
Classifier Construction Under Budget Constraints
(Technical Report)

Shay Gershtein

Tel Aviv University

shayg1@mail.tau.ac.il

Tova Milo

Tel Aviv University

milo@post.tau.ac.il

Slava Novgorodov

eBay Research

snovgorodov@ebay.com

Kathy Razmadze

Tel Aviv University

kathyr@mail.tau.ac.il

ABSTRACT
Search mechanisms over large assortments of items are central

to the operation of many platforms. As users commonly express

filtering conditions based on item properties that are not initially

stored, companies must derive the missing information by training

and applying binary classifiers. Choosing which classifiers to con-

struct is however not trivial, since classifiers differ in construction

costs and range of applicability. Previous work has considered the

problem of selecting a classifier set of minimum construction cost,

but this has been done under the (often unrealistic assumption) that

the available budget is unlimited and allows to support all search
queries. In practice, budget constraints require prioritizing some

queries over others. To capture this consideration, we study in this

work a more general model that allows assigning to each search

query a score that models how important it is to compute its result

set and examine the optimization problem of selecting a classifier

set, whose cost is within the budget, that maximizes the overall

score of the queries it can answer.

We show that this generalization is likely much harder to ap-

proximate complexity-wise, even assuming limited special cases.

Nevertheless, we devise a heuristic algorithm, whose effectiveness

is demonstrated in our experimental study over real-world data,

consisting of a public dataset and datasets provided by a large

e-commerce company that include costs and scores derived by busi-

ness analysts. Finally, we show that our methods are applicable

also for related problems in practical settings where there is some

flexibility in determining the budget.

1 INTRODUCTION
Search mechanisms over large item sets are central to the operation

of many companies, such as e-commerce platforms, news sites, and

stock photo archives. Since users commonly express filtering condi-

tions based on item properties that initially are not explicitly stored

in a database, companies must derive these missing properties from

the item’s existing metadata, such as an image or a textual descrip-

tion, possibly also leveraging common knowledge. This is typically

achieved by training binary classifiers [58], that can test whether a

given conjunction of properties expressed in a user query holds for

any given item. Choosing which classifiers to construct is however

not trivial, since classifiers may significantly vary in the number of

search queries they are useful for and their construction cost, based,

e.g., on the required amount labeled data. Moreover, queries with

multiple filtering conditions can be addressed by multiple combina-

tions of classifiers, with each classifier evaluating a different subset

of these conditions.

Example 1.1. To illustrate these trade-offs, consider an online

platform,where users upload items for sale. Given the query “wooden

table”, many matching items may not be retrieved by the search

engine, since users did not explicitly specify the material, as it is

evident in the image. To address this, one can train a classifier that

identifies wooden tables specifically or a classifier that identifies

any wooden item. The classifier testing both properties simulta-

neously may require fewer training examples to achieve sufficient

accuracy than a classifier for all wooden items, as there is much

less variability in the features of tables. On the other hand, the

“wooden” classifier, while costlier, is also useful for queries involv-

ing other wooden items. Moreover, if some tables are not assigned

explicitly to a “tables” category (or items such as “table covers”

are erroneously assigned to this category), one may also need to

complement the “wooden” classifier with a “table” classifier.

Existing solutions. Previous work on this setting [18, 22, 23]

studied a model where given a query log and (estimated) construc-

tion costs of classifiers, one seeks a classifier set that can derive the

results sets of all the queries, such that the overall construction cost

is minimized. This model, however, is based on the often-unrealistic

assumption that the budget is unlimited and allows to support all
search queries. In practice, training each classifier is typically expen-

sive, as it requires humans to label a large volume of high-quality

training data. Thus, when the human or monetary resources are

insufficient to construct classifiers that compute result sets for all

queries, companiesmust prioritizemore frequent/important queries

for which there are economical classifiers.

Example 1.2. To illustrate these considerations, continuing with

the above example of an e-commerce platform, consider in addi-

tion to the “wooden table” search query, also the queries “round

table” and “running shoes”. Companies periodically allocate a given

budget for improving search engine performance, and in particular

search query results, and in this toy example, it may be the case

that the budget is insufficient to cover the cost of any classifier set

that can compute the results sets for all three queries.

For instance, constructing a classifier that identifies running

shoes may require more effort (and, thus, more money) than the

classifiers for the table queries, since it is, arguably, harder to deduce

from images and descriptions which shoes are suitable for running.

The cost estimations might imply that the company can either

construct classifiers for both table queries or only for the shoes

query. In either case, at least one query would remain with an

unsatisfactory result set.

Note that it is not necessarily the case that addressing the two

queries is better than the single query. It may be that it is more

important for the company to have improved results sets pertaining

to running shoes (e.g. these may be searched for and bought more

frequently), than both table queries. The prioritization of queries

is typically decided by business analysts, based on the search fre-

quency of each query, various monetary factors, and the existing

quality of result sets for different product domains. To account for

this prioritization, we provide a model that allows assigning to each

query a utility score, that reflects how important it is to compute

its result set.

Model. To capture budget constraints, we study in this work an

extension of the above model that includes an upper bound on the

cost of the solution, which, in general, may not allow computing all

queries. As queries vary in their importance, each may be assigned

a utility score modeling the gain of constructing classifiers that

compute it. We thus define the Budgeted Classifier Construction
problem (𝐵𝐶𝐶) of selecting a classifier set that maximizes the overall

utility, without exceeding the given cost bound (we will formalize

this high-level description in Section 2).

Length parameter. Before describing our results, we first de-

fine the length parameter, 𝑙 , that crucially affects the computational

complexity of 𝐵𝐶𝐶 . Namely, with queries expressed as a conjunc-

tion of properties, that should hold for each item in the result set,

the length parameter is defined as the maximum number of such

conjuncts (properties) in any input query.

Hardness Bounds. While the non-budgeted problem of [18,

22, 23] can be solved exactly in PTIME for 𝑙 ≤ 2 and reasonably

approximated for the 𝑁𝑃-hard case of 𝑙 ≥ 3, we show that 𝐵𝐶𝐶

is likely much harder, even when utilities and costs are uniform.

Concretely, for 𝑙 = 2, 𝐵𝐶𝐶 is at least as hard as the Densest k-
Subgraph problem (𝐷𝑘𝑆), where one seeks a subgraph on 𝑘 nodes

with the maximum number of edges. The exact hardness of 𝐷𝑘𝑆 ,

however, is unknown, and despite decades of extensive research, its

best known approximation factor isΘ(𝑛1/4), where 𝑛 is the number

of vertices, which translates to the number of distinct properties

appearing in the queries of the 𝐵𝐶𝐶 input. We, therefore, follow

in the footsteps of works that base hardness results on this 𝐷𝑘𝑆

bound [13, 16, 29] (i.e. any 𝑜 (𝑛1/4)-approximation algorithm for

𝐵𝐶𝐶 would an improve on the best𝐷𝑘𝑆 algorithm). Lastly, for 𝑙 = 3,

𝐵𝐶𝐶 is as hard as the hypergraph extension of 𝐷𝑘𝑆 , for which the

best approximation factor is Θ(𝑛0.62).
Algorithm. To offer a solution that, despite the worst-case hard-

ness bounds above, works well in practice, we leverage the high

prevalence of short queries in real-life workloads demonstrated in

[23] and provide an improved algorithm for 𝑙 = 2, which we then

extend to the general case. To this end, we generalize ideas from

several 𝐷𝑘𝑆 works [53, 62] and combine these with novel tech-

niques to devise a reduction from 𝐵𝐶𝐶 with 𝑙 = 2 to 𝐷𝑘𝑆 . We then

employ the state-of-the-art𝐷𝑘𝑆 heuristic [41], which was shown to

produce solutions close to optimal, scaling even to large graphs. To

further facilitate efficiency, we employ a pruning method, that can

significantly reduce the size of 𝐷𝑘𝑆 inputs, at the cost of a provably

small additive error. We also provide a worst-case constant bound

on the error incurred by our reduction. Lastly, to address the small

subset of queries where 𝑙 > 3, we devise a heuristic that allows to

progressively simplify the problem, such that a larger fraction of

the solution space corresponds to the case of 𝑙 = 2, for which we

have the effective algorithm above.

Experimental study. To evaluate our algorithm, we conduct an

empirical study over real-world data consisting of a public dataset

and private datasets provided by a large e-commerce company, that

include actual costs and utility values, as estimated by business

analysts. We remark that e-commerce is a particularly suitable

domain for the 𝐵𝐶𝐶 problem, since the most popular platforms have

massive product catalogs, with insufficient information to support

all search queries, as mentioned above. Consequently, e-commerce

platforms devote a lot of resources to training classifiers to improve

query answering [60]. Since e-commerce is a trillion-dollar industry,

even modest improvements in the quality and completeness of the

result sets presented to users can greatly increase profits.

The results of our evaluation demonstrate that our approach

qualitatively outperforms all examined baselines for a large range

of input parameters, in practical time for an offline task. We also

validate the robustness of this performance over synthetic data that

explores additional ranges of input parameters.

Complementary problems. In practical scenarios where there
is some flexibility in the budget constraint, there are alternative

objectives that may be of interest. For instance, companiesmaywish

to maximize the ratio of utility to cost, i.e. construct a classifier set

that provides maximum “bang for the buck”, or, given a utility target

(e.g., computing result sets for at least half of the search queries), to

find the classifier set of minimum cost that reaches it (this is a direct

generalization of [23], where the target was computing results to

all queries). In Section 5, we show that our analysis methods can

also be applied to derive complexity bounds and algorithms for

these two problems.

Our main contributions can be summarized as follows.

(1) We provide a formal model for the 𝐵𝐶𝐶 problem, extending

previousmodels to capture budget constraints and variability

in the importance of queries.

(2) We prove that 𝐵𝐶𝐶 is 𝑁𝑃-hard for any bound 𝑙 on the length

of the queries. For 𝑙 = 2 and 𝑙 ≥ 3 we show that, even with

uniform costs and utilities, 𝐵𝐶𝐶 is at least as hard as 𝐷𝑘𝑆

and its hypergraph extension, respectively, where the best

known approximations are of order 𝑝𝑜𝑙𝑦 (𝑛).
(3) Despite the worst-case hardness bounds, we combine novel

techniques with generalizations of existing methods to de-

vise a practical 𝐵𝐶𝐶 algorithm based on a reduction to the

𝐷𝑘𝑆 problem, which we then solve via the state-of-the-art

heuristic 𝐷𝑘𝑆 algorithm.

(4) We present an extensive experimental study over real-world

datasets, including a public dataset and private datasets ob-

tained from a large e-commerce site, as well as over synthetic

data, demonstrating the effectiveness and efficiency of our

algorithm.

(5) We also show that our methods provide hardness bounds

and algorithms for two related problems, where the goals

are to find a classifier set that: (1) minimizes the cost while

exceeding a given utility value; (2) maximizes the ratio of

utility to cost.

Paper outline. Section 2 presents formal problem definitions

and useful theoretical results. The hardness bounds and the al-

gorithm for 𝐵𝐶𝐶 are provided in Sections 3 and 4, respectively.

Complementary problems in the 𝐵𝐶𝐶 setting are studied in Section

5. Section 6 describes the setup and results of our empirical analysis.

We discuss related works in Section 7, and conclude in Section 8.

2

2 PRELIMINARIES
We open this section by describing the formal setting for the Bud-

geted Classifier Construction problem (𝐵𝐶𝐶), and how it relates

to practical settings. We then provide illustrations of problem in-

stances and highlight importantmodel properties. Finally, we present

definitions and results that will prove useful in our theoretical anal-

ysis (Sections 3, 4 and 5).

2.1 Problem Definition
Motivating setting. As explained in the introduction, the 𝐵𝐶𝐶

problem arises in practice when a company’s item database is miss-

ing information necessary to derive complete result sets for search

queries in a given workload. Each query’s filtering condition corre-

sponds to a conjunction of one or more properties that must hold

for each item in the result set. To complete the missing values,

companies construct binary
1
classifiers, where each classifier is

characterized by a set of properties, such that it can determine

whether their conjunction holds for any given item. However, con-

structing classifiers requires human effort, which costs money, and

it may be the case that it is too expensive to construct a classifier

set sufficient to answer all queries. Thus, given estimates of the

utility gain of answering each query, the 𝐵𝐶𝐶 optimization problem

seeks a classifier set that allows answering a subset of queries of

the highest total utility, without exceeding a given construction

budget.

Our model is agnostic to how utility is estimated and its units of

measure. The only property of utility values that is in effect is the

utility ratio of two queries representing the ratio of their importance

(i.e. the contribution to the objective function of covering the query).

In practice, the relative importance of each query can correspond to

how frequently it is submitted to the company’s search engine, or to

a more complex metric, that also takes into account an estimation of

the size of the result set or an associated monetary gain. Similarly,

the cost of each classifier (and the budget) can represent the number

of labeled training examples or the monetary cost of employing

domain experts or crowd workers. As these are highly correlated,

any cost measure would roughly derive the same problem instance.

Input. To formally model the above setting, we denote the uni-

verse of properties of size 𝑛, the input query set of size𝑚, and the

set of classifiers one can construct by 𝑃 , 𝑄 , and 𝐶𝐿, respectively.

As each query or classifier is fully captured by its corresponding

set of properties, we have 𝑄 ⊆ 2
𝑃
and 𝐶𝐿 ⊆ 2

𝑃
. For any query 𝑞,

let 𝐶𝐿𝑞 = 2
𝑞 \ ∅ denote its power set excluding the empty set. This

models the set of all possible binary classifiers that are relevant for

𝑞, each corresponding to a different subset of its properties. Hence,

the input classifier set is 𝐶𝐿 = ∪𝑞∈𝑄𝐶𝐿𝑞 , the union of the power

sets of all queries (except for the empty set). For example, if the

query set consists of the two queries “wooden table” and “round ta-

ble”, then the property set is 𝑃 = {𝑤𝑜𝑜𝑑𝑒𝑛, 𝑟𝑜𝑢𝑛𝑑, 𝑡𝑎𝑏𝑙𝑒}, the query
set is 𝑄 = {{𝑤𝑜𝑜𝑑𝑒𝑛, 𝑡𝑎𝑏𝑙𝑒}, {𝑟𝑜𝑢𝑛𝑑, 𝑡𝑎𝑏𝑙𝑒}}, and the classifier set

is 𝐶𝐿 = {𝑤𝑜𝑜𝑑𝑒𝑛, 𝑟𝑜𝑢𝑛𝑑, 𝑡𝑎𝑏𝑙𝑒, {𝑤𝑜𝑜𝑑𝑒𝑛, 𝑡𝑎𝑏𝑙𝑒}, {𝑟𝑜𝑢𝑛𝑑, 𝑡𝑎𝑏𝑙𝑒}}.
To simplify notation, we use 𝑥 ,𝑦 and 𝑧 to represent properties,

denoting a query {𝑥,𝑦, 𝑧} as 𝑥𝑦𝑧, whereas a classifier {𝑥,𝑦, 𝑧}, that

1
Compared to multi-valued classifiers, which are trained towards a more general

objective, binary classifiers have higher classification accuracy, and are thus preferred

in practice, when accuracy is essential [58].

tests for the conjunction of the same properties, is denoted by 𝑋𝑌𝑍 .

For example, if the properties “wooden” and “table” are 𝑥 and 𝑧,

respectively, then the classifier that tests for wooden tables is 𝑋𝑍 .

The utility associated with each query is represented by the

function 𝑈 : 𝑄 ↦→ R+. If, e.g., a company considers that it is twice

as valuable to compute the result set of the query “round table”

than of “wooden table”, then the utility of the former query would

be twice as large. Similarly, the cost of each classifier is represented

by𝐶 : 𝐶𝐿 ↦→ [0,∞), with the budget denoted by 𝐵 ∈ R+. The input
for the 𝐵𝐶𝐶 problem is thus the tuple ⟨𝑄,𝑈 ,𝐶, 𝐵⟩.

We note that a classifier of cost 0 implies either that it is al-

ready constructed or that the corresponding properties are fully

recorded in the database (e.g., if the classifier “wooden table” is

already constructed, then its cost would be zero), whereas an infi-

nite cost implies that the classifier is omitted from consideration in

advance, typically since it is deemed impractical to construct. For

example, classifying whether an item is “round (and) wooden” with

no additional context, may be considered impractical, as in each

domain the visual features of such items may be vastly different

(e.g., round wooden mirrors have only wooden frames, whereas

round wooden tables are primarily wood).

Covering queries. Before defining the objective, we first need

to formalize which classifier combinations are sufficient to deter-

mine the result set for a given query.

For any subset 𝑆 ⊆ 𝐶𝐿, we define 𝑃 (𝑆) = ∪𝑋 ∈𝑆𝑋 as the set of

all properties appearing in classifiers in 𝑆 . We say that a query 𝑞 is

covered by 𝑆 ⊆ 𝐶𝐿 if ∃𝑇 ⊆ 𝑆 : 𝑃 (𝑇) = 𝑞. That is, a query is covered

by a set of classifiers if it contains a subset of classifiers whose

conjunction tests exactly the truth value of the conjunction of

exactly the properties in the query. For example, the two classifiers

“wooden table” and “round table” cover together the query “round

wooden table”. A set of queries covered by 𝑆 ⊆ 𝐶𝐿 is denoted by

𝑄 (𝑆), and the utility of 𝑆 is defined as the sum of utilities of 𝑄 (𝑆).
Objective. The cost of a set of classifiers 𝑆 is defined as the sum

of the individual costs 𝐶 (𝑆) = ∑
𝑠∈𝑆 𝐶 (𝑠). The solution space of

the 𝐵𝐶𝐶 problem consists of classifier sets whose cost does not

exceed the budget. The objective of 𝐵𝐶𝐶 is to find a classifier set of

maximum utility in this solution space. More formally, we aim to

compute

𝑎𝑟𝑔𝑚𝑎𝑥𝑆⊆𝐶𝐿,𝐶 (𝑆) ≤𝐵
∑

𝑞∈𝑄 (𝑆)
𝑈 (𝑞) .

