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ABSTRACT
This paper considers a popular class of recommender systems that
are based on Collaborative Filtering (CF) and proposes a novel
technique for diversifying the recommendations that they give to
users. Items are clustered based on a unique notion of priority-
medoids that provides a natural balance between the need to present
highly ranked items vs. highly diverse ones. Our solution estimates
items diversity by comparing the rankings that different users gave
to the items, thereby enabling diversification even in common sce-
narios where no semantic information on the items is available. It
also provides a natural zoom-in mechanism to focus on items (clus-
ters) of interest and recommending diversified similar items. We
present DiRec , a plug-in that implements the above concepts and
allows CF Recommender systems to diversify their recommenda-
tions. We illustrate the operation of DiRec in the context of a movie
recommendation system and present a thorough experimental study
that demonstrates the effectiveness of our recommendation diversi-
fication technique and its superiority over previous solutions.
Categories and Subject Descriptors: H.2.8 [Database Applica-
tions]: Data mining
General Terms: Algorithms, Experimentation
Keywords: diversification, refinement, recommendations, CF

1. INTRODUCTION
Online shopping has grown rapidly over the past few years. Be-

sides the convenience of shopping directly from one’s home, an im-
portant advantage of e-commerce is the great variety of items that
online stores offer. However, with such a large number of items,
it becomes harder for vendors to determine which items are more
relevant for a given user and, given the limited size of the screen,
which of these possibly relevant items should be presented first.

Much research has been devoted recently to the development of
Recommender systems[2]. These systems predict the rating (e.g., a
grade on a scale of 1 to 5) that a user would assign to an unseen
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item, and consider items with a high predicted rating to be relevant.
But, which of these highly rated items should be presented first to
the user? A naive solution would be to simply sort the items by
their estimated rating and present the top-k that fit onto the screen.
This however may result in an over-specialized items list. For ex-
ample, suppose that a user is interested in movie recommendations.
Assume that only 5 movies may fit onto the screen and that the top-
5 ranked movies, for this user, all happen to be Star Wars sequels.
While the given user may indeed like this series, a more diverse
and wider view of the highly ranked movies may be desirable. For
instance one that includes a Star Wars movie, but also other movies
like Star Trek or E.T., with the access to more Star Wars sequels
enabled via a “more of that” zoom-in button.

This papers aims to provide precisely such diversification and
zoom-in facilities. Specifically, we focus here on a popular class of
recommender systems that is based of Collaborative Filtering (CF),
in which user ratings to items based on previous ratings of (simi-
lar) items by (similar) users[15]. A first question that needs to be
addressed when designing such a diversification mechanism is how
to measure the similarity/diversity of two given items. Previous
proposals are often based on the assumption that some semantic in-
formation on items (e.g. the genre of the movie, the director, the
actors) is given. CF recommender systems, however, typically do
not carry such semantic information [2]. But even if they had, a
problem is that it is not always clear how to define item diversity
based on a given semantic information [20]. For example, some
movies of the same director/leading actor may indeed be similar,
whereas others may not. To overcome this difficulty, we follow
the CF approach [15, 17] and instead of relying on semantic infor-
mation, determine items similarity (and correspondingly diversity)
based solely on ratings that previous users gave to the items. Intu-
itively, each item here is viewed as a vector of ratings, with vector
distance (measured, e.g., by cosine, Li distance, or Pearson corre-
lation coefficient) used as measure of similarity/diversity.

A second important challenge is the need to balance, when choos-
ing items, between two possibly conflicting objectives: presenting
highest ranked items vs. choosing highly diverse ones. Some pre-
vious works attempted to resolve this by assigning a weight to each
objective and selecting an items set that maximizes the weighted
sum[9]; others used thresholds to bound the allowed similarity be-
tween items and the drop in rank [16]. But the difficult question
always is which weights or thresholds to choose?. Indeed, a manual
tuning of weights/thresholds (e.g. by experimentation) for a given
data set is not only time consuming but is also no longer effective
when the data changes [9]. To solve this problem we propose here a
novel approach that avoids the use of weights/thresholds altogether.
We introduce the notion of priority-medoids, an adaptation of the
classical notion of medoids[11] to a context where items have pri-



orities (ratings). Priority-medoids (to be defined formally in the
sequel) allow for natural clustering of items and the selection of
cluster representatives that balance rank and diversity. The cluster-
ing further allows the realization of an intuitive “zoom-in” mech-
anism, where users can focus on specific items on the screen and
view similar recommended items. Priority-medoids sub-clustering
is then be used, recursively, to diversify their presentation (and to
allow further zooming-in).

