario where an e-commerce platform is opening a new branch
with express delivery operations, and wishes to select items for
this reduced store variant. The audience will play the role of the
e-commerce analysts that design the new store and need to select
the best subset of items to offer, such that the sales are maximized.

The demonstration consists of two parts. First, we show how
the graph is derived from clickstream data. This graph is normally
computed offline, but to enable real-time performance we compute
it here over a single category of items (Electronics). Second, we
show over a graph, created in advance pertaining to the entire
catalog, how our algorithms select reduced item sets, and how this
solution changes when various user constraints are introduced.

Graph Creation The analyst will start by loading the click-
streams from the Electronics category. Once the graph creation
process is completed, we will visualize the graph, and explain how
it was derived from the raw data. Namely, for any node or edge
pointed by the user, the system will highlight the relevant part of
the clickstream (as depicted in Figure 3), and we will explain how
it was created and how its corresponding weight was assigned.

Analysis To continue our demonstration, we will load the full
catalog graph, and the analyst will initiate the process of inventory
reduction by specifying the number of items she wants to retain
(k). When the algorithm terminates (it has a real-time performance,
hence its entire operation can be easily incorporated in the live
demonstration) we will examine the result, which details for each
item suggested for removal, to what extent it is covered by each
of its retained alternatives. Next, the analyst may adjust the so-
lution by requiring that some omitted items are retained (e.g. if
the e-commerce platform has an agreement with specific suppli-
ers) or that some retained items are removed. ReducE-Comm will
interactively adjust the solution, recomputing one that complies
to the constraints , and promptly present it to the analyst, along
with a compact visualization of the changes (thereby allowing for
a “what-if” analysis). Figure 4 depicts results produced by the al-
gorithm along with the manual constraints subsequently added by
the analyst, and the outcome of this modification.

We conclude our demonstration with a discussion of other po-
tential usages of the system, such as solving the problem where the
analyst asks for a subset of minimal size which exceeds a specified
threshold for the percentage of matched requests.

Figure 4: Items reduction result

Related Work E-commerce related problems attracted the in-
terest of many researchers in recent years. Some of the extensively
studied problems are product classification (e.g. [8]), ranking of
products in search results (e.g. [5]), products recommendations (e.g
[7]) and generation of product data (e.g. descriptions [6]).

Close to us in spirit are works on diversity [10], producing the
most diverse subset of elements. The similarity is evident when
elements are weighted by importance and when, as in [4], each
non-selected element must be covered by a similar selected item.
However, a key difference is that we do not maximize diversity,
rather it is a feature typical of good solutions, yet not necessary.
Moreover, in weighted diversity problems the goal is to maximize
the weight of the diverse subset, whereas in our model one also par-
tially counts weights of adjacent items, to account for alternatives.
Another related line of work is recommendations [7], as it also
deals with selecting a subset of items to increase purchasing prob-
ability. However, there are important qualitative and quantitative
differences. Primarily, recommendations are typically personalized
w.r.t. a given user or product, and deal with a much smaller k .

Closest to our work is a subfield of Operations Research called
Assortment Optimization. Notably, the Markov chain choice model
(e.g. [3]) bears resemblance to the Normalized variant of our model,
but is more complicated by considering item prices and multiple-
step graph paths. Due to this complexity, these works examine only
small scale item sets, and the results are not scalable to big data.
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