Model assumptions. We assume that the classifiers are con-

structed in parallel and that their construction costs are indepen-

dent.While some overlapsmay exist in practice, e.g., shared training

examples, it is arguably not trivial to quantify these a priori. Hence,

as in [23], in our model the cost of each classifier is independent,

and the overall cost of a classifier set is the sum of the individual

costs.

We also follow [23] in assuming that partial coverage of a query

is insufficient to provide any utility, as research shows that in many

cases conforming only partially to search criteria can have an even

worse effect on user satisfaction than not conforming at all [31].

Moreover, as in the case of construction costs, estimating in advance

the relative utility of such partial covers out of the overall utility of

the query is challenging.

3

Q = {xyz ,xz ,xy}

U(xyz) = 8
U(xz) = 1
U(xy) = 2

C(X) = 5
C(Y) = C(Z) = C(XYZ) = 3
C(XZ) = 4
C(YZ) = 0
C(XY) = ∞

B = 3
Solution = {YZ, XYZ}
Overall Utility = 8

B = 4
Solution = {YZ, XZ}
Overall Utility = 9

B = 11
Solution = {YZ, X, Y, Z}
Overall Utility = 11

Figure 1: Three examples of 𝐵𝐶𝐶 problem instances. The left
side depicts the queries, utilities and costs, shared by all in-
stances. The three different budget values, and the optimal
solution corresponding to each value are depicted on the
right side.

We, thus, leave to future work the study of models with more

complex inputs, that account for overlaps in construction costs or

partial covers that provide quantifiable value.

Length parameter.We refer to the cardinality of a query as its

length. Let 𝑙 = 𝑙𝑄 denote the maximal length of a query in 𝑄 . This

is an important parameter of the problem, as we derive different

approximation bounds for the cases, 𝑙 = 1, 𝑙 = 2 and 𝑙 ≥ 3. In

our analysis 𝑙 is assumed to be a constant (in practice, it rarely

exceeds 5 [27]). We use the notation 𝐵𝐶𝐶𝑙=𝑖 to denote the 𝐵𝐶𝐶

problem where 𝑙 = 𝑖 . Similarly, we define the length of a classifier

as the number of properties it tests. For example, the length of the

classifier 𝑋𝑌 is 2. We refer to queries and classifiers of length 1 as

singleton queries and singleton classifiers, respectively.

Input size.We denote the number of queries in 𝑄 by𝑚 and the

number of properties in 𝑃 = ∪𝑄𝑞 by 𝑛. Given 𝑛, the lower bound on
𝑚 is

𝑛
𝑙
(this matches the case where all queries are disjoint and of

length 𝑙), whereas the upper bound is 𝑂 (𝑛𝑙) corresponding to the

maximum number of distinct subsets of size at most 𝑙 = Θ(1). Thus,
𝑚 is at least of the order of 𝑛, and possibly polynomially larger.

The number of classifiers is also polynomial in 𝑛 (and 𝑚). To

see this, observe that 𝐶𝐿 does not include all possible classifiers

corresponding to all subsets of 𝑃 . For instance, if 𝑃 = {𝑥,𝑦, 𝑧} and
𝑄 = {𝑥𝑦, 𝑥𝑧}, then𝐶𝐿 = {𝑋,𝑌, 𝑍, 𝑋𝑌,𝑋𝑍 }. The classifier 𝑌𝑍 is not

included in𝐶𝐿, since it is not relevant to the solution of the problem.

Concretely, since no query includes both 𝑦 and 𝑧, the classifier 𝑌𝑍

cannot be used to cover any query. It follows that the number of

classifiers does not exceed𝑚 · 2𝑙 = Θ(𝑚).
The following toy example illustrates problem instances of𝐵𝐶𝐶𝑙=3

in the above model.

Example 2.1. Consider the input in Figure 1. We will examine

three problem instances over the same input, except for different

budget values. The shared input, consisting of three queries, their

utilities, and the costs of the seven relevant classifiers, is depicted

on the left side of the figure, whereas on the right side optimal

solutions are presented, corresponding to the three budget values,

𝐵 ∈ {3, 4, 11}.
As the classifier𝑌𝑍 costs nothing, it can be preemptively selected

into any solution. Conversely, the classifier 𝑋𝑌 of infinite cost can

be omitted from consideration.

To provide a practical context, one can assume that 𝑥 ,𝑦, and 𝑧 are

the properties “round”, “wooden” and “table”, respectively. Then,

the classifier “wooden table” (𝑌𝑍) costing nothing implies that it is

already constructed. Similarly, the classifier “round wooden” costs

∞, as it is not considered practical to construct.

Instance with 𝐵 = 3. As every query contains the property 𝑥 , to

cover a query one must select a classifier that also contains this

property. When the budget is 3, the only valid classifier containing

𝑥 is 𝑋𝑌𝑍 . This covers the first query 𝑥𝑦𝑧, as the classifier matches

it exactly. With this being the only covered query, the utility of the

solution {𝑌𝑍,𝑋𝑌𝑍 } is 8, the utility of the covered query. Observe

that the inclusion of the free classifier𝑌𝑍 is optional, as the solution

{𝑋𝑌𝑍 } has the same utility and cost.

Instance with 𝐵 = 4. When the budget increases to 4, of the

classifiers containing 𝑥 , one can also select𝑋𝑍 , which consumes the

entire Budget. It turns out that this solution ({𝑌𝑍,𝑋𝑍 }) improves

the overall utility, as it covers both 𝑥𝑦𝑧 and 𝑥𝑧, whose combined

utility is 9. Concretely, 𝑥𝑧 is covered by 𝑋𝑍 , since it matches it

exactly, while 𝑥𝑦𝑧 is covered by the conjunction of {𝑌𝑍,𝑋𝑍 }. Note
that their union is exactly these three properties, and that the

overlap in 𝑧 makes no difference, as the conjunction 𝑥𝑦𝑧 holds if

and only if both conjunctions 𝑦𝑧 and 𝑥𝑧 hold.

Instance with 𝐵 = 11. To improve on the previous instance, one

must cover 𝑥𝑦. It is easy to see that to cover the query 𝑥𝑦 one must

select both 𝑋 and 𝑌 since 𝑋𝑌 cannot be selected. Their conjunction

covers 𝑥𝑦, and when also adding the free classifier 𝑌𝑍 , the three

classifiers cover 𝑥𝑦𝑧. This leaves a budget of 3 to cover 𝑥𝑧 as well.

The classifier 𝑋𝑍 is too expensive, however, 𝑍 costs exactly 3, and

its conjunction with 𝑋 covers 𝑥𝑧. Thus, when the budget is 11, the

solution {𝑌𝑍,𝑋,𝑌, 𝑍 } covers all queries, and its total utility is 11.

Note that, as in the first instance, selecting 𝑌𝑍 is optional.

Absence of costs or utilities. In some cases, it may be hard

to estimate the costs in advance. In the absence of values that dif-

ferentiate between classifiers, the natural compromise would be

assuming uniform costs. An analogous argument applies to using

uniform utilities. Moreover, to significantly reduce input size and

complexity, one can restrict the solution space to singleton classi-

fiers. This begs the question of whether the 𝐵𝐶𝐶 problem becomes

much easier for practical use-cases with such limitations. To this

end, we show that all our hardness bounds hold, even when assum-

ing all the aforementioned restrictions (Theorem 3.3 in Section 3),

and our algorithms for the general case address these special cases

with improved theoretical performance (Section 4).

2.2 Existing Results
We next present definitions and theoretical results for various prob-

lems, which we will leverage in our hardness analysis and algo-

rithms. To simplify the presentation, we use a “soft omega” notation,

Θ̃(·), to hide negligible factors.

We start with the well-known Knapsack problem.

Definition 2.2. In the Knapsack problem, there are 𝑛 items, each

with a nonnegative value and weight, and a bound𝑊 . The objective

is to select a subset of the items whose total weight does not exceed

𝑊 , such that the sum of the item values is maximized.

Theorem 2.3. [65] The Knapsack problem is NP-hard. However,
for any 𝜖 > 0, it admits (1 + 𝜖)-approximation.

4

We next overview the problem studied in [23], the immediate

predecessor of the present work.

Definition 2.4. In the Minimization of Classifier Construction

Costs problem (𝑀𝐶3), the setting is the same as in 𝐵𝐶𝐶 , except that

the input does not include utilities or a budget, and the goal is to

produce a classifier set of minimum cost such that it covers all of

the queries.

Theorem 2.5. [23] The𝑀𝐶3 problem where the maximum length
parameter is 𝑙 = 2 can be solved exactly in PTIME. For 𝑙 > 3 the prob-
lem is𝑁𝑃-hard, and can be approximatedwithin amin{2𝑙−1,𝑂 (log𝑛)}
factor.

A more central role in our analysis is played by graph and hy-

pergraph density problems, as defined next (recall that hyperedges

in a hypergraph correspond to node subsets of cardinalities that

may exceed 2).

Definition 2.6. In the Densest k-Subgraph problem (𝐷𝑘𝑆), given a

graph on 𝑛 nodes and an integer 𝑘 , the goal is to find a subgraph

on 𝑘 nodes with the highest number of edges. The extension where

edges have positive weights and the goal is to maximize the sum of

edges weights in the subgraph is the Heaviest k-Subgraph problem
(𝐻𝑘𝑆). Further generalizing 𝐻𝑘𝑆 to have node costs, and replacing

the cardinality bound 𝑘 with a total cost bound 𝐵, is the Quadratic
Knapsack problem (𝑄𝐾). Finally, the Densest 𝑘-Subhypergraph prob-
lem (𝐷𝑘𝑆𝐻) asks for a subhypergraph of𝑘 nodes with themaximum

number of hyperedges.

The following is known of the approximation hardness of 𝐷𝑘𝑆

and its generalizations.

Theorem 2.7. [6, 7, 62] All four problem in Definition 2.6 are
𝑁𝑃-hard, even when all node degrees equal 3. Additionally, 𝐷𝑘𝑆 and
𝐻𝑘𝑆 can be approximated within a �̃� (𝑛1/4) factor. For𝑄𝐾 this factor
increases to �̃� (𝑛0.4). Finally, 𝐷𝑘𝑆𝐻 with hyperedges of size 3, admits
�̃� (𝑛0.62)-approximation.

Conjectured hardness of DkS. Despite decades of study [19,

39], there remains a large gap between the proven hardness of

𝐷𝑘𝑆 and the best known approximation factor, �̃� (𝑛1/4) [7]. Under
widely-believed complexity assumptions, it cannot be approximated

towithin a constant factor [3]. There are also stronger superlogarith-

mic bounds derived under stronger assumptions [47]. Nevertheless,

we follow in the footsteps of works that reduce the hardness of ex-

amined problems to the hardness of 𝐷𝑘𝑆 [13, 16, 29], as the “Dense

vs Random” conjecture [17, 48] implies that the �̃� (𝑛1/4) factor is
tight. The discussion above also roughly applies to 𝐷𝑘𝑆𝐻 , where

there are somewhat stronger hardness results[4].

3 HARDNESS RESULTS
In this section, we provide approximation hardness bounds showing

that 𝐵𝐶𝐶 is 𝑁𝑃-hard for any 𝑙 and may become much harder to

approximate as 𝑙 increases.

We first show a simple equivalence between 𝐵𝐶𝐶𝑙=1
and the

Knapsack problem (Definition 2.2), implying that Theorem 2.2 ap-

plies to 𝐵𝐶𝐶𝑙=1
as well.

Theorem 3.1. The 𝐵𝐶𝐶𝑙=1
problem is equivalent to the Knapsack

problem.

Proof. Observe that for 𝑙 = 1 each query is a single property,

and the only classifier that can cover it also corresponds to this

property. The equivalence is implied immediately by considering

each item, 𝑥 , in the Knapsack context, as a (singleton) query 𝑥 , with

its value and weight corresponding to the utility of 𝑥 and the cost

of 𝑋 , respectively (and the weight bound𝑊 is the budget 𝐵). □

For 𝐵𝐶𝐶𝑙=2
, we prove that it generalizes𝐷𝑘𝑆 (Definition 2.6), and

is thus is at least as hard. In particular, following the discussion in

Section 2, any 𝑜 (𝑛1/4)-approximation algorithm for 𝐵𝐶𝐶 (recall that

𝑛 = |𝑃 | is the number of properties), would imply an improvement

over the best known 𝐷𝑘𝑆 algorithm. Similarly, 𝐵𝐶𝐶𝑙=3
generalizes

𝐷𝑘𝑆𝐻 with edges of cardinality 3 (Definition 2.6), for which the

best known approximation factor is Ω(𝑛0.62). Finally, since 𝐵𝐶𝐶
can only become harder as 𝑙 increases (e.g., adding one query that

increases 𝑙 , and of otherwise negligible effect, would retain the

same hardness), all bounds also apply when 𝑙 > 3.

We next define the special cases of 𝐵𝐶𝐶 that are equivalent to

𝐷𝑘𝑆 and 𝐷𝑘𝑆𝐻 .

Definition 3.2. Let 𝐼𝑙 denote the 𝐵𝐶𝐶 problem restricted to inputs

where all queries are of length 𝑙 , all utilities and costs of singleton

classifiers are 1, all other classifier costs are∞, and the budget is

an integer.

Considering these 𝐼𝑙 variants implies the following result.

Theorem 3.3. The 𝐵𝐶𝐶 problem with 𝑙 = 2 and 𝑙 ≥ 3 is at least
as hard as 𝐷𝑘𝑆 and 𝐷𝑘𝑆𝐻 , respectively. In particular, 𝐼𝑙 for 𝑙 = 2 and
𝑙 = 3 is equivalent to𝐷𝑘𝑆 and𝐷𝑘𝑆𝐻 with hyperedges of cardinality 3,
respectively. When modifying 𝐼2 such that all classifier costs (instead
of only singletons) are uniform, the inapproximability of the problem
is retained.

Proof. We next show that 𝐼2 and𝐷𝑘𝑆 are different formulations

of the same problem. The proof for 𝐼3 is completely analogous and

thus omitted.

We denote a 𝐷𝑘𝑆 instance by ⟨𝐺,𝑘⟩, where 𝐺 is a graph with

nodes 𝑉 and edges 𝐸. The bijection between the 𝐷𝑘𝑆 and 𝐼2 in-

stances is as follows: the node-set 𝑉 corresponds to the properties

𝑃 (the set of singleton classifiers is thus also 𝑉); the edges 𝐸 cor-

respond to the queries 𝑄 ; the budget 𝐵 corresponds to 𝑘 ; any 𝐼2
solution 𝑆 consisting of a set of classifiers corresponds to the same

𝐷𝑘𝑆 solution 𝑆 of vertices. The equivalence then follows from ob-

serving that the set of edges in the subgraph, 𝐺𝑆 , induced by 𝑆 is

the same as the set of queries that are covered by the classifier set 𝑆 .

Since all utilities equal 1, the utility of a classifier set 𝑆 is the same

as the number of edges in 𝐺𝑆 .

It remains to prove the final argument in Theorem 3.3, regarding

the modified 𝐼2 special case, where all classifiers are feasible and of

uniform cost. This is done by showing that any 𝐵𝐶𝐶 algorithm for

this modified special case can be adapted such that it only selects

singleton classifiers, without reducing the objective value of the

solution. Thus, this special case cannot be easier to approximate

than 𝐼2, as it would imply an improved algorithm for 𝐼2 and its

equivalent 𝐷𝑘𝑆 formulation as well.

The proof combines the following two observations. First, for

hard𝐷𝑘𝑆 instances, where we assume in particular that the optimal

solution does not include a component that is a tree (𝐷𝑘𝑆 has a

5

simple exact algorithm over trees [44]), it is straightforward to

produce a solution where the number of edges in the subgraph is

at least 𝑘 . Concretely, any non-tree connected component of size

𝑘 has this property (if all connected components are smaller than

𝑘 , one can select a union of the densest connected components).

The second observation is that every classifier of length two covers

exactly one query (the one with the same property), and contributes

to covering no other query. From these two observations it follows

that no solutions of 𝑘 classifiers of length 2 can exceed a utility

of 𝑘 , that is a lower bound on the trivial solution of 𝑘 singleton

classifiers corresponding to the 𝑘 vertices in the 𝐷𝑘𝑆 context as

described above. More generally, assume that a solution in the 𝐵𝐶𝐶

context is a union 𝑆 = 𝑆1 ∪𝑆2, where 𝑆𝑖 consist only of classifiers of

length 𝑖 . Then one can modify the solution 𝑆 , by replacing 𝑆2 with

|𝑆2 | singleton classifiers that correspond to a non-tree connected

subgraph in the corresponding 𝐷𝑘𝑆 instance, that contains at least

|𝑆2 | edges. This results in a solution of at least the same utility,

thereby completing the proof. □

4 ALGORITHM
In this section, we devise a 𝐵𝐶𝐶 algorithm that, despite the inap-

proximability bounds (Section 3), is demonstrated to perform well

over real-world data (Section 6). Before presenting our solution,

we note that it has been observed in [23] that in real-life work-

loads most queries are of length at most 2. This fact was exploited

there to design an algorithm (for the non-budgeted problem) that

first solves the problem over the subset of queries where 𝑙 = 2,

and then extends the solution to the residual queries. Our solution

exploits this property as well, and, accordingly, we first describe

an improved algorithm for 𝐵𝐶𝐶𝑙=2
, based on a reduction to 𝐷𝑘𝑆 ,

before presenting its extension for the general case.