To best of our knowledge, the only other previous algorithm
without weights/threshold is Algorithm Greedy of [16], which does
not support zoom-in. The tradeoff between ranking and diversity is
hard-coded in the algorithm without any declarative notion of opti-
mality. An advantage of a declarative definition is that it is not tied
to a particular algorithm and thus allows for formal analysis and
optimization. While we show that identifying the optimal priority-
medoids is NP-hard, we present an efficient (ptime) heuristic based
on priority cover-trees, a particular sub-class of cover-trees [4] that
proves to be extremely effective in this context. Our experiments
show that the representatives chosen by our algorithms, with no
need for weights tuning whatsoever, are as good and sometimes
even superior to those obtained even with optimally-tuned weights
of previous algorithms. We further present an optimization tech-
nique that exploits the properties of our algorithm for an efficient
realization of the above mentioned “zoom-in” mechanism.

DiRec . To demonstrate the effectiveness of our approach, we im-
plemented the above solution in the DiRec prototype system. Di-
Rec is designed as a plug-in that can be deployed on CF-based
recommender systems, and was demonstrated in [7]. [7] provides a
high-level description of the system, while the current paper presents
the underlying model and algorithms.

Related Work. As explained above, a recommendations list that
consists of the items with top-k predicted ratings may suffer from
over specialization. Indeed, [19] evaluated the diversity of top-k
items generated by traditional CF algorithms and showed it to be
fairly low. Several algorithms that attempt to diversify the recom-
mendation were proposed in the literature (see [9] for a survey).
They fall generally into two classes: greedy heuristics, where the
recommendation list is constructed “one-by-one” by maximizing a
given distance function at each step (e.g. [10, 20, 16]), and inter-
change (Swap) heuristics, where an initial list is first constructed
and then refined by a series of actions (e.g. [17, 16]). But com-
mon to most is the use of predefined weights or thresholds to de-
termine the balances between ranking and diversity or to bound
the allowed similarity between items and the drop in rank [10, 20,
17, 18]. While the selected weights/thresholds clearly affects the
performance of the algorithms, their precise choice is left open in
all the works we are aware of. Such use of weights/thresholds is
problematic since their manual tuning (e.g. by experimentation)
for a given data set is not only time consuming but is also no longer
effective when the data changes [9]. As explained above, our so-
lution employs, instead, priority medoids, to declaratively capture
the desired balance. This is in contrast to [16] where the trade-
off is hard-coded in the algorithm. It further has the advantage of
allowing for a natural (and optimizable) zoom-in mechanism.

The importance of results diversification has been recognized
also in the context of database queries [8, 14, 12]. For exam-
ple, [8] proposes a notion of diversity over structured query results
which are post-processed and organized in a decision tree to help
users navigate them; [14] uses attributes content to group tuples in
a meaningful way that allows for convenient data exploration. This
line of works however relays heavily on the structured data con-

tent. But such structured (semantic) information is not available
in CF Recommender systems. Our work alleviates this problem by
adopting the CF approach and relying on CF (dis)similarity mea-
sures rather than semantic ones.

The most relevant to our work, although also targeted to struc-
tured databases, is [12], where the authors used the notion of classi-
cal medoids (approximated by classical cover-trees) to select repre-
sentatives for the query results and to zoom in on similar answers.
While our work was inspired by [12], a key difference is that [12]
completely ignores tuples rating/priority. We will see that our use
of priority medoids and, resp., priority cover-trees, over the classi-
cal ones, prove to be extremely effective and greatly improves that
generated recommendations.

Contributions. The technical contributions of this paper can be
summarized as follows:

• We introduce the novel notion of priority-medoids as a tool
for selecting item representatives. Our approach naturally
balances the rating and the diversity of the recommended
items and is applicable even in the absence of semantic in-
formation (as often is the case is CF recommender systems).

• We show that finding optimal priority-medoids is NP-hard
and provide an alternative effective heuristic based on prior-
ity cover-trees.

• We exploit the properties of our algorithm to design an ef-
ficient, incremental zoom-in mechanism that allows to fo-
cus on individual items, identify their neighborhood (similar)
items and select appropriate representatives for them.

• We demonstrates the superiority of our solution relative to
previous algorithms as well as its efficiency.

The paper is organized as follows. Section 2 presents priority-
medoids. Section 3 then explains how they are approximated and
how item representatives are selected. Section 4 describes the zoom-
in mechanism,and our experiments are described in Section 5 . Fi-
nally, we conclude in Section 6. For space constraints, some details
of the algorithms and the experiments are omitted and can be found
in the full version of the paper [6].

2. PRIORITY-MEDOIDS
We start by providing the needed background and notation for

Collaborative Filtering (CF). We then consider the problem of bal-
ancing the ratings and the diversity of the recommended items and
define priority-medoids.

2.1 Collaborative Filtering
Common CF algorithms are item-based, consisting of two main

steps: (1) choosing for each item a neighborhood of similar items,
and (2) predicting the rating that a user u will give to an item i us-
ing some aggregation function on the actual ratings, gave by u, to
the items within the neighborhood of i [15]. Symmetric user-based
variants also exist but are less frequently used [15]. A key ingre-
dient in the algorithm is thus the estimation of similarity between
two items. Intuitively, each item is viewed as a vector of ratings
in a multi-dimensional speace, where each dimension corresponds
to a given user, (recording her rating of that item). The distance
between item vectors is then used as a measure for the items sim-
ilarity. In principle, any distance measure can be employed here
(e.g. Cosine or Li distance) but Pearson’s correlation coefficient
[13] seems to be the preferred choice in most major systems. The
basic intuition behind Pearson’s measure is to give a high similarity
score for two items that tend to be rated the same by many users. In
the reminder of this paper we use rate(u, i) do denote the predicted
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Figure 1: Priority-medoid vs. standard medoid

rating of a user u to item i. When u is known from the context we
omit it and simply write rate(i). We use dist(i, j) to denote the
distance between items i and j. W.l.o.g. we assume below that
distance values are in the range of [0, 1]. (When this is not the case
one may naturally map the values to this range). The smaller the
distance is, the more similar (and less diverse) are the items.

2.2 Balancing Rating and Distance
We can now describe our main problem: given a set I of items

and a size k, where the former holds the most relevant items for a
given user (as decided by the given CF recommender system) and
the latter denotes the number of items fitted onto the screen, we
need to choose the subset Ik ⊆ I (of size k) that will be presented
to the user. A naive solution simply selects the top-k items with
the highest rate() values, namely the ones who maximize the sum∑

i∈Ik
rate(i). This however may result in an over-specialized

subset, as described in the Introduction. Thus, we should consider
the diversity of the items as well, which may be analogically mea-
sured by the sum

∑
i,j∈Ik

dist(i, j). As these are two opposing
measures, one needs to provide a good balance between the two.
Additionally, this subset should also provide a good coverage for
the entire set I , which intuitively can be viewed as a classic clus-
tering problem, where we need to minimize the distances between
the items in I and the “center” of the cluster they belong to.

Our solution, as mentioned in the Introduction, is based on the
notion of priority-medoids, an adaptation of the classical notion of
medoids to this context. To explain this, let us first briefly (and
informally) recall what standard medoids are. Consider a set I
of items split into k disjoint subsets, referred to as clusters. The
medoid of a given cluster (also called the cluster’s representative)
is an element in the cluster s.t. the sum of the distances from it to
the other items in the cluster is minimal. Other variants that con-
sider e.g. the average, min or max distance, also exist [11]. This
sum is called the cluster’s weight. The classical goal is to find a
clustering that minimize the overall sum of cluster weights. Note
that, given a set Ik ⊆ I of k items in I , the minimal-weight clus-
tering for which the Ik items serve as representatives (medoids), is
one where each item i ∈ I is associated (clustered) with the ele-
ment in Ik that is closest to it. Thus to find the best clustering one
essentially needs to identify the best Ik set.