Importantly, while we leverage the Set Cover solution of [23]

(which is unrelated to 𝐷𝑘𝑆) in a black-box manner as a heuristic

local search optimization, all other components of our algorithm are

entirely different from the methods of [23], as our generalized prob-

lem is likely much harder to approximate. In particular, we must

leverage an effective heuristic for the 𝐷𝑘𝑆 special case, and, thus,

apply a more granular treatment in our reduction, compared to the

Set Cover setting, to ensure that the performance of our algorithm

for the general 𝐵𝐶𝐶 problem roughly preserves the performance

ratio of the 𝐷𝑘𝑆 heuristic.

4.1 Algorithm for 𝑙 = 2

The first phase of our algorithm for 𝐵𝐶𝐶𝑙=2
breaks down the prob-

lem, such that we need to solve a Knapsack and a𝑄𝐾 (Definition 2.6)

instance, with the optimal solution to one of these problems yield-

ing at least half of the optimal utility of the original 𝐵𝐶𝐶 instance.

If most of the utility can be derived from the Knapsack instance,

then we can provide an effective solution that yields at least half of

the optimal utility for the 𝐵𝐶𝐶 instance, as the Knapsack problem

can be approximated to arbitrary precision (Theorem 2.3). However,

when the utility derived from the Knapsack instance is insufficient,

we need to solve the much harder 𝑄𝐾 problem, which is the focus

of all the subsequent phases of the algorithm. Specifically, we will

first show that we can modify the currently best approximation

algorithm for 𝑄𝐾 [62] to derive improved worst-case guarantees

for 𝑄𝐾 and 𝐵𝐶𝐶𝑙=2
. However, since this algorithm is still not suffi-

ciently scalable and is tailored mostly to the worst-case instances,

we further modify several of its key components to use the state-of-

the-art 𝐻𝑘𝑆 (Definition 2.6) heuristic [41] and prove that our new

reduction (to 𝐻𝑘𝑆) makes better use of this heuristic in terms of

the approximation factor.

To describe how to break down the 𝐵𝐶𝐶𝑙=2
problem into the

Knapsack and 𝑄𝐾 subproblems, we need the following definitions

and observations, which we also illustrate with examples.

BCC(i) subproblems. Given a query 𝑞, we call a set 𝑆𝑖 of 𝑖

classifiers that cover 𝑞 an 𝑖-cover if any proper subset of 𝑆𝑖 does not
cover 𝑞. We accordingly denote by 𝐵𝐶𝐶 (𝑖), for 𝑖 ≤ 𝑙 , the modified

𝐵𝐶𝐶 problem where for each given solution (classifier set) 𝑆 , a

query 𝑞 is covered by 𝑆 if and only if 𝑆 contains an 𝑖-cover of 𝑞. To

illustrate, consider the following example.

Example 4.1. In a (standard) 𝐵𝐶𝐶 instance, where the query set is

𝑄 = {𝑥𝑦𝑧, 𝑥𝑦, 𝑥} (for brevity, we omit here the input costs, utilities,

and budget bound, as these are inconsequential for the arguments

in this example) if we select the classifier set 𝑆 = {𝑋,𝑋𝑌, 𝑍 }, then
all three queries are covered. However, in the 𝐵𝐶𝐶 (1) instance over
the same input, the classifier set 𝑆 only covers the queries 𝑥 and

𝑥𝑦, as these are the only queries for which 𝑆 contains a 1-cover.

Namely, 𝑥 is 1-covered by 𝑋 , and 𝑥𝑦 is 1-covered by 𝑋𝑌 (in general,

in 𝐵𝐶𝐶 (1), a query can only be covered by the identical classifier).

Similarly, for 𝐵𝐶𝐶 (2) over the same input, 𝑆 covers only 𝑥𝑦𝑧 (with

the two classifiers 𝑋𝑌 and 𝑍). In contrast, the singleton query 𝑥

cannot be 2-covered by any classifier set, and the query 𝑥𝑦 can only

be 2-covered by {𝑋,𝑌 } (note that the selection {𝑋,𝑋𝑌 } is not a
2-cover of 𝑥𝑦 since 𝑋 is dispensable). Lastly, in the corresponding

𝐵𝐶𝐶 (3) instance, no query is 3-covered. Moreover, only 𝑥𝑦𝑧 can be

3-covered (and only via the set {𝑋,𝑌, 𝑍 }).
Each query covered by an optimal 𝐵𝐶𝐶 solution is 𝑖-covered for

at least one 𝑖 ∈ [𝑙] (recall that 𝑙 is the maximum length of any query

in the input). Thus, at least 1/𝑙 of the optimal utility is derived by

at least one of these cover types.

Observation 4.2. Given a 𝐵𝐶𝐶 input with an optimal solution of
utility𝑈𝑂 , at least one of the problems 𝐵𝐶𝐶 (𝑖) over the same input,
has a solution of utility at least𝑈𝑂/𝑙 .

It follows that we can partition 𝐵𝐶𝐶 into the 𝐵𝐶𝐶 (𝑖) subprob-
lems, solve each separately, and choose the best solution, such that

the overall approximation factor is higher by at most 𝑙 than the

worst factor of any subproblem.

Knapsack subproblem. For 𝐵𝐶𝐶 (1), each query can only be

covered by the classifier that is identical to it, which implies the

following extension of Theorem 3.1 (Section 3).

Observation 4.3. 𝐵𝐶𝐶 (1) is equivalent to the Knapsack problem.

QK subproblem. In 𝐵𝐶𝐶𝑙=2
(2), only queries of length 2 and

singleton classifiers are relevant. Moreover, each query 𝑥𝑦 can

only be 2-covered by the set {𝑋,𝑌 }. This implies a straightforward

equivalence to 𝑄𝐾 .

We next formalize this observation and then illustrate it with an

example.

Observation 4.4. 𝐵𝐶𝐶𝑙=2
(2) is equivalent to𝑄𝐾 when modeling

it as a graph, where the nodes are the classifiers, the edges are the
6

Q = {xy, yz, xz}

U(xy) = 2
U(yz) = 1
U(xz) = 2

Knapsack Instance

Items Weight Value

XY 3 2

YZ 1 1

XZ 3 2

X Z

Y

1 3

1
2

2

1

QK Instance

C(X) = C(Y) = C(YZ) = 1
C(Z) = C(XY) = C(XZ) = 3

B = 3

 W = 3
Optimal solution: {XZ} (of value 2)

Optimal solution:
{X, Y, YZ} (of utility 3)

 B = 3
Optimal solution: {X, Y} (of weight 2)

BCC Instance

Figure 2: Example of a 𝐵𝐶𝐶 instance with 𝑙 = 2, separated
into Knapsack and 𝑄𝐾 instances. The optimal solution of
each instance is depicted next to the corresponding input.

queries (i.e. a query 𝑥𝑦 is an edge connecting 𝑋 and 𝑌), the node
costs and edge weights are the costs and utilities, respectively, and the
budget 𝐵 is the same.

The following example illustrates the above approach.

Example 4.5. Consider the 𝐵𝐶𝐶𝑙=2
input depicted on the upper

half of Figure 2. Its partition into a Knapsack instance (modeling

the 𝐵𝐶𝐶 (1) subproblem), and a𝑄𝐾 instance (modeling the 𝐵𝐶𝐶 (2)
subproblem), is depicted on the bottom of the figure. Next to each of

the three inputs, the corresponding optimal solution is presented.

Observe that, w.r.t. the optimal solution of the 𝐵𝐶𝐶 instance, the

query𝑦𝑧 is 1-covered by𝑌𝑍 yielding utility 1, and the query 𝑥𝑦 is 2-

covered by {𝑋,𝑌 } yielding utility 2. Correspondingly, the solution

𝑌𝑍 also yields value 1 in the Knapsack instance, and the solution

{𝑋,𝑌 } also yields weight 2 in the 𝑄𝐾 instance. This demonstrates

that the optimal utility is partitioned across the two subproblems.

Moreover, in the Knapsack instance, 𝑌𝑍 is not even the optimal

solution, as 𝑋𝑍 is more valuable. This demonstrates that the worst-

case factor of 2 is not necessarily lost in the performance ratio

when partitioning the 𝐵𝐶𝐶 instance. In this case, the solutions

to the Knapsack and 𝑄𝐾 instances both provide utility 2 in the

original 𝐵𝐶𝐶 context, and choosing any of them results in a (2/3)-
approximation.

Algorithm with worst-case bounds. As explained above, our

algorithm separates 𝐵𝐶𝐶𝑙=2
into a 𝐵𝐶𝐶 (1) subproblem, that can

be approximated to arbitrary precision via a Knapsack algorithm

(Theorem 2.3), and a 𝐵𝐶𝐶 (2) subproblem that can be solved via a

�̃� (𝑛0.4) PTIME algorithm [62] (our code solves both problems in

parallel). Selecting the best of the two solutions guarantees �̃� (𝑛0.4)-
approximation. Moreover, we show that a modification of the algo-

rithm in [62], denoted henceforth as 𝐴
𝑄𝐾

𝑇
, improves this factor to

�̃� (𝑛1/3), which carries over directly to 𝐵𝐶𝐶𝑙=2
.

Lemma 4.6. There are �̃� (𝑛1/3)-approximation algorithms for 𝑄𝐾
and 𝐵𝐶𝐶𝑙=2

.

Proof. Wenext outline, for completeness, the �̃� (𝑛0.4)-approximation

algorithm for𝑄𝐾 devised in [62], and then explain the simple mod-

ification that improves its performance to �̃� (𝑛1/3). We remark that,

for simplicity, our description slightly differs from the algorithm

in [62] (we focus on the worst-case instances, as we only mod-

ify the operation of the algorithm over these inputs), however, all

differences are inconsequential for the performance analysis.

Normalization. The first step is to normalize the edge weights

and node costs. For this, we divide all edge weights by 𝑤𝑚𝑎𝑥/𝑛2
,

where𝑤𝑚𝑎𝑥 is themaximumweight of any edge that can be covered

(we can assume w.l.o.g. that all edges can be covered with the given

budget, as otherwise edges with overly-expensive endpoints can be

pruned). This ensures that all edge weights are of order𝑂 (𝑝𝑜𝑙𝑦 (𝑛)).
We then remove all edges of weights below 1. Since there are less

than 𝑛2/2 such edges, the sum of weights of all these edges is

less than half of the weight of the edge of the highest weight, and

therefore, by discarding these edges we lose at most a factor of 2 in

the performance ratio. Lastly, we round all edge weights down to

the nearest power of 2. This also loses at most a factor of 2 in the

optimality.

We perform a similar operation on the costs: we divide the budget

and the node costs by 𝐵/𝑛. It is shown in [62], that we can assume

that all node costs are at most 𝐵/4 (as a solution can contain at

most 4 such nodes, and we can solve the problem separately for

each such choice, out of the 𝑂 (𝑛4) possibilities, retaining a PTIME

performance). It is further shown in [62] that when reducing the

budget by a constant factor the loss in the optimal weight is of

a 𝑂 (1) factor. Hence, we will in the sequel perform several such

operations, without accounting for the optimality loss which is

bounded by a constant factor. We can, thus, select all nodes of cost

at most 1, as this uses up at most half of the budget. Additionally,

we round down the budget to the nearest power of 2 and similarly

round up the node costs to the nearest power of 2 (the loss in

optimality is smaller than in the case where we instead decrease the

budget by a factor of 4, which, as mentioned above, has a negligible

effect). This overall ensures that the remaining node costs are all

within the range of [1, 𝐵/4].
Partitioning the edges into 𝑂 (log

3 𝑛) subgraphs. Following
the normalization, we examine separately 𝑂 (log

3 𝑛) subgraphs of
the input graph 𝐺 , such that the edges are partitioned across all

these subgraphs. We then solve the 𝑄𝐾 instance over each sub-

graph separately and choose the solution of the highest weight.

Since the union of the edges in all instances is the original edge

set, it follows that the optimal weight that can be covered in at

least one of the instances is at least a 1/𝑂 (log
3 𝑛)-fraction of the

optimal weight that can be derived in the original graph. Therefore,

by solving the problem separately over each subgraph we lose at

most a factor of 𝑂 (log
3 𝑛) in the performance, which is negligible

compared to the final loss of a𝑂 (𝑛1/3) factor. Observe that without
the normalization, the lost factor would be 𝑂 (log

2 𝐵 · log𝑤𝑚𝑎𝑥),
which may be arbitrarily larger.

Specifically, we next examine separately all subgraphs of 𝐺 , in-

dexed by {𝑖, 𝑗, 𝑡}, where 𝑖, 𝑗, 𝑡 ∈ [𝑂 (log𝑛)] and 𝑖 ≥ 𝑗 , such that

subgraph𝐺𝑖, 𝑗,𝑡 contains exactly the edges of weight 2
𝑡
that connect

a node of weight 2
𝑖
to a node of weight 2

𝑗
(the node set in each

subgraph is the union of all endpoints of these edges).

7

When solving the 𝑄𝐾 problem over each graph, 𝐺𝑖, 𝑗,𝑡 , note that

we can ignore the edge weights, as these all have the same value

of 2
𝑡
. Therefore, the objective simplifies to finding a subgraph that

maximizes the number of the edges.
Furthermore, note that if 𝑖 = 𝑗 , then all node costs are uniform

as well, which means that the budget constraint simplifies into a

cardinality bound of selecting at most 𝑘 = 𝐵/2𝑖 nodes. Hence, we
can apply the �̃� (𝑛1/4)-approximation 𝐷𝐾𝑆 algorithm of [7] over

any graph 𝐺𝑖,𝑖,𝑡 , ensuring a performance ratio of �̃� (𝑛1/4) for the
𝑄𝐾 problem as well.

We next handle the harder case where 𝑖 > 𝑗 .

Solving 𝑄𝐾 on a simplified bipartite graph. Observe that

when 𝑖 > 𝑗 , the graph is bipartite since every edge connects a node

of weight 2
𝑖
and a node of weight 2

𝑗
. Moreover, we can normalize

the costs to derive a simpler cost scheme, by dividing the budget

and all costs by 2
𝑗
. Therefore, we get the following bipartite graph:

the node set is 𝐿∪𝑅, where all nodes in 𝐿 are of cost 1 and all nodes

in 𝑅 are of weight 𝑤 ≥ 2, and all edges are in 𝐿 × 𝑅. Also note

that following the costs normalization in the first step, we have an

upper bound of order 𝑂 (𝑛) on𝑤 .

Over this graph, we run one of the following two procedures,

𝑃1, and 𝑃2.

In 𝑃1, we select the 𝐵/2𝑤 (we ignore negligible rounding issues)

nodes in 𝑅 of the highest degree (recall that we can ignore the edge

weights), denoting this set by 𝑅′, and then select the 𝐵/2 nodes

in 𝐿 of the highest degree into 𝑅′ (i.e. the highest degree in the

graph were we only retain 𝑅′ from 𝑅), denoting this set by 𝐿′. The
output is 𝐿′ ∪ 𝑅′. It is shown that the approximation factor of this

procedure is 𝑂 (𝑛/𝐵).
The operation of 𝑃2 is slightly more involved. Specifically, each

node in 𝑅 is replaced by 𝑤 copies of cost 1 that are connected to

the same nodes in 𝐿 as the original node. Over this graph we run

the �̃� (𝑛1/4)-approximation 𝐷𝐾𝑆 algorithm of [7]. Let 𝐿′′ denote
the subset of 𝐿 selected by this algorithm, and let 𝐵′′ denote the
remainder of the budget after the selection of 𝐿′′. We next select the

𝐵′′/𝑤 nodes of 𝑅 (in the original graph, and not the blown-up graph

with the copies) of the highest degree into 𝐿′′. The final output
is 𝐿′′ ∪ 𝑅′′. Since the 𝐷𝐾𝑆 algorithm was employed over a graph

whose size may reach 𝑂 (𝑛𝑤), the overall approximation factor of

𝑃2 is �̃� ((𝑛𝑤)1/4). Moreover, since𝑤 ≤ 𝐵, the approximation factor

may be presented more loosely as �̃� ((𝑛𝐵)1/4).
The last step of the 𝑄𝐾 algorithm is as follows: if 𝐵 ≥ 𝑛0.6

, then

we run 𝑃1 (and return its output), and otherwise we run 𝑃2. This

results in an overall approximation factor of 𝑂 (𝑛0.4), which occurs

in the worst case where 𝐵 = 0.6 (observe that higher budget bounds

improve the performance of 𝑃1 and lower budget bounds improve

the performance of 𝑃2).

Our modification. Finally, we describe our modification.

First consider the following procedure, denoted by 𝑃3, that can be

employed over the bipartite graph above (over which we employed

𝑃1 and 𝑃2): return the node 𝑣∗ of the highest degree in 𝑅, and all

its neighbors in 𝐿 (or, more precisely, as many as possible without

exceeding the budget). We next analyze the performance of this

procedure. Consider the optimal solution 𝑂 , and let 𝑅𝑂 and 𝐿𝑂
denote the nodes selected into 𝑂 from 𝑅 and 𝐿, respectively (i.e.

𝑂 = 𝑅𝑂 ∪ 𝐿𝑂). Let 𝑘𝑅 denote the cardinality of 𝑅𝑂 . Observe that

the budget constraint implies that 𝑘𝑅 = 𝑂 (𝐵/𝑤). Further note that
for at least one node 𝑣𝑅 ∈ 𝑅𝑂 its degree into 𝐿𝑂 is at least a 1/𝑘𝑅-
fraction of the overall number of edges in 𝑂 . Hence, the solution

𝑣𝑅 ∪ 𝐿𝑂 is a (𝑘𝑅)-approximation. Lastly, since the degree of 𝑣∗ is
at least the degree of 𝑣𝑅 into 𝐿𝑂 , then the solution returned by 𝑃3

is also a (𝑘𝑅)-approximation of the optimal solution, which can be

reformulated as a 𝑂 (𝐵/𝑤)-approximation.

The overall modified algorithm over the bipartite graph is as

follows: we run all three procedures 𝑃1, 𝑃2 and 𝑃3, and select the

best of the three solutions. This ensures an approximation factor of

𝑂 (min{𝑛/𝐵, (𝑛𝑤)1/4, 𝐵/𝑤}) .
A simple analysis shows that the worst-case parameter choices

that maximize the above expression are 𝐵 = 𝑛2/3
and𝑤 = 𝑛1/3

. For

this choice, all three subexpressions equal 𝑂 (𝑛1/3) (note that any
other parameter choice improves at least one of the subexpressions),

which is the overall approximation factor of our modified algorithm

(and thus we get a �̃� (𝑛1/3) performance ratio over the original 𝑄𝐾

instance as well). □

As noted above, the𝐴
𝑄𝐾

𝑇
algorithm is, however, impractical (and

hence also the corresponding 𝐵𝐶𝐶 algorithm), due to scalability

issues and its guarantees being of a 𝑝𝑜𝑙𝑦 (𝑛) order, corresponding
to worst-case instances, which may not resemble real-world data.

Nevertheless, we show below that we can modify key components

of 𝐴
𝑄𝐾

𝑇
, to derive a more practical alternative, denoted by 𝐴

𝑄𝐾

𝐻
,

that is both scalable and tailored to real-world performance. We

will use in 𝐴
𝑄𝐾

𝐻
the idea from 𝐴

𝑄𝐾

𝑇
of replacing each node with

multiple copies (described in the proof of Lemma 4.6), however, we

do so in a more general graph setting, and thus use a more involved

procedure to transform the 𝐷𝑘𝑆 solution over this graph into a𝑄𝐾

solution over the original graph.

Heuristic QK algorithm. The first modification we perform in

𝐴
𝑄𝐾

𝑇
is replacing the worst-case-oriented𝐷𝑘𝑆 algorithm of [7] with

the𝐻𝑘𝑆 heuristic in [41], that has been shown to produce solutions

close to optimal on large graphs. This allows to significantly im-

prove both the efficiency and the quality of the solution. However,

even assuming an optimal solution to the 𝐷𝑘𝑆 instance, the corre-

sponding 𝐵𝐶𝐶 solution may yield only a 𝑂 (log
3 𝑛)-fraction of the

optimal utility, (improved only to 𝑂 (log
2 𝑛), if we more generally

reduce to 𝐻𝑘𝑆 instead of 𝐷𝑘𝑆). We, therefore, as a second modifi-

cation, devise a different reduction, such that this polylogarithmic

factor is reduced to a much smaller constant.

We will prove the following worst-case bound on the perfor-

mance ratio of our algorithm, which is conditioned on the perfor-

mance of the 𝐻𝑘𝑆 algorithm (that was shown in [41] to provide

solutions that typically exceed 65% − 80% of the optimal value).

Theorem 4.7. Given an 𝐻𝑘𝑆 algorithm with performance ratio
𝛼 = 𝑂 (1), the performance ratio of 𝐴𝑄𝐾

𝐻
is at most (5𝛼 + 𝜖) (for any

𝜖 > 0), implying a (7𝛼 + 𝜖)-approximation algorithm for 𝐵𝐶𝐶𝑙=2
.

Importantly, we will show in our analysis that most of the loss

in optimality pertains to degenerate cases. This is corroborated by

our experiments (Section 6), where the eventual value derived by

the 𝑄𝐾 algorithm always exceeds that of the 𝐻𝑘𝑆 algorithm.

We next provide the description of the 𝐴
𝑄𝐾

𝐻
algorithm inter-

leaved with the proof of Theorem 4.7.

8

Preprocessing. We first explain how we transform the input

for the 𝐵𝐶𝐶 problem, such that in the corresponding 𝑄𝐾 instance

all costs are integers in the range [1, 𝐵/2).
First, we can select all classifiers of cost 0 (i.e. add them to the

solution). Following this selection, the input is transformed as fol-

lows. Any query that becomes covered is removed from the input,

with its utility counted towards the objective function. Any query

for which no relevant classifier is selected remains as it is. The

only remaining case corresponds to a query of the form 𝑥𝑦, where

the classifier 𝑋 is selected and 𝑌 is not. Given the 𝑋 is already

selected, we can consider, in the residual problem, the selection of

𝑌 as a 1-cover. Therefore, we remove the query 𝑥𝑦 from the 𝐵𝐶𝐶 (2)
instance, and modify the Knapsack instance for the 𝐵𝐶𝐶 (1) sub-
problem as follows: we add the item 𝑌 to the input (alternatively, it

may already exist if the 𝐵𝐶𝐶 query set contains the query 𝑦), such

that its weight is the cost of the classifier 𝑌 (as is the case for all

other items), and its value is the sum of the utilities of the queries

of the form 𝑋𝑌 where 𝑋 is selected (and we also add the utility of

the query 𝑦, if such exists).

This transformation ensures that the covering possibility of se-

lecting both 𝑋 and 𝑌 remains in the solution space, except that it

is now transferred to the solution space of 𝐵𝐶𝐶 (1). However, this
leads to some performance loss: since the classifier 𝑋𝑌 is also an

item in the Knapsack instance, if we select both 𝑋𝑌 and 𝑌 , then we

would count the utility of the query 𝑥𝑦 twice. It follows that we

lose a factor of 2 in the approximation guarantee of 𝐵𝐶𝐶 (1), which
now becomes (2 + 𝜖).

Overall, once we prove that the approximation factor for the

𝐵𝐶𝐶 (2) instance is (5𝛼 +𝜖) (where 𝛼 = 𝑂 (1) is the assumed approx-

imation factor of the 𝐻𝑘𝑆 algorithm as specified in Theorem 4.7),

the overall approximation factor for the 𝐵𝐶𝐶 instance is derived

as follows. Let 𝛽 denote the fraction of the optimal utility of the

𝐵𝐶𝐶 instance that can be derived in the 𝐵𝐶𝐶 (1) instance. The cor-
responding fraction of the optimal utility for the 𝐵𝐶𝐶 (2) instance is
therefore at least (1− 𝛽). Temporarily ignoring the 𝜖 factor for sim-

plicity, we have that the 2-approximation of the 𝐵𝐶𝐶 (1) instance
provides at least a 𝛽/2-fraction of the optimal utility, whereas the

(5𝛼)-approximation of 𝐵𝐶𝐶 (2) provides a (1 − 𝛽)/(5𝛼)-fraction
of the optimal utility. Taking the maximum of both expressions,

simple algebra implies that the worst-case corresponds to the case

where 𝛽 = 2/(2 + 5𝛼). For this 𝛽 value, both solutions provide at

least a (1/(2 + 5𝛼))-fraction of the optimal utility. Finally, since

𝛼 ≤ 1, we get the worst-case factor of (7𝛼 + 𝜖), as stated in the

Theorem 4.7.

Continuing with the description of the preprocessing phase, we

can also prune all classifiers whose cost exceeds 𝐵. When removing

such a classifier 𝑋 of length 1, we can remove from the input the

query 𝑥 , if it exists, and also remove any query 𝑥𝑦 of length 2 that

contains 𝑥 from the 𝐵𝐶𝐶 (2) input (𝑥𝑦 can only be covered by 𝑋𝑌

which is captured by the 𝐵𝐶𝐶 (1) instance). Similarly, when pruning

a classifier 𝑋𝑌 of length 2, we simply remove the item 𝑋𝑌 from the

𝐵𝐶𝐶 (1) instance.
We next explain how preprocessing the 𝑄𝐾 input (this is done

over the 𝐵𝐶𝐶 (2) instance before reducing it to 𝑄𝐾 , but explaining

the procedure is more natural in the context of the 𝑄𝐾 input) al-

lows to remove all nodes (recall that the nodes correspond to the

singleton classifiers) whose cost is in [𝐵/2, 𝐵]. We call such nodes

expensive nodes.
Observe that the number of expensive nodes in the optimal solu-

tion is at most 2. We can, thus, for each distinct selection of at most

2 expensive nodes solve the residual problem, where all such nodes

are removed, and choose the best solution of all selections. Specifi-

cally, if there are exactly two expensive nodes, then the solution

contains no other nodes, andwe can iterate over all𝑂 (𝑛2) selections
of two expensive nodes (without computing any corresponding

residual 𝑄𝐾 instance). To account for the remaining possibilities,

we solve the problem over the instance where all expensive nodes

(and the incident edges) are removed (which corresponds to the

case where the optimal solution contains no expensive nodes), and

similarly, for each choice of a single expensive node, deduct it from

the budget, and solve the residual 𝑄𝐾 problem with the reduced

budget over the input where once again all expensive nodes are

pruned. Note that if the number of expensive nodes is 𝑛𝑏 , then we

must solve (𝑛𝑏 + 1) 𝑄𝐾 instances. If 𝑛𝑏 is large then solving many

instances is compensated by the fact that each residual instance

contains only (𝑛 − 𝑛𝑏) nodes and a reduced budget, which helps

improve the running time (additionally, in practice, there are many

expensive nodes only for very small budgets, which correspond to

instances that can be solved much faster). As for computing the

residual instance after the selection/removal of these nodes, we use

the same procedures as described above for nodes of cost 0 or cost

above 𝐵.

Lastly, we can assume that all remaining costs are integers, as

otherwise, we can round up each cost to the nearest multiple of

some 𝜖 ∈ (0, 1), and then multiply all costs (and the budget) by 1/𝜖 .
This rounding loses at most an 𝜖 factor in the approximation.

Random bipartite graph. Given as input a budget 𝐵 and a

graph𝐺 = (𝑉 , 𝐸), preprocessed as described above, with node costs

given by 𝑐 (·) and edge weights given by 𝑤 (·, ·), the first step is

to transform 𝐺 into a bipartite graph. To do so, we adopt a ran-

domized procedure pointed out in [53], in the context of a spectral

𝐷𝑘𝑆 algorithm. To ensure that the probabilistic error on its perfor-

mance guarantee is sufficiently small (𝑂 (1/𝑛)), we employ it log𝑛

times (we do so in parallel) each time running the entire algorithm

and eventually choosing the best solution of all iterations. In each

iteration, in the first step of the random procedure, we partition

𝑉 into two sets 𝐿 and 𝑅, assigning each node independently to

one of the sets with uniform probability. We then derive from 𝐺 a

bipartite graph 𝐺 = (𝑉 , 𝐸) where 𝐸 = 𝐸 ∩ (𝐿 × 𝑅), with the same

costs and weights. With probability exceeding (1 − 1/𝑛), in at least

one iteration, the value of the optimal 𝑄𝐾 solution in 𝐺 = (𝑉 , 𝐸)
exceeds half of the optimal value in 𝐺 . Therefore, the randomized

procedure adds a factor of 2 to the worst-case performance ratio.

Solving HkS on a blown-up graph. The next step is to elimi-

nate costs, so that an 𝐻𝑘𝑆 algorithm can be employed. Specifically,

a graph 𝐺 = (𝑉 , 𝐸) is derived from 𝐺 , as follows. Each node 𝑣 ∈ 𝑉
is replaced in 𝑉 by 𝑐 (𝑣) copies, where 𝑐 (𝑣) is the cost of 𝑣 . For

every edge {𝑣,𝑢} ∈ 𝐸 there are 𝑐 (𝑣) · 𝑐 (𝑢) edges in 𝐸 connecting all

copies of 𝑣 to all copies of 𝑢, where the weight of each such edge is

𝑤 (𝑣,𝑢)
𝑐 (𝑣) ·𝑐 (𝑢) . The sets of copies of 𝐿 and 𝑅 are denoted in𝐺 by �̂� and 𝑅,

respectively. We then run an 𝐻𝑘𝑆 algorithm over𝐺 with 𝑘 = 𝐵/2,
yielding a solution 𝑆 (since the other half of the budget may be used

9

later when transforming 𝑆 into a solution over the 𝐺 , we allocated

only half of the budget for the 𝐻𝑘𝑆 algorithm, which, as shown

in [62], loses at most a factor of 2 in the optimality.) Given 𝑆 , we

further use 𝐿 = �̂� ∩ 𝑆 and 𝑅 = 𝑅 ∩ 𝑆 , to denote the subset of the

solution in each of the two sets of the partition.

For any edge {𝑣,𝑢} ∈ 𝐸, the sum of weights of the edges between

the copies of 𝑣 and 𝑢 is𝑤 (𝑣,𝑢). It follows that every𝑄𝐾 solution in

𝐺 has a corresponding solution in𝐺 , with the same cost and weight,

where all the copies of the first solution are selected. Therefore, the

weight of the optimal solution in 𝐺 can only exceed the optimal

weight in 𝐺 . Hence, if we translate the 𝐻𝑘𝑆 output 𝑆 back into

a solution over 𝐺 with the same weight (and at most twice the

cost), then the performance ratio would be at least as good as the

performance of the 𝐻𝑘𝑆 algorithm.

Swapping copies. We call a node in 𝐺 partially selected if the

solution over 𝐺 (which at this point of the algorithm is 𝑆) con-

tains some but not all of its copies. Similarly, we call a node in 𝐺

completely selected if the solution over 𝐺 contains all of its copies.

We next describe a procedure where we swap in the solution

copies of one node in 𝐺 for another, to reduce the number of par-

tially selected nodes to at most 2. We do this while ensuring that

the total weight of the subgraph induced by 𝑆 never decreases. We

first perform this procedure on 𝐿 and then on 𝑅 (or, more precisely,

first over �̂� and then over 𝑅).

Given 𝑅, for each node in �̂�, we refer to the sum of the weights

of the edges incident to it with endpoints in 𝑅 as its weighted degree.
The swapping procedure consists of the following two phases:

(1) First, we swap a copy selected in 𝐿 with a non-selected copy

of a different node whose weighted degree (into 𝑅) is higher

(i.e. remove the former copy from 𝐿 and add instead the

latter). This is repeated until there are no two nodes whose

copies can be swapped based on this rule. Once this phase is

completed, all copies in 𝐿 of partially selected nodes are of

the same weighted degree, which is upper bounded by the

weighted degrees of all the copies of the completely selected

nodes.

(2) Next, fix some arbitrary order over the partially selected

nodes and swap a selected copy of a node of a lower position

with a non-selected copy of a node of a higher position. This

operation is also repeated until there are no two nodes whose

copies can be swapped by this rule.

Observe that after the above swapping procedure is completed,

there is at most one partially selected node in �̂�, as at least one of the

two phases above would swap copies of any two partially selected

nodes. Moreover, note that we have never swapped a copy of a

higherweighted degreewith a copy of a lowerweighted degree (also

observe that all copies of the same node have the same weighted

degree). Therefore, the weight of the subgraph induced by 𝐿 ∪ 𝑅
has either increased or remained the same.

We next perform the same swapping procedure over 𝑅 w.r.t. the

new 𝐿 set. It follows from the same arguments that the weight of the

subgraph has not decreased and that at most one node is partially

selected in 𝑅.

Final selection. Up to this point, we have lost in the worst-

case performance ratio of the 𝑄𝐾 algorithm a factor of 2 when

transforming the into graph into a bipartite graph, another factor

of 2 when using a reduced budget for the 𝐻𝑘𝑆 algorithm, and a

factor of 𝛼 due to the suboptimal approximation guarantee of the

𝐻𝑘𝑆 algorithm. We next describe the final step of the algorithm,

which contributes another factor of (5/4+𝜖) to the loss in optimality,

and thus we get the overall worst-case performance ratio of (5𝛼+𝜖),
as stated in Theorem 4.7.

Let 𝑉𝐿 and 𝑉𝑅 denote the subsets of 𝑉 (the node set of 𝐺 and 𝐺)

whose copies are completely selected in 𝐿 and 𝑅, respectively.

First, note that if all nodes in 𝐺 whose copies are selected in

𝐿 ∪ 𝑅 are completely selected, then we can simply produce the

Solution 𝑉𝐿 and 𝑉𝑅 . As explained above the subgraph of𝐺 induced

by 𝑉𝐿 ∪ 𝑉𝑅 (assuming all selected nodes are completely selected

in 𝑆) is of the same weight as the subgraph induced by 𝐿 ∪ 𝑅 in

𝐺 and also of the same cost (the sum of the costs of all the copies

of a node is the cost of the node). Therefore, as 𝐺 has the same

costs as in 𝐺 and contains the edges of 𝐺 along with other edges,

the corresponding subgraph in 𝐺 induced by 𝑉𝐿 ∪𝑉𝑅 is also of the

same cost and at least the same weight. Therefore, the performance

ratio over 𝐺 carries over to 𝐺 by producing all the nodes that are

completely selected.

Otherwise, if exactly one node in 𝑉 is partially selected, we can

use the half of the budget we set aside (recall that we used only

𝐵/2 for the 𝐻𝑘𝑆 algorithm) to select all the remaining copies of

this node. This is feasible since our preprocessing step ensured that

no node costs more than half the budget. This only improves the

weight of the solution, and this improvement carries over to the

final solution 𝑉𝐿 ∪𝑉𝑅 .
The only remaining case is when there are two partially selected

nodes in 𝑉 : a node 𝑢𝐿 ∈ �̂� and a node 𝑢𝑅 ∈ 𝑅. If the remaining

half of the budget is sufficient to add all the remaining copies of

both nodes, then we do so, and once again solve the problem as in

the previous cases. If, however, the budget is insufficient, then we

examine separately two possible cases.