In our context we are interested in representatives with high rat-
ing. Priority-medoids therefore add the requirement that the repre-
sentatives are the ones having highest rating in their corresponding
clusters. Thus, when considering a set Ik of priority-medoids, the
clusters it forms are different than the ones formed when consider-
ing standard medoids.

More formally, consider a subset Ik ⊆ I of size k of items, s.t.
Ik contains, among others, an item having the highest rating in I .
We will explain below why having such an item in Ik is important.
For an element i ∈ I , we denote by rep(i) the item within Ik
satisfying the following two constraints:

• the rating of rep(i) is greater or equal to that of i

• among all items in Ik satisfying the above, rep(i) is the clos-
est to i, namely there is no other j ∈ Ik with dist(i, j) <
dist(i, rep(i)).

The items with the same representative rep(i) form a cluster, and
thus Ik yields a clustering formation for the items of I . We refer
to the items in Ik as the priority-medoids of their corresponding
clusters. Note that the fact that the highest rated element in I is
a member of Ik guarantees that all elements in I indeed have a
cluster to which they may belong.

EXAMPLE 2.1. The example in Figure 1 illustrates the differ-
ence between the cluster formation in regular medoids and that of
priority-medoids. Assume that k = 2 and that the set Ik consists of
the two items i′ and i′′. Also assume that the euclidian distance
between items describes their similarity. The number in paren-
thesis, next to each item, describes its rating. On the right (resp.
left) hand side we see the clusters formed when the items in Ik are
treated as regular (resp. priority-) medoids. The arrows outgoing
the elements i1 − i4 point to their cluster representative. On the
right hand side (regular medoids) items i2,i3 and i4 are clustered
with i′′, as they are closer to it than to i′. i1 is clustered with i′.
In contrast, on the left hand side (priority-medoids), the clustering
formation is different as the item ratings are now also being con-
sidered. Specifically, since the rating of i′′ is lower than that of i2,
i2 is clustered with (and represented by) i′, that has higher rating,
even though it is slightly further.

The quality of the obtained clustering (and thereby the quality of
the set Ik of priority-medoids that yielded the clustering), is mea-
sured, as before, by the distance of the items to the corresponding
cluster representatives, namely by Σi∈Idist(i, rep(i)). When I is
known from the context, we use a simplified notation and denote
this sum by weight(Ik). As for standard medoids, the lower the
weight, the better the clustering (and the set Ik of priority-medoids)
is. We are thus interested in a set Ik with minimal weight(Ik).
However, we point out that there may be several sets with the same
minimal weight, in which case we break the tie by choosing the one
where rating values are lexicographically higher.

For example, assume k = 3 and we have two sets I3 = {i1, i2, i3},
I ′3 = {i′1, i′2, i′3}, where weight(I3) = weight(I ′3). If the rating
values of the three elements in I3 (resp. I ′3), sorted in decreasing
order are 5, 4, 1, (resp. 5, 3, 2) then we choose I3 over I ′3. (An al-
ternative could be to prefer, e.g., item sets with higher average/sum
of rating). Ties may still occur when distinct items have the same
rating, in which case we break it arbitrarily.

We can show that identifying the best priority-medoids is NP-
hard (proof is omitted). We thus use a heuristic, based on priority
cover-trees - an adaptation of the classical cover-trees [4] to our
context. We explain this next.

3. PRIORITY COVER-TREE
A cover-tree is a data structure originally designed to speed up

a nearest neighbor search [4]. The use of cover-trees as a tool for
selecting (regular) medoids was recently proposed in [12], in the
context of diversification of query results. A key difference from
the present work is that item ratings were not taken into consider-
ation. We next show that a fairly simple modification to the algo-
rithm of [12] allows to account for such ratings and thereby gradely
improve the quality of the generated recommendations.