(1) Case 𝐼 : if the sum of the weights of all the edges connecting

the selected copies of 𝑢𝐿 and 𝑢𝑅 does not exceed 1/5 of

the overall weight of 𝑆 , then we remove from 𝐺 all edges

connecting copies of 𝑢𝐿 and 𝑢𝑅 . Note that the remaining

weight of the subgraph induced by 𝑆 is a (4/5)-fraction of

the weight before the removal of the edges. Next, assume

w.l.o.g. that the weighted degree of each copy of 𝑢𝐿 is at

least that of each copy of 𝑢𝑅 . Then we can swap all selected

copies of 𝑢𝑅 with non-selected copies of 𝑢𝐿 until there are

no more selected copies of 𝑢𝑅 . Observe that this can only

increase the weight of the solution, and does not change the

cost, and moreover all nodes are now completely selected,

which implies the same solution as before of outputting all

the completely selected nodes in �̂� ∪ 𝑅.
Note that it is impossible that we select all copies of𝑢𝐿 before

de-selecting all copies of 𝑢𝑅 , as this would imply that we

have only one partially selected node, for which the budget

is necessarily sufficient, contradicting the assumption that

we cannot add all copies of both nodes to the solution.

Overall, as stated before, we lost a factor of 5/4 in the per-

formance ratio in this case.

(2) case 𝐼 𝐼 : if the sum of weights of all the edges connecting the

selected copies of 𝑢𝐿 and 𝑢𝑅 does exceed 1/5 of the overall

10

weight of 𝑆 , then we modify 𝐿 and 𝑅 to contain only the

full sets of copies of 𝑢𝐿 and 𝑢𝑅 , respectively, and once again

return 𝑉𝐿 and 𝑉𝑅 (which in this case is simply 𝑢𝐿 ∪ 𝑢𝑅), as
the final output over 𝐺 . Note that since no node costs more

than half the budget, we can always afford a solution that

contains two nodes.

We next show that this solution also loses at most a 5/4 factor
in the performance ratio compared to the 𝐻𝑘𝑆 solution over

𝐺 , and thus concluding the proof of Theorem 4.7.

Concretely, if half of the budget was insufficient to add all

the remaining copies of 𝑢𝐿 and 𝑢𝑅 to the solution 𝑆 , then

the overall number of such non-selected copies exceeds 𝐵/2.
Moreover, since neither 𝑢𝐿 nor 𝑢𝑅 cost more than 𝐵/2, it
follows that if the fraction of the selected copies of 𝑢𝐿 out of

all the copies of 𝑢𝐿 is 𝛽 , then the corresponding fraction of

selected copies of𝑢𝑅 is at most (1−𝛽). Therefore, the weight
of the edge connecting𝑢𝐿 and𝑢𝑅 is

1

𝛽 (1−𝛽) times larger than

the sum of edge weight of the selected copies of𝑢𝐿 and𝑢𝑅 in

𝐿∪𝑅. This expression always exceeds 4 (and equals 4 exactly

for 𝛽 = 1/2). Since the sum of weights between the selected

copies of 𝑢𝐿 and 𝑢𝑅 is 1/5 of the overall weight produced

by the solution 𝐿 ∪ 𝑅, we get an overall factor of 5/4, which
completes the proof.

Finally, observe that the hardest cases where we lose most of

the optimality pertain to inputs where the solution contains a node

of high cost so that we cannot select all its copies without using

a large fraction of the budget, and of very high weighted degree

(the weights of the edges incident to it in the produced solution

represent a constant fraction of the overall weight of the optimal

solution) so that we cannot simply ignore it with a negligible effect

on the performance ratio. In practice, such degenerate cases are

rare, as only for very small budgets we may have a single classifier

that consumes most of the budget, and also must be selected to

ensure high utility.

We also remark that over practical inputs, if we can disregard the

two nodes that are partially selected, then instead of performing

the swapping procedure, we can simplify the remainder of the

algorithm (following the employment of the 𝐻𝑘𝑆 algorithm) to

solve two knapsack instances over 𝐿 and 𝑅. We, however, do not

provide here the details of this simplification.

4.2 Algorithm for l > 2
We are now ready to present our heuristic algorithm in its most

general form, which also covers the case of 𝑙 > 2. For simplicity,

we focus in our description on the case of 𝐵𝐶𝐶𝑙=3
, however, our

arguments also apply to larger 𝑙 values, analogously.

We next overview the high-level ideas, which we also illustrate

with an example, before describing the exact steps taken by the

algorithm.

Overview.We first observe that, similarly to Theorem 4.7, for

𝑙 > 2, our solution of the subproblems 𝐵𝐶𝐶 (1) and 𝐵𝐶𝐶 (2) still
guarantees an approximation factor of 𝑂 (1), albeit of a larger con-
stant, assuming the performance ratio of the 𝐻𝑘𝑆 solver is also

𝑂 (1). While 𝐵𝐶𝐶 (1) is the Knapsack problem for any 𝑙 , in 𝐵𝐶𝐶 (2)
for queries of length over 2 the problem becomes more complex,

as there are multiple overlapping 2-covers. For example, there are

6 different 2-covers of a query of length 3. Hence, when modeling

𝐵𝐶𝐶 (2)𝑙=3
as a𝑄𝐾 instance, where the nodes are the classifiers and

an edge connects any two classifiers that form a 2-cover, the objec-

tive value of any solution may be up to 6 times larger than its utility

in the 𝐵𝐶𝐶 context, as the same query may be covered multiple

times (i.e. 6 different edges in the𝑄𝐾 input represent the same 𝐵𝐶𝐶

query). This 6 factor, however, can then be reduced, as such worst

cases imply a redundancy in the selected classifiers. Specifically,

given a 𝑄𝐾 output 𝑆 that covers the query set 𝑄𝑆 , finding a set

of classifiers of the lowest cost that covers 𝑄𝑆 is exactly the𝑀𝐶3

problem (Definition 2.4), for which we can use the algorithm from

[23] (Theorem 2.5). The fraction of the budget saved by the solution

to the𝑀𝐶3 instance compared to 𝑆 can then be used for the resid-

ual problem (i.e. to cover the remaining uncovered queries, given

the classifiers selected so far). A second important observation is

that when solving the residual problem, new covering possibilities

may be considered in 𝐵𝐶𝐶 (1) and 𝐵𝐶𝐶 (2), as illustrated by the

following example.

Example 4.8. Consider the input query set 𝑄 = {𝑥𝑦𝑧, 𝑥𝑦𝑤} (as
in Example 4.1, we omit here the input costs, utilities, and budget

bound, since our high-level arguments are not based on concrete

numerical computations). When solving the corresponding 𝐵𝐶𝐶 (1)
and 𝐵𝐶𝐶 (2) instances, the only two covering possibilities not in-

cluded in the combined solution space of these two problems is the

cover of 𝑥𝑦𝑧 by {𝑋,𝑌, 𝑍 } and the cover of 𝑥𝑦𝑤 by {𝑋,𝑌,𝑊 }, as
these are 3-covers. Assume, next, that the solution for the 𝐵𝐶𝐶 (2)
instance produced by our 𝐴

𝑄𝐾

𝐻
algorithm is {𝑌𝑍,𝑋𝑍,𝑌 }, and that

this solution was chosen over the Knapsack Solution for the 𝐵𝐶𝐶 (1)
instance. Observe that only the 𝑥𝑦𝑧 query is covered. However, the

solution contains a redundancy as the sets {𝑌𝑍,𝑋𝑍 } and {𝑌,𝑋𝑍 }
are both 2-covers of the same query. If we then run an𝑀𝐶3 algo-

rithm that searches for the lowest-cost set of classifiers that covers

𝑥𝑦𝑧, it may output the less costly solution {𝑋𝑍,𝑌 }, which saves

the cost of 𝑌𝑍 that can be instead used to select other classifiers.

We note that since the 𝑀𝐶3 problem is 𝑁𝑃-hard (Theorem 2.5),

the𝑀𝐶3 algorithm is not guaranteed to improve on the previous

solution (which in the above case was {𝑌𝑍,𝑋𝑍,𝑌 }), even if there

indeed exists a less costly solution that covers the same queries,

and if this is the case, then we retain the previous solution instead

of the 𝑀𝐶3 output. Therefore, the 𝑀𝐶3 algorithm in our context

is essentially a local search optimization. Also note that, while the

𝑀𝐶3 algorithm is oblivious to the budget bound, if, nevertheless,

the𝑀𝐶3 solution does improve on the previous solution, then the

newer (𝑀𝐶3) solution is necessarily within the budget constraint,

as the costlier solution also did not exceed the bound.

Next, given that we have so far selected {𝑋𝑍,𝑌 }, only the query

𝑥𝑦𝑤 remains uncovered in the residual problem. Moreover, as 𝑌 is

already selected, it is not necessary to select in the residual problem

classifiers that contain 𝑦, and thus a cover of the 𝑥𝑤 component

in 𝑥𝑦𝑤 is sufficient. This implies that we can treat both {𝑋𝑌𝑊 }
and {𝑋𝑊 } as a 1-cover of 𝑥𝑦𝑤 in the residual problem (however,

selecting both, would once again imply a redundancy, that can be

ameliorated with an𝑀𝐶3 algorithm). Note that𝑋𝑌𝑊 is a 1-cover of

𝑥𝑦𝑤 in both the original and the residual problems, however,𝑋𝑊 is

only a 1-cover in the residual problem, since it must be paired with

the 𝑌 classifier selected earlier. Similarly, the 2-covers of 𝑥𝑦𝑤 are

11

now {𝑋,𝑊 }, {𝑋𝑌,𝑊 }, {𝑋,𝑊𝑌 }, and {𝑋𝑌,𝑊𝑌 }. Note that, there
are no longer 3 covers of 𝑥𝑦𝑤 , as these require the selection of

𝑌 , which is already selected and does not appear in the residual

problem. Therefore, all covering possibilities are now considered

(albeit with some redundancies).

Lastly, observe that the above arguments for the simplification

of the residual problem also apply for queries whose length exceeds

3. For instance, selecting the classifier 𝑋𝑌 implies that all covering

possibilities in the residual problem for the query 𝑥𝑦𝑧𝑤 are either

1-covers or 2-covers.

We, therefore, initially use only half of the budget to solve the

𝐵𝐶𝐶 (1) and 𝐵𝐶𝐶 (2) subproblems (via our algorithm for 𝐵𝐶𝐶𝑙=2
),

to guarantee that a sufficient fraction of the budget is available for

the residual problem, that now contains a larger fraction of the

complete solution space of 𝐵𝐶𝐶 .

To ensure, however, that the solution space does not become too

large and hinders scalability, we use two preprocessing procedures

to prune the input classifier set.

We next list the steps of the algorithm outlined above, as depicted

schematically at high-level in Algorithm 1.

Algorithm 1: 𝐴𝐵𝐶𝐶 (high-level scheme)

1 preprocessing: apply two pruning methods to reduce the number of input

classifiers

2 allocate half of the budget to solve the 𝐵𝐶𝐶 (1) an and 𝐵𝐶𝐶 (2) subproblems

via the algorithm for 𝐵𝐶𝐶𝑙=2 (Subsection 4.1)

3 test whether the solution produced in the previous step can be improved

cost-wise via the𝑀𝐶3 algorithm in [23]

4 while the budget allows covering more queries repeat the following steps:

5 compute the input for the residual problem

6 perform the two steps in lines 2 and 3, using the remainder of the budget

(instead of only half of it, as before)

Preprocessing (line 1 in Algorithm 1). For 𝑙 > 2, the number

of relevant classifiers for 𝐵𝐶𝐶 (2) may be significantly larger than

for 𝑙 = 2. Therefore, as a preliminary step, we prune classifiers from

the solution, using two procedures with a bound on the incurred

error. The first procedure removes every classifier of length 𝑟 > 1

that can be replaced by several shorter classifiers whose total cost is

at most 𝑟 times its cost. For example, if the classifiers𝑋𝑌𝑍 ,𝑋 ,𝑌 , and

𝑍 all cost 1, then we can remove 𝑋𝑌𝑍 since any solution that uses

it can instead use 𝑋 , 𝑌 and 𝑍 such that the set of covered queries

can only increase. In particular, this means that for instances with

uniform costs, the solution space is reduced to using only singleton

classifiers. Note, however, that in some edge cases, where the budget

is very small (relative to the costs of the classifiers), this pruning rule

above is not applied. Concretely, for any given query, if the pruning

rule would retain only short classifiers, such that any combination

of these classifiers that covers the query exceeds the budget (i.e.,

this query can no longer be covered), then we do not prune the

longer classifiers relevant to this query (one such query is sufficient

to “protect” the longer classifier from pruning). The second pruning

procedure is based on weighted leverage scores [10, 46, 53], which
are derived via spectral methods over the adjacency matrix of the

𝑄𝐾 input graph.

Solving BCC(1) and BCC(2) subproblems (line 2). We use

half the budget to solve each of the subproblems, 𝐵𝐶𝐶 (1) (via the

Knapsack algorithm) and 𝐵𝐶𝐶 (2) (via our algorithm for 𝑙 = 2), and

select the solution 𝑆 of the highest utility of the two solutions.

Improvement via MC3 algorithm (line 3). Let𝑄𝑆 denote the
set of queries covered by 𝑆 . We next employ the 𝑀𝐶3 algorithm

from [23], over the input consisting of 𝑄𝑆 and all the classifiers

from the 𝐵𝐶𝐶 input that are relevant for covering 𝑄𝑆 . We denote

the output of the𝑀𝐶3 algorithm by 𝑆 ′.
Solving iteratively residual problems (lines 4 − 6).We next

compute the residual problem, given the selection of 𝑆 ′, and use the
remainder of the budget (instead of only half the budget, as before)

to employ over it the algorithm for 𝐵𝐶𝐶 (1) and 𝐵𝐶𝐶 (2), along with
the 𝑀𝐶3 optimization, as we did in the previous two steps. This

is repeated iteratively until the budget is consumed entirely (i.e.

the𝑀𝐶3 algorithm no longer produces a less costly solution). The

selected set of classifiers at this point is the final output.

5 COMPLEMENTARY OBJECTIVES
In the two previous sections, we presented hardness bounds and

an algorithm for 𝐵𝐶𝐶 . In this section, we examine alternative ob-

jectives that may be of interest in practical scenarios where there is

some flexibility in the budget constraint. For example, companies

may aim to find the classifier set of minimum cost that reaches

a given utility target (this is a direct generalization of [23]) or to

find a classifier set that maximizes the ratio of utility to cost. We

show that our 𝐷𝑘𝑆-based analysis methods for 𝐵𝐶𝐶 can also be

applied to derive complexity bounds and algorithms for these two

problems, defined formally below.

Definition 5.1. In the Generalized𝑀𝐶3 problem (𝐺𝑀𝐶3) the in-

put is ⟨𝑄,𝑈 ,𝐶,𝑇 ⟩, where 𝑄 , 𝑈 and 𝐶 , as in 𝐵𝐶𝐶 , are the queries,

utilities, and costs, respectively, with 𝑇 ∈ R+ representing a target

utility value. The goal is to find a set of classifiers of minimum cost,

yielding utility at least 𝑇 .

Definition 5.2. In the Effective Classifier Construction problem
(𝐸𝐶𝐶), the input is ⟨𝑄,𝑈 ,𝐶⟩, where 𝑄 ,𝑈 and 𝐶 , are as in 𝐵𝐶𝐶 , and

the goal is to find a classifier set that maximizes the ratio of its

utility to its cost.

We first provide hardness bounds and an algorithm for 𝐺𝑀𝐶3,

showing that despite it containing𝑀𝐶3 (Definition 2.4) as a special

case (where the target utility is the sum of utilities of all queries), the

problem is more similar theoretically to 𝐵𝐶𝐶 . We then examine 𝐸𝐶𝐶

and prove that it is much easier than 𝐵𝐶𝐶 and 𝐺𝑀𝐶3, as it admits

an exact PTIME solution for 𝑙 = 2, and a constant approximation

for general (constant) 𝑙 .

The GMC3 problem. Since 𝐺𝑀𝐶3 is complementary to 𝐵𝐶𝐶

in the sense that the roles of the objective and the constraint are

reversed, it is natural to transform our 𝐷𝑘𝑆-based analysis, to use

the analogously complementary problem to 𝐷𝑘𝑆 , the Smallest p-
Edge Subgraph problem (𝑆𝑝𝐸𝑆), where the goal is to find a subgraph

of the minimum number of nodes that contains at least 𝑝 edges.

The best known approximation factor for 𝑆𝑝𝐸𝑆 is �̃� (𝑛0.17), and
the best known approximation factor for its hypergraph extension,

𝑆𝑝𝐸𝑆𝐻 , where all hyperedges are of cardinality 3, is �̃� (𝑛0.62) [6].
Several results link potential improvements in the approxima-

tions of 𝐷𝑘𝑆 and 𝑆𝑝𝐸𝑆 [15], and, in particular, the “Dense vs Ran-

dom” conjecture [17, 48] implies for both problems that the best

12

known approximation guarantees are tight. An adaptation of our

methods to using 𝑆𝑝𝐸𝑆 instead of 𝐷𝑘𝑆 implies the following results.

Theorem 5.3. The𝐺𝑀𝐶3 problem is𝑁𝑃-hard, and for 𝑙 = 2 or 𝑙 ≥
3 is at least as hard as 𝑆𝑝𝐸𝑆 or 𝑆𝑝𝐸𝑆𝐻 , respectively. However, given
an 𝛼-approximation 𝐵𝐶𝐶 algorithm, one can derive an 𝑂 (𝛼 log𝑛)-
approximation 𝐺𝑀𝐶3 algorithm with a 𝑂 (1

𝑛) additive error in 𝑇 .