A conventional cover-tree can be thought of as a hierarchy of
levels, where each node corresponds to a specific item, and each
level is a “cover” for the level beneath it. (The root is at level zero,
its children at level one, and so on). Each node in the tree is asso-
ciated with an item in I . An item can be associated with multiple
nodes but can appear at most once in every level l. A conventional
cover-tree obeys, for all levels, the first three invariants below. In



our algorithms we use a special sub-class of these trees, which we
call priority cover-trees, that further obey the forth invariant.

1. (Nesting) If a node is associated with an item i, then one of
its children must also be associated with i.

2. (Separation) All nodes at level l are at least 1
2l

far from one
another.

3. (Covering) Each node at level l is within distance 1
2l

to its
children in level l + 1.

4. (Priority) Each node has a rating higher or equal to that of
any of its children.

An example for such a tree can be found in [6]. Next, we explain
the role that invariant 4 plays in our algorithms for constructing
priority-cover trees and for selecting items representatives, based
on the constructed tree.

3.1 Construction
We first recall the conventional algorithm for cover-tree con-

struction [4], then explain the needed modifications.
Given a set I of items, the standard algorithm first selects one

item, arbitrarily, to serve as the root of the tree. Then it inserts
the other items, iteratively, one by one (again in an arbitrary order),
into the tree using an Insert Single Item function. For each
item, the function finds the upper-most level into which the given
item can be inserted, in a recursive fashion. Intuitively, it traverse
the tree top-down, level-by-level, where at each step it maintains
a set of nodes which can act as possible ancestors for the given
item. These nodes are the ones whose descendants may potentially
preserve the first three cover-tree invariants describe above. The
given item is finally added once the algorithm reaches a point in
the tree where all these invariants hold.

Now, to construct our priority cover-tree, only two simply changes
to this algorithm are required:

• Ordered Insertion. In the conventional cover-tree construc-
tion algorithm, items are inserted in an arbitrary order. In-
stead, our algorithm first sorts the items w.r.t their ratings,
then inserts them in descending order.

• Tight Insertion. In the original algorithm, at the point when
the algorithm finally inserts the given item into the tree, it
may have several candidate nodes that may act as the item’s
parent. As any node in this set is a ‘legal’ parent (in the
sense that the invariants will be preserved), the original algo-
rithm chooses among them arbitrary. In contrast, our refined
algorithm always prefers the node with the smallest dist()
measure to the inserted items.

For space constraints the full details of the algorithm, as well
as its correctness proof, are deferred to [6]. We only note here
that ordered insertion suffices to guarantee Invariant 4. Tight inser-
tion, on the other hand, is not mandatory for the correctness of the
construction. However it will prove useful later, when considering
recommendations refinement (zoom-in). We discuss this issue in
more detail in Section 4.

3.2 Representative Selection
We next explain how the constructed priority cover-tree is used to

select item representatives. We use below the following notations.
Given a node n in the tree and an integer l ≥ 0, we say that n is
at level l in the tree, if the distance between n and the root of the
tree (counted by the number of edges on the path between them) is
l. We use Cl to denote the set of nodes at level l.

The pseudo-code of the algorithm is given in [6] and we sketch
below the key ideas. Consider a set I of items which the CF recom-
mender determined as most relevant for a given user. As explained
above, the k items that we want to present to users are the priority-
medoids of I . To find such a subset, with low weight, we use the
priority cover-tree of I as follows: Starting from the tree root, we
search for the first level l within the tree that includes at least k
nodes, namely where |Cl−1| < k and |Cl| ≥ k. We then choose
our k representatives from within Cl. Recall that due to the struc-
ture of the priority cover-tree the nodes in Ci are at least 1

2l
far

from one another and have rating higher than their descendants. If
Cl contains exactly k nodes, then we simply choose these nodes
for representatives and we are done. Otherwise, we need to select
a subset of size k. To select good representatives, we use the tree
structure: Recall the nesting property of the tree, which implies
that Cl−1 ⊆ Cl. Moreover, because of the hierarchical structure
of the tree, the nodes (items) within Cl−1 have rating ≥ than those
in Cl and are pairwise further apart from each other than from the
remaining nodes. Thus, we first select the nodes (items) in Cl−1,
then add the remaining k − |Cl−1| from within Cl − Cl−1. We
consider in our implementation and experiments three alternative
methods for choosing these additional elements:

• Max-rating - the elements having the maximal ratings,

• Max-diversity - the elements that are farthest from the previ-
ously chosen elements, and

• Max-coverage - the elements having the maximal number of
descendants.