Proof. We start with proving the hardness results. To this end,

consider the special case of 𝐺𝑀𝐶3 where all costs of singleton

classifiers equal 1, all costs of other classifiers equal∞, all utilities
equal 1, and all queries are of length exactly 𝑙 . Over such inputs,

the objective simplifies to finding the smallest set of classifiers that

covers at least 𝑇 queries. This special case is equivalent to 𝑆𝑝𝐸𝑆𝐻

where all hyperedges are of cardinality 𝑙 (for 𝑙 = 2 this is exactly

𝑆𝑝𝐸𝑆), which implies the hardness. The equivalence follows the

same transformation as in the case of the equivalence of the special

case of 𝐵𝐶𝐶 and 𝐷𝑘𝑆𝐻 (Theorem 3.3). Concretely, we model every

singleton classifier as a vertex, and every query is a hyperedge (i.e.

the query 𝑥𝑦𝑧 is the hyperedge consisting of the three vertices 𝑥 ,

𝑦, and 𝑧), and the utility target 𝑇 becomes the lower bound 𝑝 on

the number of hyperedges. The objective of 𝐺𝑀𝐶3 then becomes

selecting the smallest set of nodes that contain at least 𝑝 = 𝑇

hyperedges, which is exactly the 𝑆𝑝𝐸𝑆𝐻 problem.

We next prove that given an 𝛼-approximation algorithm for 𝐵𝐶𝐶 ,

we can derive an 𝑂 (𝛼 log𝑇)-approximation algorithm for 𝐺𝑀𝐶3.

The proof is a fortuitously simple generalization of a proof shown

in [15] for an analogous relationship between 𝐷𝑘𝑆𝐻 and 𝑆𝑝𝐸𝑆𝐻 .

Given the input ⟨𝑄,𝑈 ,𝐶,𝑇 ⟩ for 𝐺𝑀𝐶3, let 𝐵 denote the cost of

the corresponding optimal solution. Let 𝐴(𝑄,𝑈 ,𝐶, 𝐵) denote the
output of the 𝛼-approximation algorithm for 𝐵𝐶𝐶 , 𝐴, employed

over the input ⟨𝑄,𝑈 ,𝐶, 𝐵⟩. We can assume w.l.o.g. that 𝐵 is known,

as we check all possible values up to a negligible error of epsilon,

and solve the problem for each guess (while this is in 𝑃𝑇 𝐼𝑀𝐸, due

to the normalization process of the weights described in the proof

of Lemma 4.6, a better solution in practice would be using a binary

search, for which it is easy to show that a constant loss in the budget

implies at most a constant loss in the optimality).

We first rescale the utilities and 𝑇 (this phase does not exist

in the less general algorithm in [15]), similarly to the rescaling

in the proof of Lemma 4.6: we divide 𝑇 and all utility values by

𝑢𝑚𝑎𝑥

𝑛𝑙+1
, where 𝑢𝑚𝑎𝑥 is the maximum utility of any query that can

be covered within the budget 𝐵. This ensure that 𝑇 = 𝑂 (𝑝𝑜𝑙𝑦 (𝑛)),
and thus log(𝑇) = 𝑂 (log(𝑛)). We further remove all queries whose

utility is less than 1. Since the sum of utilities of all such queries

is less than 𝑂 (𝑢𝑚𝑎𝑥/𝑛) (there are at most 𝑂 (𝑛𝑙) queries), and thus

also less than𝑂 (𝑇 /𝑛) (we assume w.l.o.g. that𝑢𝑚𝑎𝑥 ≤ 𝑇 , otherwise
we can find the optimal solution by covering only the query of

utility 𝑢𝑚𝑎𝑥). It follows that the removal of these queries adds at

most an𝑂 (1/𝑛) additive error in the utility target𝑇 , as specified in

the Theorem, which we henceforth ignore.

We then have the following algorithm for𝐺𝑀𝐶3 (which, as men-

tioned above, is a straightforward generalization of the algorithm

in [15]), that initializes𝑄 ′ = ∅ and repeats the following steps until
the sum of utilities of the queries in 𝑄 ′ exceeds 𝑇 :

(1) Let 𝑆 ′ = 𝐴(𝑄,𝑈 ,𝐶, 𝐵), and let𝑄 ′′ denote the queries covered
by 𝑆 ′.

(2) Let 𝑄 ′ ← 𝑄 ′ ∪𝑄 ′′.
(3) Remove 𝑄 ′′ from 𝑄 (but keep all classifiers).

We next analyze the approximation factor of this algorithm.

This analysis is also entirely analogous to the analysis in [15]. We,

nevertheless, provide it for completeness.

Suppose that at iteration 𝑖 we added classifiers of total cost 𝑐𝑖
and that before the start of the iteration we had already added

to the solution (𝑄 ′) queries of total utility 𝑇 − 𝑡𝑖 . This implies

that the subset of the queries in the optimal solution that has not

yet been covered is of total utility at least 𝑡𝑖 . Therefore, there is

a set of classifiers of cost bounded by 𝐵 (the same set which is

the optimal solution in the original instance) that covers these

uncovered queries. It then follows that the utility of the queries

added in iteration 𝑖 was at least 𝑡𝑖/𝛼 . Therefore, the utility we still

cover after iteration 𝑖 is 𝑡𝑖+1 ≤ 𝑡𝑖 − 𝑡𝑖/𝛼 = 𝑡𝑖 (1 − 1/𝛼). Hence, by
induction, after 𝑗 iterations, the utility we still need to cover is

bounded by

𝑡 𝑗+1 ≤ 𝑇 (1 − 1/𝛼) 𝑗 ≤ 𝑇𝑒
𝑗

𝛼 .

Therefore, after at most 𝛼 ln𝑇 iterations, the total utility covered

is at least 𝑇 (since the remaining utility in the above inequality is

less than 1, however, we only retained queries of utility at least

1). Moreover, our normalization ensured that 𝛼 ln𝑇 = 𝑂 (𝛼 log𝑛).
Finally, since each iteration adds classifiers of cost at most 𝐵, we

have a total cost of at most 𝑂 (𝐵𝛼 log𝑛), proving the theorem. □

As mentioned above,𝐺𝑀𝐶3 generalizes𝑀𝐶3. We note, however,

that since 𝑆𝑝𝐸𝑆 and 𝑆𝑝𝐸𝑆𝐻 are special cases of 𝐺𝑀𝐶3, the Set

Cover solution of [23] (for𝑀𝐶3) is no longer relevant for 𝐺𝑀𝐶3.

The ECC problem. For 𝐸𝐶𝐶 we can again apply the approach

of reducing it to a density problem. As 𝐸𝐶𝐶 maximizes the ratio

between the objective and the constraint of 𝐵𝐶𝐶 , an analogous

transformation of the 𝐷𝑘𝑆 problem yields the Densest Subgraph

problem (𝐷𝑆). In𝐷𝑆 the input is a graphwith weights on both nodes

and edges, and the goal is to find a subgraph such that the ratio of

the sum of edge weights to the sum of node weights is maximized.

This problem, even on hypergraphs, can be solved exactly in PTIME

[35]. Reductions to 𝐷𝑆 , mostly analogous to our 𝐷𝑘𝑆 reductions,

imply the following results.

Theorem 5.4. The 𝐸𝐶𝐶 problem can be solved exactly for 𝑙 = 2,
and admits 𝑂 (1)-approximation for 𝑙 > 2.

Proof. We first show a reduction from 𝐸𝐶𝐶 with 𝑙 = 2 to 𝐷𝑆

on graphs, and then generalize it to the case of 𝑙 > 2.

Given an 𝐸𝐶𝐶 input ⟨𝑄,𝑈 ,𝐶⟩ with 𝑙 = 2, we construct an input

graph 𝐺 for 𝐷𝑆 as follows. Each singleton classifier is a vertex

whose weight is the cost of the classifier, and each query 𝑥𝑦 of

length 2 connects the vertices 𝑋 and 𝑌 , and its weight is the utility

of the query. We also add a special vertex 𝑣∗ of weight 0 and for

every query 𝑥 of length 1 we add the edge (𝑋, 𝑣∗) whose weight is
the utility of 𝑥 .

Let 𝑆 denote the solution of the exact 𝐷𝑆 algorithm [35] over 𝐺 ,

and let 𝑟 denote the ratio of utility to cost achieved by 𝑆 . Further-

more, let 𝑆 ′ denote the classifier of length 2 that has the highest

ratio of the utility of the query it covers (if there is a classifier 𝑋𝑌 ,

then there must be a query 𝑥𝑦) and its cost, and let 𝑟 ′ denote this
ratio. If 𝑟 ′ ≥ 𝑟 , we output 𝑆 ′ and otherwise we output 𝑆 .

13

We next show that this algorithm produces the optimal 𝐸𝐶𝐶

solution. First, observe that if we restrict the solution space of 𝐸𝐶𝐶

to singleton classifiers, then the problem becomes equivalent to

solving 𝐷𝑆 over 𝐺 . This is because the sum of costs of a classifier

set 𝑆 ′′ is exactly the sum of weights of the corresponding vertex

set 𝑆 ′′ ∪ 𝑣∗, and the sum of utilities of the queries covered by 𝑆 ′′ is
exactly the sum of weights of the edges in the subgraph induced by

𝑆 ′′ ∪ 𝑣∗ (recall that the weight of 𝑣∗ is zero). Thus, if the optimal

solution to the 𝐸𝐶𝐶 instance consists of only singleton classifiers,

then 𝑟 is necessarily the optimal ratio.

Similarly, note that if we restrict the solution space of 𝐸𝐶𝐶 to

solely classifiers of length 2, then the optimal ratio is necessarily

𝑟 ′, since every classifier of length 2 covers exactly one query, and

every query is covered by only one such classifier. Thus, including

in the solution other classifiers, except for 𝑆 ′, can only decrease the

ratio.

Finally, if the optimal solution of 𝐸𝐶𝐶 is 𝑆1 ∪𝑆2, where 𝑆𝑖 is a set

of classifiers of length 𝑖 , then since neither the ratio of 𝑆1 nor the

ratio of 𝑆2 are greater than max{𝑟, 𝑟 ′}, the overall ratio of 𝑆1 ∪ 𝑆2

is at most max{𝑟, 𝑟 ′} (since no query requires a combination of

classifiers from both 𝑆1 and 𝑆2 to be covered), which proves the

theorem for 𝑙 = 2.

For the case of 𝑙 > 2, we generalize the construction of the graph

𝐺 to the construction of the hypergraph 𝐻 , which serves as the

input for 𝐷𝑆 . Specifically, each classifier of length at most 𝑙 − 1 is a

vertex in 𝐻 (its weight as before is the cost of the classifier), and

each subset of these classifiers that covers a query (and that any

proper subset of this subset does not cover it - i.e. it is a minimal

cover) is a hyperedge whose weight is the utility of the query (for

queries of length 1, we once again, to avoid self-loops, add a vertex

𝑣∗ of cost 0). We then compute two solutions: the 𝐷𝑆 solution over

𝐻 , and the classifier of length 𝑙 of the maximum ratio between the

utility of the query it covers and its cost. Finally, we output the

solution of the highest ratio of the two solutions.

The proof that an optimal solution can consist of either only

classifier of length 𝑙 or only classifiers of length at most 𝑙 −1, is anal-

ogous to the proof for the case of 𝑙 = 2. However, the only difference

here is that for classifiers of length at most 𝑙 − 1, the 𝐷𝑆 solution is

no longer the exact 𝐸𝐶𝐶 solution but a 𝑂 (1)-approximation of it.

This follows from the fact that each query has multiple correspond-

ing hyperedges in 𝐻 , and thus we are overcounting if multiple such

hyperedges are contained in the subgraph of the solution. This

multiplicity, however, has a constant upper bound. For example, for

𝑙 = 3 there are at most 7 hyperedges that represent the same query

(i.e., for the query 𝑥𝑦𝑧 there are 7 combinations of classifiers that

cover it, not including the classifier 𝑋𝑌𝑍 or covers where there is

a redundant classifier). More broadly, since 𝑙 = 𝑂 (1) the maximum

number of such hyperedges is constant for any 𝑙 , which proves the

theorem. □

6 EXPERIMENTAL STUDY
In this section, we present the experimental evaluation of our 𝐵𝐶𝐶

algorithm performed over various datasets, including real-world

data of 𝐵𝐶𝐶 use-cases, followed by an evaluation of our proposed

algorithms for the 𝐺𝑀𝐶3 and 𝐸𝐶𝐶 problems (Section 5). We start

with describing our experimental setup for the 𝐵𝐶𝐶 problem, then

present the evaluation results for 𝐵𝐶𝐶 , and conclude with describ-

ing our experimental setup and results for the complementary

problems.

6.1 Experimental Setup
Our algorithms were implemented using Python, and we ran the

experiments on a server with 128GB RAM and 32 cores. In addition,

we used external implementations of the𝐻𝑘𝑆 algorithm of [41] and

the𝑀𝐶3 algorithm of [23]. To evaluate our solution, we performed

a set of extensive experiments on a publicly available real-world

dataset, a larger private dataset provided by a large e-commerce

company
2
, including costs and utilities provided by the company’s

business analysts, and a synthetically generated dataset.

Datasets. As noted above, we performed our evaluation over

three datasets. For all datasets, we tested a wide range of budget

bounds, detailed in our presentation of the experimental results.

• BestBuy (BB) - First, we used a small, publicly available,

dataset from BestBuy, which had been used by [18, 23] for

their evaluation. The dataset consists of roughly 1000 queries

with 725 distinct properties from the electronics domain.

The average query length is 1.4, with more than 95% of

the queries containing at most 2 properties, and 65% of the

queries being of length exactly 1, which is the most common

query length in all datasets. This dataset includes the num-

ber of times each query was searched, and we also use this

number as the utility score (based on the logic that popular

queries are more important to compute correctly). No clas-

sifier costs, however, are included, and, hence, we assume

uniform costs, as discussed in Section 2.

• Private (P) - The second dataset is private and comes from a

large e-commerce company. It consists of 5𝐾 popular queries

(with 2𝐾 distinct properties) of various lengths (1 to 5 prop-

erties), utilities, and classifier costs. This dataset is a union

of several sub-datasets pertaining to different categories of

products (mostly Electronics, Fashion, and Home & Garden).

These queries are taken from the search logs of Q1 2021

and represent the actual complete query set marked by ana-

lysts as top priority for result set improvement. The average

length of a query is 1.7. Concretely, more than 95% of the

queries are of length at most 2, and 55% are of length exactly

1. The costs represent a scaling by a factor of 𝑁 (an internal

measure of the e-commerce company) of the estimated mon-

etary cost of training each classifier. After the normalization,

the costs are in the range [0, 50], with the average cost be-

ing roughly 8. The classifiers whose cost is ∞, which, as
explained in Section 2, correspond to classifiers whose con-

struction is deemed impractical, are omitted from the input.

These cost estimations were determined by business analysts

based on the estimated number of training examples domain

experts must label to train the corresponding classifier to the

required precision. Similarly, the utility score of each query

is derived by the analysts as a combination of the impor-

tance of the corresponding product category (i.e. based on

how important it is considered for the company to improve

query results in this category) and the search frequency of

2
Company name omitted due to privacy considerations.

14

the query. As explained in Section 2, the units of measure of

the utility are inconsequential for our model, and thus these

scores can be rescaled by any factor. For simplicity, we scale

these into the range [1, 50].
• Synthetic (S) - The third dataset is generated synthetically,

to consist of 100𝐾 queries. We note that to facilitate the

scalability tests, the size of this query set greatly exceeds

typical query load sizes targeted by classifier construction

(as reported by analysts). The costs and utilities are integers

drawn independently from a uniform distribution over the

ranges [0, 50] and [1, 50], respectively. The length of any

generated query equals 𝑖 with a probability
1

2
𝑖 , i.e. half of

the queries are of length one, a quarter of the queries are of

length two, and so on. This captures the inverse correlation

of query frequency and length that exists in practice (and, in

particular, in the two previous datasets). Queries generated

with a length exceeding 6 are omitted because companies

do not allocate resources for such rare queries [27]. The

average query length resulting from this process is 1.8. Into

each query, we select uniformly properties from a pool of

10𝐾 properties. This dataset is regenerated for each separate

experiment.

Algorithms. We compare the following four 𝐵𝐶𝐶 algorithms.

Since no competing algorithm exists in the literature, we exam-

ine natural greedy and random baselines. In particular, the 𝐼𝐺2

algorithm described below is an adaptation to our context of the

greedy Set Cover algorithm used to solve the𝑀𝐶3 problem in [23].

Note that the baselines used for the evaluation of𝐺𝑀𝐶3 and 𝐸𝐶𝐶

solutions, are described separately in Subsection 6.3.

• RAND - This simple baseline randomly selects in each iter-

ation one of the classifiers whose selection will not exceed

the budget.

• IG1 - An iterative greedy algorithm that in each iteration

computes for each uncovered query the least costly set of

classifiers that covers it (by checking all 𝑂 (1) relevant sets),
and then selects the classifier set that maximizes the ratio of

the utility of the corresponding query and its cost (we only

count the costs of the classifiers that have not been selected

in the previous iterations).

• IG2 - Another iterative greedy algorithm, that in each iter-

ation selects a single classifier. Concretely, it computes for

each classifier the sum of utilities of the queries that contain

it and then selects the classifier that maximizes the ratio

between the corresponding sum of utilities and its cost.

• 𝑨𝑩𝑪𝑪
- Our proposed algorithm (Algorithm 1 in Section 4).

Evaluation outline for 𝐵𝐶𝐶. We compared the algorithms

listed above over our datasets, both in terms of the overall util-

ity of the selected classifier set and the overall running time (we

executed the random 𝑅𝐴𝑁𝐷 baseline 5 times in each experiment,

and averaged the results). We tested each dataset with a wide range

of budget values. To compute an upper bound on this range, we

solved the 𝑀𝐶3 problem (Definition 2.4) using the algorithm of

[23], as the cost of the produced solution is sufficient to cover all

queries. To understand how our algorithm compares with the opti-

mal solution, we also ran experiments on small subsets of the input,

where a brute force approach could find the best solution. Lastly,

we examined the effect of our preprocessing step (the first step of

Algorithm 1) on the execution time and the solution quality.