Note that, during the tree construction, we can easily record the
number of descendants each node has, and use this information for
the implementation of the Max-coverage variant. Thus, all three
options are equivalent in terms of computational effort. They may
differ however, as we shall see later, in the quality of the generated
representatives set.

4. RECOMMENDATION REFINEMENT
Alongside each item (representative) i that is presented on the

screen, DiRec offers a “more of that” zoom-in button that allows
the user to view further related items.

One possible approach for identifying such items in I is to select
the ones whose distance from i (as measured by the dist() func-
tion) is below a certain threshold. However, as it is never obvious
which threshold should one choose, we take, instead, an alternative
approach based on the following intuition: when a user clicks on a
specific item i, she not only signals her interest in item’s i family
but also signals that i interests her more than the other k − 1 pre-
sented representatives. Recalling the clustering formation gener-
ated by the presented representatives (priority-medoids), we deter-
mine the items in the cluster represented by i as relevant, denoting
this set by relevant(i).

Here again, the set relevant(i) often contains more items than
could fit on the screen and a subset needs to be chosen, to be pre-
sented to the user.

A straightforward approach to choose k representatives for relevant(i)
is to build a priority cover-tree for the set, then use it to select rep-
resentatives, as described above. Rather than doing so, we employ
instead an optimized, significantly more efficient, algorithm that
is based on the following observation: In the priority cover-tree
previously constructed for I , most of the elements in relevant(i)
already appear in subtree rooted at i. Indeed, the tight Insertion
used in to the construction algorithm (Section 3.1) was employed
precisely to increase the number of such elements. We thus use this



subtree as a basis for the construction of the priority cover-tree of
relevant(i). Note however that the subtree may not include all the
members of relevant(i) and also it might include some redundant
elements that are not members of relevant(i). Full details of the
algorithm is available at [6].

5. EXPERIMENTS
We have implemented the above algorithms in DiRec [7], a plug-

in that allows CF Recommender systems to diversify the recom-
mendations that they present to users. We used DiRec in a variety
of settings to evaluate the described algorithms by (1) a user study,
(2) empirical evaluations, (3) performance measures and (4) refine-
ment process. Due to space constraints, we present in this paper
the results only for (2) and a short summary for (1). Nevertheless,
the full description of all experiments are available at [6] for the
intrigue readers.

Experiments setting. In our experiments, DiRec was employed
on top of a CF-based recommender system (C2F [5]). For estimat-
ing item similarity, C2F (and thus DiRec ) uses Pearson’s corre-
lation coefficient [13]. We used a natural linear inverse mapping
to compute items distance out of their Pearson correlation value:
dist(i, j) = (1 − Pearson(i, j))/2. The experiments were pre-
formed on an Intel quad-core machine (Q9400) with 2.66 GHz
CPUs, (using only a single core of the CPU), 4GB memory and
windows XP x64 edition. As data, we used a real-life data set from
the cinema domain, provided by Netflix [3], which contains over
100 million distinct raw movie ratings (such as 1 to 5 “stars”), by
almost 500,000 users, and no semantic information on the movies.

Algorithms. Our algorithm for representatives selection first con-
structs a priority cover tree, then chooses representatives out of this
tree. We consider the three variants of this choice: Max-rating,
Max-diversity and Max-coverage, denoted below PCT-R, PCT-D
and PCT-C, respectively. (PCT stands for Priority Cover-Tree). As
we have mentioned, our use of priority cover-tree, instead of the
classical cover-tree of [12], allows to take items rating into con-
sideration. To illustrate the resulting improvement in the quality
of the generated recommendations we had also implemented the
cover-tree algorithm of [12], denoted below CT.