6.2 BCC Evaluation Results
We next present the results for the 𝐵𝐶𝐶 problem and discuss im-

portant insights.

Solutionquality. Figures 3a, 3b, and 3c depict the utility achieved
by each algorithm over the 𝐵𝐵, 𝑃 , and 𝑆 datasets respectively, for

some of the examined budget values. In all examined cases the

𝐴𝐵𝐶𝐶 algorithm always achieved the best performance.

Figure 3a depicts the utilities achieved over the 𝐵𝐵 dataset for

4 different budget values. The ranking of the algorithms for all

budget bounds is the same: 𝐴𝐵𝐶𝐶 is the best performing algorithm,

followed by 𝐼𝐺2, 𝐼𝐺1, and 𝑅𝐴𝑁𝐷 . We note that the 𝐵𝐵 dataset is

very sparse since each property appears in a very small number

of queries, and the corresponding 𝐻𝑘𝑆 instance (Definition 2.6)

is, therefore, very sparse as well. Moreover, both 𝐴𝐵𝐶𝐶 and 𝐼𝐺2

produce solutions where almost all of the utility comes from cover-

ing singleton queries. This allows 𝐼𝐺2 to achieve results close to

𝐴𝐵𝐶𝐶 . However, over all other tested datasets, the gap significantly

widens as there are solutions containing classifiers that help cover

simultaneously queries of different lengths, which are found via

good approximation of the 𝐻𝑘𝑆 instance. This is evident over the 𝑃

and 𝑆 datasets, for which results for a selection of budget values are

depicted in Figures 3b and 3c, respectively. Here again the ranking

of the algorithms is the same, except that 𝐼𝐺1 outperforms 𝐼𝐺2

over small budgets. In particular, the gap between 𝐴𝐵𝐶𝐶 and the

second-best algorithm over 𝑃 is much larger than over 𝑆 . This oc-

curs because the probabilistic generative process that constructs 𝑆

results in a, roughly speaking, more “balanced”𝐻𝑘𝑆 graph, whereas

the 𝑃 dataset can be better exploited by the 𝐻𝑘𝑆 algorithm that

focuses on a union of low-cost dense subgraphs.

Lastly, Figure 3d depicts the comparison of 𝐴𝐵𝐶𝐶 and the brute-

force algorithm (that also uses pruning) over a subset of the 𝑃

dataset (we tested small query subsets that pertain to very spe-

cific subdomains, such as “iPhones” queries). Naturally, there is

some loss in optimality compared to the (non-practical) exhaustive

search. However, the loss is always less than 20% on these small

instances. The brute-force results over small synthetic instances

showed roughly the same trends and hence omitted.

Insights.We next present additional findings and insights de-

rived from the quality experiments. We first note the effect of dimin-
ishing returns, which is particularly noticeable over the 𝑃 dataset:

we see that the growth in the utility is not quadratic (as one could

expect, e.g., in the extreme case of 𝐷𝑘𝑆 , where the order of the

number of edges is quadratic in the subgraph size for very dense

graphs), but rather sublinear. This is because most of the utility

is typically concentrated in much smaller subsets of the instance.

Moreover, the algorithm initially covers the queries of the highest

utility where less costly classifiers are available, and as the budget

increases, such “easy” query subsets become much rarer.

One important corollary is that compared to the budget required

to cover all queries (which is computed in the𝑀𝐶3 setting of [23])

the budget required to cover a large fraction of the utility is much

smaller. For instance, over the 𝑃 dataset the budget required by the

𝑀𝐶3 algorithm exceeds 8000, however, a budget of 4000 is sufficient

15

0

200

400

600

800

20 50 100 300

U
til
ity

RAND IG1 IG2 ABCC

(a) BB dataset, various budgets

0

50000

100000

150000

500 1000 2000 4000

U
til
ity

RAND IG1 IG2 ABCC

(b) P dataset, various budgets

0

500

1000

1500

2000

2500

1000 2000 5000 10000

U
til

ity
 (x

10
00

)

RAND IG1 IG2 ABCC

(c) S dataset, various budgets

0

1000

2000

3000

10 15 20 25

U
til
ity

ABCC BruteForce

(d) Brute Force

0

100

200

300

400

10000 20000 50000 100000

Ti
m

e
(m

in
ut

es
)

queries

with preprocessing w/o preprocessing

(e) Preprocessing effect - Time

0

500

1000

1500

2000

10000 20000 50000 100000

U
til

ity
 (x

10
00

)

queries

with preprocessing w/o preprocessing

(f) Preprocessing effect - Utility
Figure 3: Experimental results for BCC

to cover 75% of the total utility of all queries (which is roughly 186K).

We also note that the real quarterly budget provided to us by the

analysts for this dataset is roughly 2000, and this is sufficient for

65% of the total utility. Note that in particular this very loose bound

on the optimal utility implies that the performance ratio of our

algorithm is at most 4/3 for 75% of the budget, and roughly 1.5

(i.e. loss of around 35%) for 50%. Moreover, to provide additional

context for the percent loss compared to total utility (which may

of course greatly exceed the optimal solution, which we cannot

compute) we note that the total utility possible over the 𝐵𝐵 dataset

is roughly 1𝐾 , whereas over the 𝑆 dataset it is roughly 2.5𝑀 .

We also note that for the “real” budget of 2000 over 𝑃 , roughly

51% of the utility comes from queries of length 2 and about 47% from

singleton queries (the rest is over longer queries). Note that this

means that queries of length 2 are slightly more covered compared

to their incidence in the input, which is due to the fact the 𝐴𝐵𝐶𝐶 is

able to locate dense subgraphs (with relatively more weight from

edges compared to nodes), although the solution also contains

sparser subgraphs.

Second, we note a characteristic of the real-world datasets (𝐵𝐵

and even more so 𝑃): popular queries (which are queries of high

utility) tend to have popular subqueries. For example, if people

often look for “black Adidas shoes” then people also often look for

“Adidas shoes” and “black shoes”. This property is exploited well by

our algorithm, 𝐴𝐵𝐶𝐶 . Specifically, in many cases, the 𝑄𝐾 solution

is better than the Knapsack solution (see Section 4 for details), and

consists mostly of singleton classifiers. Therefore, when covering

popular queries of length 2 the 𝑄𝐾 solution also tends to cover

many popular queries of length 1 that are captured by the Knapsack

instance. A similar phenomenon occurs when we solve the residual

problem, as the classifiers used for the shorter popular queries, tend

to be relevant for longer queries that contain the former queries as

subsets, which simplifies the residual problem (see Algorithm 1).

Scalability and Preprocessing. Finally, we discuss the scala-
bility, and, in particular, the effect of our preprocessing procedure

(step 1 in Algorithm 1), which reduces the size of the input at the

cost of a provably small loss in the optimality. The relevant experi-

ments involved testing a wide range of budget values (including the

budget sufficient to cover all queries), and for each budget bound

we generated the synthetic datasets multiple times with different

sizes of the input query set. As the general trends were similar

over all tested budget values, we only show representative results

for a budget bound of 5000. Concretely, figures 3e and 3f depict,

respectively, the running time and utility of𝐴𝐵𝐶𝐶 with and without

preprocessing, over the 𝑆 dataset, where we varied the number of

generated queries from 10K to 1000K and always used the same

budget bound of 5000. Note that on instances with over 50K queries

the variant of the algorithm without preprocessing did not termi-

nate. One can see that the degradation in performance caused by

the preprocessing is negligible, however, the gain in efficiency is

significant. In particular, over the dataset with 100K queries 𝐴𝐵𝐶𝐶

(with preprocessing) produced a solution after 65 minutes, and even

on much larger budgets the running time over 𝑆 did not exceed 80

minutes, which is affordable running time for an offline task.

Preliminary end-to-end results. Lastly, we present some gen-

eral findings reported to us by our business collaborators (that have

provided the 𝑃 dataset, and are also evaluating our proposed solu-

tion) in terms of the accuracy of the cost estimates, and the extent

to which the results of a sample of the newly-covered queries have

improved. Note that these evaluations and findings are entirely

independent of our solution, as the cost estimates are the same

for all baselines, and the improvement to the query is the same

regardless of the solution that suggested to cover it. Therefore, this

is only provided as supplementary material to add some context to

the practical setting and demonstrate its validity, and is in no way a

direct evaluation of our algorithms (a detailed end-to-end analysis

that compares the overall improvement to the search results of our

algorithm to other baselines, would require not only a lot of time

but also that companies separately adhere to suggestions of inferior

algorithms for the sake of the evaluation).

We first report that of a random sample of 20 constructed classi-

fiers, that cost estimates were on average lower than the actual costs

by roughly 6%. This underestimation is theoretically equivalent to

reducing the overall budget by 6%, and, as we have proven in Sec-

tion 4, a small constant (multiplicative) modification to the budget

results in at worst a slightly larger reduction in the optimal utility.

Nevertheless, it would be interesting to investigate techniques that

more accurately predict, e.g., the number of necessary training

examples necessary to train a given classifier to a given accuracy

threshold. Moreover, as classifiers are used only after reaching 95%

accuracy on test sets, we report that the original estimates were in

almost all cases sufficient to exceed 90%.

16

Moreover, on a random sample of 20 queries that have been

covered by classifiers (due to privacy concerns, we cannot disclose

information on the queries or concrete internal evaluation tech-

niques), the size of the complete result sets compared to the previous

result set (that has leveraged retrieval methods based on similarity

of embeddings as described in the introduction) has in all cases

increased by more than 200% (which is not surprising, since these

queries are known to be problematic, and hence targeted by the

business analysts), and in 3 queries by more than 500%. It has been

reported that the precision has also improved, compared to noisier

heuristics, however no concrete values were provided to us.

6.3 𝐺𝑀𝐶3 and 𝐸𝐶𝐶 Evaluations
While the primary focus of the present work is on the 𝐵𝐶𝐶 prob-

lem, we, nevertheless, also present, in this subsection, preliminary

evaluation results for our proposed algorithms for 𝐺𝑀𝐶3 and 𝐸𝐶𝐶

(Section 5). As the main purpose of discussing these complementary

problems is to demonstrate that one can approximate them well

by adapting our solution methods for 𝐵𝐶𝐶 , we present evaluation

results that corroborate this claim by demonstrating the superiority

of our proposed solutions over more naive baselines. Nonetheless,

an in-depth empirical study of these problems, that includes opti-

mizing the above algorithms with various heuristics and pruning

procedures, analogously to our optimization of the𝐴𝐵𝐶𝐶 algorithm,

is beyond the scope of this paper.

We first describe the baselines used for evaluating our 𝐺𝑀𝐶3

solution, followed by the evaluation results, and then do the same

for 𝐸𝐶𝐶 .

GMC3 baselines.We evaluate the following four 𝐺𝑀𝐶3 algo-

rithms, that are almost entirely analogous to the four algorithms

used for the evaluation of our 𝐵𝐶𝐶 solution. In particular, the first

three algorithms listed below are identical to their 𝐵𝐶𝐶 counter-

parts, except that the stopping condition is reaching the utility

target rather than the budget bound.

• RAND(G) - This simple baseline randomly and uniformly

selects in each iteration one classifier until the target utility

is reached or exceeded.

• IG1(G) - An iterative greedy algorithm that in each iteration

computes for each uncovered query the least costly set of

classifiers that covers it (by checking all 𝑂 (1) relevant sets),
and then selects the classifier set that maximizes the ratio of

the utility of the corresponding query and its cost (we only

count the costs of the classifiers that have not been selected

in the previous iterations).

• IG2(G) - Another iterative greedy algorithm, that in each

iteration selects a single classifier. Concretely, it computes

for each classifier the sum of utilities of the queries that

contain it and then selects the classifier that maximizes the

ratio between the corresponding sum of utilities and its cost.

• 𝑨𝑮𝑴𝑪3
- Our proposed algorithm for 𝐺𝑀𝐶3, described in

the proof of Theorem 5.3, that iteratively employs our 𝐴𝐵𝐶𝐶

algorithm over the same input along with an estimated bud-

get bound that fits this algorithm. The naive implementation

of this algorithm, as described in Section 5, tests every pos-

sible budget bound to find the best value (it selects the best

solution out of all examined values). However, to allow for

scalable performance, in our implementation of 𝐴𝐺𝑀𝐶3
, we

use instead a binary search for the best budget bound over a

reduced relevant range approximately inferred from running

the𝑀𝐶3 solution of [23], which computes an upper bound

on the budget required for reaching the sum of the utilities

of all input queries.

GMC3 evaluation results.We now present the evaluation re-

sults for the𝐺𝑀𝐶3 problem. Figures 4a, 4b, and 4c depict the budget

used by each algorithm over the 𝐵𝐵, 𝑃 , and 𝑆 datasets, respectively,

for some of the examined utility targets. In all examined cases the

𝐴𝐺𝑀𝐶3
algorithm achieved the best performance.

Recall that the 𝐴𝐺𝑀𝐶3
algorithm essentially consists of running

𝐴𝐵𝐶𝐶 several times in succession (taking the union of the produced

solutions). Hence, since all examined algorithms are almost entirely

analogous to the 𝐵𝐶𝐶 algorithms, and due to the inherent rela-

tion between the two problem definitions, all quality evaluations

demonstrate the same trends as in the evaluation of our 𝐵𝐶𝐶 solu-

tions. One small difference, however, is that the gap between our

algorithm and the other baselines is diminished, compared to 𝐵𝐶𝐶 ,

partly because the binary search heuristic adds some error.

In terms of the scalability of 𝐴𝐺𝑀𝐶3
, however, its running time

is considerably higher the 𝐴𝐵𝐶𝐶 . This is expected, since many

iterations are discarded, and are only used for guiding the binary

search for a good budget bound for the input of the underlying

𝐴𝐵𝐶𝐶 algorithm. Moreover, for the best found budget bound,𝐴𝐵𝐶𝐶

is iteratively employed 2 to 4 times (with rare exceptions), until the

target utility is reached.

As mentioned, optimizing this algorithm, analogously to our op-

timization of 𝐴𝐵𝐶𝐶 is beyond the scope of this work. Nevertheless,

the running time is, arguably, at least reasonable over the real-world

datasets, and is affordable for an offline task, even over the larger

synthetic dataset. The running times over the synthetic dataset

(the experimental setup is analogous to the 𝐵𝐶𝐶 evaluation), for a

representative utility target of 150K are depicted in Figure 4d.

ECC baselines.We evaluate the following four 𝐸𝐶𝐶 algorithms.

These baselines are, once again, almost entirely analogous to the

four baselines used for 𝐵𝐶𝐶 and 𝐺𝑀𝐶3. In particular, besides our

proposed algorithm, the three baselines operate the same as in

the previous problems, with two modifications: (1) the stopping

condition is covering all queries, and (2) the output is not the final

set of classifiers, rather the set that achieved the best ratio across

all iterations. For completeness, we again define these baselines

below.

• RAND(E) - This simple baseline randomly and uniformly

selects in each iteration one classifier until all queries are

covered.

• IG1(E) - An iterative greedy algorithm that in each iteration

computes for each uncovered query the least costly set of

classifiers that covers it (by checking all 𝑂 (1) relevant sets),
and then selects the classifier set that maximizes the ratio of

the utility of the corresponding query and its cost (we only

count the costs of the classifiers that have not been selected

in the previous iterations).

• IG2(E) - Another iterative greedy algorithm, that in each

iteration selects a single classifier. Concretely, it computes

for each classifier the sum of utilities of the queries that

17

0
200
400
600
800
1000
1200

100 200 400 800

B
ud
ge
t

RAND IG1(G) IG2(G) AGMC3

(a) GMC3 - BB dataset, various targets

0

5000

10000

15000

20000

40K 80K 120K 160K

B
ud
ge
t

RAND IG1(G) IG2(G) AGMC3

(b) GMC3 - P dataset, various targets

0

10000

20000

30000

40000

50000

500K 1000K 1500K 2000K

B
ud
ge
t

RAND IG1(G) IG2(G) AGMC3

(c) GMC3 - S dataset, various targets

0

100

200

300

400

500

10000 20000 50000 100000

Ti
m

e
(m

in
ut

es
)

queries

AGMC3

(d) GMC3 running time

0
20
40
60
80
100
120

RAND IG1 IG2 ABCC

R
at
io

(e) ECC - BB dataset, various targets

0
100
200
300
400
500
600
700

RAND IG1 IG2 ABCC

R
at
io

(f) ECC - S dataset, various targets
Figure 4: Experimental results for GMC3 and ECC

contain it and then selects the classifier that maximizes the

ratio between the corresponding sum of utilities and its cost.

• 𝑨𝑬𝑪𝑪
- Our proposed algorithm for 𝐸𝐶𝐶 , described in the

proof of Theorem 5.4. As described in Section 5, this al-

gorithm employs in a black-box manner an algorithm for

finding the densest ratio-wise subgraph in weighted hyper-

graphs. There are several such exact algorithms in [35], along

with a faster 𝑟 -approximation algorithm, where 𝑟 is the max-

imum cardinality of a hyperedge in the graph, which in our

setting is typically close to 2. As we do not have access to

the implementation of the exact algorithms, we have used

the simple greedy approximation algorithm.

ECC evaluation results. Unlike the previously examined prob-

lems, in 𝐸𝐶𝐶 there is no analogous dimension to the utility target

or the budget constraint. For each dataset, there is only one given

solution. The best ratios produced by each algorithm over the 𝑃 and

𝑆 datasets, respectively, are shown in Figures 4e and 4f (the trends

over 𝐵𝐵 are roughly the same, and are omitted to facilitate a more

succinct visual presentation of the results). Note that the best ratio

is of a different order of magnitude over each dataset, as, intuitively,

the optimal ratio may potentially reach much higher values over

large and “dense” instances. We note that the best found ratio over

the 𝑃 dataset corresponds to a total cost of roughly 400, whereas

the best found ratio over 𝑆 corresponds to a total cost of roughly

900.