Recall that previous works typically use semantic information, to
diversify items, and predefined weights/thresholds, to balance be-
tween rating and diversity. Since no sematic information is avail-
able in our context, one can employ here only algorithms that oper-
ate without it. We have implemented the state of the art such algo-
rithms from [16] (Greedy and Swap) and compared them to ours.
Note that Algorithm Swap, like all other previous works (except
for Algorithm Greedy), use predefined thresholds to balance rating
and diversity. We had thus first optimized the thresholds ([6]) and
had our algorithms compete against these optimized versions. The
results for Greedy and Swap were similar and we thus show below
only those of Swap. (Interested readers can find a brief description
of the algorithm in [6]).

Finally, as a base line, we had also implemented the two “ex-
treme case” algorithms, optR (for Optimal Rating), which operated
like a standard CF algorithm, selecting the k items having high-
est rating and ignoring diversity, and optD (for Optimal Diversity),
which ignores the rating of items and selects k items whose pair-
wise distance values is the highest. 1

1Note that optD require solving an NP-hard problem [9]. Its EXP-
time algorithm iterates over all subsets of size k to find the best one.
In our experiments this became infeasible for items sets of size ≥
100, and we thus show results for them only up to that size.

User Study. To assess the quality of the item sets that DiRec gen-
erates (and thereby the quality of our algorithms), we ran a set of
experiments with 50 volunteers who were asked to evaluate the
quality of the presented movie recommendations. Due to space
constrains, we only note the final results of the experiment (for a
full description see [6]). Algorithm PCT-R got the highest results,
with PCT-C, Swap and PCT-D not so far behind. Not surprisingly,
these four algorithms got much higher results than optR, optD and
CT, as they consider both the relevance and the diversity of the
items (while the others focus solely on one property). While the
grade difference between PCT-R and Greedy is smaller, recall that
the former has further the advantage of supporting a natural zoom-
in mechanism.

5.1 Empirical Evaluation
To better understand the results and how the PCT algorithms

(and the preferred PCT-R in particular) balance ranking and di-
versity, we run a second set of experiments over the Netflix data
where we analyzed the quality the item sets generated by all the
algorithms, in terms of their rating and diversity. In each set of ex-
periments reported below we randomly chose a set of 1000 users
from the Netflix data set and run the experiment for each of them.
The results presented here are the average of all 1000 users. (The
variance was less that 5%). We ran all experiments for varying size
I of item candidates returned by the CF-system (I ranging from 10
to 1000) and varying number k of representative items selects out
of them (k ranging from 3 to 20). The results were generally inde-
pendent of the number k of selected representative. Thus, except
when stated otherwise, we present below a representative sample
for k = 5, the common number of recommendations given by typ-
ical recommender systems. For a generated set Ik of representa-
tives, we evaluated its quality w.r.t to the following measures.

Rating. We measure the relevance of the suggested set of item Ik
to the current user by the sum of the element ratings, i.e. rating(Ik) =∑

i∈Ik
rate(i). (Higher value means better results).

Diversity. In the absence of semantic information, the diversity
of the items in Ik may be measured by the pairwise-distances of
the items, namely diversity(Ik) =

∑
i,j∈Ik

dist(i, j). (Here too,
higher value means better results).

Although our algorithms do not require semantic information,
it is interesting to examine the actual semantic diversity of the se-
lected items. To get a sense of this, we extracted for each movie
information from the Internet Movie Databases IMDb [1] and used
it to determine, for each movie, to which of series it belongs (if
any). We also extracted the movie’s genre (action, drama, etc.).
For diversification, it is intuitively preferable not to have multiple
movie sequels in the set presented to the user, and to have movies
from different genres. We quantify this as follows.

• We denote below by sequel(i) the series to which an item
(movie) i belongs. We count the number of distinct series
to which the movies in Ik belong and divide this by k, the
number of movies in Ik. Namely, sequelDivers(Ik) =
|{sequel(i)|i∈Ik}|

k
. Observe that sequelDivers is a number

in the range of (0 : 1]. Higher values reflect higher diversity,
hence better result.

• We assume some total order (e.g. lexicographical) on the
possible move genres and denote by genres(i) a boolean
vector that records the (possibly multiple) genres of the movie
i. (A value 1 in entry j means that the movie i belongs to
genre i). To measure diversity we consider the pairwise dis-
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Figure 2: (a) Rating measure (b) Distance-based diversity (b) Semantic (sequel) diversity

Rating Distance-based Sequel
diversity diversity

PCT-D - + =
PCT-C - = =
Swap - + -
CT - - = =
optR ++ - - - -
optD - - ++ -

Table 1: Summary of the results (relative PCT-C)

tances (by the Cosine measure) between the vectors. Then,
genreDivers(Ik) = 1−average{cosine(genres(i), genres(j)) |
i, j ∈ Ik}. Here again genreDivers is a number in the range
of (0 : 1] with higher values reflecting higher diversity.

Figure 2 shows the values for the relevance, distance-based di-
versity, and sequel-based diversity, for the various algorithms, for
varying sizes of item sets I. The results for genre-based diversity
are similar to those of sequel-based one and are thus omitted for
space constraints. The figure depicts these values, for the sets com-
puted by the seven algorithms mentioned before: PCT-R, PCT-D,
PCD-C, Swap (with its tuned threshold), CT, optR and optD. k here
equals 5 and the size of the set I ranges from 10 to 1000.2

Recall that higher values here mean better results. Diversity gen-
erally increases when I grows, as there are more items to choose
from; Rating decreases, as more diverse but lower ranked items
are chosen. Table 1 provides a summary of the graphs in Figure
2 that highlights how the various algorithms perform (for the var-
ious measures) relative to PCT-R, and helps to explain why users
may have found its results superior. For an algorithm A and mea-
sure M , an “+” (resp. “++”) entry indicates that Algorithm A
generally performed slightly (significantly) better than PCT-R in
measure M . Similarly, “−” (resp. “−−”) indicates that A per-
formed slightly (significantly) worse than PCT-R in M . An “=”
entry indicates similar performance.

As expected optR have the highest rating value and lowest di-
versity. Analogously, optD has lowest rating value and highest
distance-based diversity. CT too has lowest rating value as it ig-
nores item ranks. An interesting point to observe is that although
some algorithms (and in particular optD) achieve better distance-
based diversity than PCT-R, no algorithm achieves better sequel di-
versity. This discrepancy occurs, intuitively, because optD tries to
maximize the total sum of distances without considering the (mini-
mal) distance between two individual representatives (and thus may
select two sequels in the same set). For a concrete example see
[6]. The same phenomenon occurs more generally in many real
life cases and explains why PCT-R is not handicapped by its non
optimal distance diversity. Indeed, its sequel diversity is close to
1 (meaning that, as desired, the result contains no sequels) and we
can see that no other algorithm was able to achieve better semantic
(sequel) diversity. Furthermore, among the algorithms that achieve
sequel diversity equal to that of PCT-R, it is the one with high-
2Recall that optD became infeasible for items sets of size greater
than 100, and we thus show results for them only up to that size.

est rating score, which can explain why its recommendations were
more favorable than the rest.

6. CONCLUSION
The DiRec plug-in presented in this paper allows CF recom-

mender systems to diversify the recommendations that they present
to users. It is based on a novel notion of priority-medoids that
declaratively balances the rating and the diversity of the recom-
mended items. We introduced priority cover-trees as a tool for
efficient selection of item representatives. Our solution further al-
lows for an effective realization of a natural “zoom-in” mechanism,
presenting to users similar yet diversified items. Our experiments
demonstrated the effectiveness of our recommendation diversifica-
tion technique and its superiority over previous proposals.

DiRec provides an effective solution in common scenarios where
semantic information is unavailable. Combining our ratings-based
(quantitative) approach with a semantic (qualitative) one, when such
semantic data is available, is an intriguing future research direction.
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