The running time of𝐴𝐸𝐶𝐶 varies from several seconds to several

minutes depending on the size of the dataset. Thus, the solution for

this problem is much more scalable compared to 𝐵𝐶𝐶 and 𝐺𝑀𝐶3.

To some extent, this is due to the fact that we used the faster ap-

proximation algorithm from [35], instead of one of the more exact

algorithms. A more thorough examination of possible underlying

algorithms for weighted subgraphs to use in our 𝐸𝐶𝐶 algorithm,

along with various optimizations, analogous to our 𝐴𝐵𝐶𝐶 algo-

rithm, is beyond the scope of this work, as our focus in on the 𝐵𝐶𝐶

problem. Nevertheless, as 𝐸𝐶𝐶 is less similar to 𝐵𝐶𝐶 than 𝐺𝑀𝐶3,

the potential for improvement in solution quality via an in-depth

empirical investigation is likely to be greater.

7 RELATEDWORK
We start this section by describing previous work on non-budgeted

variants of our problem, and, more generally, work on optimizing

the cost of classifier construction and minimization of human effort.

We then discuss problems that share some similarities with our

setting, highlighting important technical distinctions. Lastly, we

review additional𝐻𝑘𝑆 (Definition 2.6) and 𝐷𝑘𝑆 algorithms that can

be paired with our reduction scheme (Section 4).

Non-budgeted variants of BCC. The problem of identifying

cost-effective classifiers has been introduced in [18, 22, 23]. How-

ever, no budget constraints were taken into account, hindering the

practical applicability of these solutions. To address this, we extend

the above model with a budget constraint, and, since in our case not

all queries are necessarily covered, we also differentiate between

queries via utility scores that model how valuable it is for a solu-

tion to cover each given query. Due to 𝐵𝐶𝐶 generalizing 𝐷𝑘𝑆 , the

set-cover-based methods used for𝑀𝐶3 [23] are no longer relevant

for our model, and novel techniques needed to be developed.

Economic classifier construction. In recent years, companies

have been relying on classifiers for an ever-increasing number of

applications, including spam detection [26, 36], identifying helpful

sentences from user reviews [21, 34], fraud detection [5, 37, 49],

finding a proper category for an item in the company’s taxonomy

[32, 64, 70], and classifying search queries [11], which is also the

focus of our work. As mentioned in the introduction, classifier con-

struction is known to be expensive [67, 68], primarily due to the

training process requiring volumes of high-quality labeled train-

ing data [40]. In particular, labeling is performed by humans for

each data item separately, leading to bottleneck concerns, espe-

cially when expertise is required, as experts’ time is more valuable

[60]. Therefore, much research has been devoted to optimizing the

cost of the training process [20, 45]. These works typically focus

on the use-case where the properties the classifier must test are

given, and the goal is to select the most cost-effective construction

methods [54] or devise techniques to minimize the number of data

examples required by the method of choice to reach a satisfactory

level of precision [14]. Our paper is complementary to these lines

of research: given cost estimations for the classifiers, our algorithm

identifies the (conjunctions of) item properties.

18

Importance of accurate meta-data in e-commerce. Main-

taining accurate and high-quality metadata is one the key chal-

lenges of large e-commerce platforms. In addition to previously

mentioned paper [60] by Walmart, that aims to improve prod-

uct classification accuracy, there are other works from other e-

commerce companies, e.g., [51, 66] by Amazon that study the im-

portance of high-quality attributes information. Other companies

such as Alibaba [1] and eBay [2] explicitly ask the sellers to provide

accurate information about the product and specifically product

attributes as part of their guidelines. It is clear that having the

most accurate attributes of the products is crucial for e-commerce

companies (e.g., for having better search results [28]). Hence the

aforementioned and other large e-commerce companies both re-

quest the best available data (attributes) from the sellers while

uploading new products and, in parallel, train high-quality classi-

fiers. Those classifiers are used to extract the attributes from other

provided inputs (e.g., title, image and description). However, to the

best of our knowledge our work is the first to address the problem

of which classifiers to train in a cost-efficient manner (in terms of

required labeled data) under given budget constraint. Specifically,

while in our work the goal is to minimize the effort (amount of

training data) needed to train classifiers that cover a specific need

(in our case - search queries), other works focus on how develop

best possible classifiers and generally do not deal with the budget

constraint. Hence, our work is complementary to these efforts.

Minimization of crowdwork.More broadly, our research falls

under the category of works aiming to minimize the effort or in-

volvement of human workers in various tasks that support super-

vised machine learning [69], e.g., feature selection [52], learning

semantic attributes [63], and image tagging [61]. In these tasks, the

human component tends to be the costliest [60], and in our problem,

as well, the construction costs capture the required human effort.

Related problems.While we are not aware of anywork directly

comparable to ours, we briefly discuss below three problems that

share some similarities with our model.

First, we mention theMaterialized View Selection problem (𝑀𝑉𝑆)

[42, 50, 56], where the goal is to materialize, in the context of data

warehouses, a set of views (relations) that strike the right balance

between optimizing the execution time of answering an expected

query workload and minimizing the overall space used. At high-

level,𝑀𝑉𝑆 is somewhat analogous to 𝐵𝐶𝐶 , with views correspond-

ing to classifiers, space - to costs, and execution time - to utility. Even

so, the𝑀𝑉𝑆 problem has much higher inapproximability bounds

[38], and we are not aware of any theoretical results or heuristic

solution methods that resemble ours. Typical technical modeling

distinctions include the fact that each query is covered by only one

view (the smallest view that contains its result set) [30], and that

the execution time of each query is counted towards the objective

function regardless of the view selection [24]. In contrast, in 𝐵𝐶𝐶

queries are either covered entirely (and precisely) or not at all, and

the objective measures the utility gained only from covered queries,

with no extra penalty for not covering the remaining queries. Cor-

respondingly, the greedy heuristics typically used for𝑀𝑉𝑆 [24, 25]

are unrelated to 𝐷𝑘𝑆 , and thus also do not apply to 𝐵𝐶𝐶 , which

generalizes𝐷𝑘𝑆 (to our knowledge, all top 𝐷𝑘𝑆 heuristics are based

on convex optimization [8, 41, 59] and spectral methods [53]). Nev-

ertheless, it may be interesting to explore whether applying our

model to the 𝑀𝑉𝑆 setting, allows capturing practical objectives,

e.g., storing a set of relations within a space budget, to maximize

the utility gain over queries computed by join/union operations,

which correspond to the logical conjunction of classifiers in 𝐵𝐶𝐶 .

An even more similar line of research is Multi-Task Learning
(𝑀𝑇𝐿) [55, 71, 72]. In𝑀𝑇𝐿 there is a set of tasks, and onemust select

which set of classifiers to construct, such that various combinations

of subsets of these classifiers may address these tasks optimally.

The relation to our model is clear, as classifiers have more or less

the same role, the tasks correspond to queries (there is also typically

one primary high-level task which corresponds in our setting to

improving query results), and different combinations of classifiers

may address (cover) different tasks (queries). Most𝑀𝑇𝐿works focus

on network architectures and on deriving the possible combinations

of classifiers that are most relevant to each task, however, to our

knowledge, there is no study of which combinations are the most

cost-effective, despite the fact the the implementation of the𝑀𝑇𝐿

solution also requires human effort in training the classifiers, and

is subject to budget limitations. Thus, an interesting future work

direction is applying our methods to𝑀𝑇𝐿.

A related line of research examines theMinimum Substring Cover
problem [12, 33], where one searches for a set of strings, such that

subsets of these can be concatenated to derive any string in an-

other input set of strings. This problem, however, is much easier to

approximate than 𝐵𝐶𝐶 , primarily due to the technical differences

between (string) concatenation and logical conjunction (of classi-

fiers). Moreover, the requirement of the solution to cover all input

strings is more similar to𝑀𝐶3 [23] than to the present work, where

we cover only a subset of the queries.

HkS and DkS algorithms. Our 𝐵𝐶𝐶 algorithm leverages the

state-of-the-art 𝐻𝑘𝑆 heuristic [41], based on convex optimization.

Since our solution is modular and uses 𝐻𝑘𝑆 as a black-box, one

can, in principle, use any other 𝐻𝑘𝑆 algorithm. For instance, the

algorithms in [43] and [57] were also shown to perform well in

practice. Moreover, for instances with uniform utility values, 𝐻𝑘𝑆

simplifies into 𝐷𝑘𝑆 for which there are many additional algorithms

to consider. A recent example of an empirically-tested heuristic is

[8], and one can also consider superpolynomial algorithms [9].

8 CONCLUSION AND FUTUREWORK
In this work, we study the 𝐵𝐶𝐶 problem of selecting a classifier set

of the highest utility in practical settings where a budget constraint

is imposed. We showed that 𝐵𝐶𝐶 is as hard as the 𝐷𝑘𝑆 problem

and its hypergraph extensions, for which reasonable worst-case

guarantees have eluded researchers for decades. Nevertheless, we

proposed a practical algorithm that leverages recently-devised 𝐷𝑘𝑆

heuristics and showed experimentally over real-world and synthetic

data that it greatly exceeds the worst-case bounds. As explained in

Section 5, our methods are also applicable to other problem variants

where there is some flexibility in the available budget.

One interesting direction for future work is identifying special

cases that allow providing better worst-case bounds. Another in-

triguing avenue of exploration is generalizing our model to account

for utility in partial covers of queries or generalizing the cost func-

tion to capture overlaps in classifier construction (see discussion in

Section 2).

19

REFERENCES
[1] Alibaba’s Rules for Filling of Product Information. https://rule.alibaba.com/rule/

detail/11000682.htm.

[2] eBay’s Guidelines for Listing Specifics. https://pages.ebay.com/seller-center/

listing-and-marketing/item-specifics.html.

[3] N. Alon, S. Arora, R. Manokaran, D. Moshkovitz, and O. Weinstein. Inapprox-

imability of densest ^-subgraph from average case hardness. Unpublished, 1,
2011.

[4] B. Applebaum. Pseudorandom generators with long stretch and low locality from

random local one-way functions. SIAM Journal on Computing, 42(5):2008–2037,
2013.

[5] J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare. Credit card fraud detection

using machine learning techniques: A comparative analysis. In ICCNI, pages 1–9.
IEEE, 2017.

[6] A. Bhangale, R. Gandhi, and G. Kortsarz. Improved approximation algorithm for

the dense-3-subhypergraph problem. arXiv preprint arXiv:1704.08620, 2017.
[7] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detect-

ing high log-densities: an o (n 1/4) approximation for densest k-subgraph. In

Proceedings of the forty-second ACM symposium on Theory of computing, pages
201–210, 2010.

[8] P. Bombina and B. Ames. Convex optimization for the densest subgraph and

densest submatrix problems. In SN Operations Research Forum, volume 1, pages

1–24. Springer, 2020.

[9] N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, and V. T. Paschos. Exact and

superpolynomial approximation algorithms for the densest k-subgraph problem.

European Journal of Operational Research, 262(3):894–903, 2017.
[10] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation

algorithm for the column subset selection problem. In Proceedings of the twentieth
annual ACM-SIAM symposium on Discrete algorithms, pages 968–977. SIAM, 2009.

[11] A. Z. Broder, M. Fontoura, E. Gabrilovich, A. Joshi, V. Josifovski, and T. Zhang.

Robust classification of rare queries using web knowledge. In SIGIR, pages
231–238, 2007.

[12] S. Canzar, T. Marschall, S. Rahmann, and C. Schwiegelshohn. Solving the mini-

mum string cover problem. In ALENEX, pages 75–83, 2012.
[13] M. Charikar, M. Hajiaghayi, and H. Karloff. Improved approximation algorithms

for label cover problems. Algorithmica, 61(1):190–206, 2011.
[14] Y. Chen, L. Cheng, and Y. Zhang. Building a training dataset for classification

under a cost limitation. Electron. Libr., 39(1):77–96, 2021.
[15] E. Chlamtác, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca. The densest k-

subhypergraph problem. SIAM Journal on Discrete Mathematics, 32(2):1458–1477,
2018.

[16] E. Chlamtac, M. Dinitz, and R. Krauthgamer. Everywhere-sparse spanners via

dense subgraphs. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pages 758–767. IEEE, 2012.

[17] E. Chlamtáč, M. Dinitz, and Y. Makarychev. Minimizing the union: Tight ap-

proximations for small set bipartite vertex expansion. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 881–
899. SIAM, 2017.

[18] E. Dushkin, S. Gershtein, T. Milo, and S. Novgorodov. Query driven data labeling

with experts: Why pay twice? In EDBT, 2019.
[19] U. Feige, M. Seltser, et al. On the densest k-subgraph problem. Citeseer, 1997.

[20] G. Forman and I. Cohen. Learning from little: Comparison of classifiers given

little training. In European Conference on Principles of Data Mining and Knowledge
Discovery, pages 161–172. Springer, 2004.

[21] I. Gamzu, H. Gonen, G. Kutiel, R. Levy, and E. Agichtein. Identifying helpful

sentences in product reviews. In NAACL-HLT 2021, Online, June 6-11, 2021, pages
678–691, 2021.

[22] S. Gershtein, T. Milo, G. Morami, and S. Novgorodov. Mc3: A system for mini-

mization of classifier construction cost. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 2725–2728, 2020.

[23] S. Gershtein, T. Milo, G. Morami, and S. Novgorodov. Minimization of classifier

construction cost for search queries. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 1351–1365, 2020.

[24] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for

olap. In Proceedings 13th International Conference on Data Engineering, pages
208–219. IEEE, 1997.

[25] H. Gupta and I. S. Mumick. Selection of views to materialize under a maintenance

cost constraint. In International Conference on Database Theory, pages 453–470.
Springer, 1999.

[26] V. Gupta, A. Mehta, A. Goel, U. Dixit, and A. C. Pandey. Spam detection using

ensemble learning. InHarmony search and nature inspired optimization algorithms,
pages 661–668. Springer, 2019.

[27] I. Guy. Searching by talking: Analysis of voice queries on mobile web search. In

SIGIR 2016, pages 35–44, 2016.
[28] I. Guy, T. Milo, S. Novgorodov, and B. Youngmann. Improving constrained search

results by data melioration. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pages 1667–1678. IEEE, 2021.

[29] M. T. Hajiaghayi and K. Jain. The prize-collecting generalized steiner tree problem

via a new approach of primal-dual schema. In SODA, volume 6, pages 631–640.

Citeseer, 2006.

[30] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes

efficiently. In SIGMOD Record, volume 25, pages 205–216, 1996.

[31] A. Hassan, X. Shi, N. Craswell, and B. Ramsey. Beyond clicks: query reformulation

as a predictor of search satisfaction. In CIKM, pages 2019–2028, 2013.

[32] I. Hasson, S. Novgorodov, G. Fuchs, and Y. Acriche. Category recognition in e-

commerce using sequence-to-sequence hierarchical classification. In Proceedings
of WSDM, pages 902–905, 2021.

[33] D. Hermelin, D. Rawitz, R. Rizzi, and S. Vialette. The minimum substring cover

problem. Information and Computation, 206(11):1303–1312, 2008.
[34] S. Hirsch, S. Novgorodov, I. Guy, and A. Nus. Generating tips from product

reviews. In WSDM, pages 310–318, 2021.

[35] S. Hu, X. Wu, and T. H. Chan. Maintaining densest subsets efficiently in evolving

hypergraphs. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 929–938, 2017.

[36] A. J. Ibrahim, M. M. Siraj, and M. M. Din. Ensemble classifiers for spam review

detection. In 2017 IEEE Conference on Application, Information and Network
Security (AINS), pages 130–134. IEEE, 2017.

[37] J. Jurgovsky, M. Granitzer, K. Ziegler, S. Calabretto, P.-E. Portier, L. He-Guelton,

and O. Caelen. Sequence classification for credit-card fraud detection. Expert
Systems with Applications, 100:234–245, 2018.

[38] H. Karloff and M. Mihail. On the complexity of the view-selection problem. In

PODS, pages 167–173, 1999.
[39] Y. Khanna and A. Louis. Planted models for the densest 𝑘-subgraph problem.

arXiv preprint arXiv:2004.13978, 2020.
[40] Y. Ko and J. Seo. Text classification from unlabeled documents with bootstrapping

and feature projection techniques. Inf. Process. Manag., 45(1):70–83, 2009.
[41] A. Konar and N. D. Sidiropoulos. Exploring the subgraph density-size trade-off

via the lovaśz extension. In Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, pages 743–751, 2021.

[42] Y. Kotidis and N. Roussopoulos. A case for dynamic view management. TODS,
26(4):388–423, 2001.

[43] M. Letsios, O. D. Balalau, M. Danisch, E. Orsini, and M. Sozio. Finding heaviest

k-subgraphs and events in social media. In 2016 IEEE 16th International Conference
on Data Mining Workshops (ICDMW), pages 113–120. IEEE, 2016.

[44] M. Liazi, I. Milis, and V. Zissimopoulos. Polynomial variants of the dens-

est/heaviest k-subgraph problem. In Proceedings of the 20th British Combinatorial
Conference, Durham, 2005.

[45] N. Lu, G. Niu, A. K. Menon, and M. Sugiyama. On the minimal supervision for

training any binary classifier from only unlabeled data, 2019.

[46] M. W. Mahoney and P. Drineas. Cur matrix decompositions for improved data

analysis. Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.
[47] P. Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest

k-subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 954–961, 2017.

[48] P. Manurangsi and D. Moshkovitz. Improved approximation algorithms for

projection games. Algorithmica, 77(2):555–594, 2017.
[49] T.Milo, S. Novgorodov, andW. Tan. Interactive rule refinement for fraud detection.

In EDBT, pages 265–276, 2018.
[50] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view selec-

tion and maintenance using multi-query optimization. ACM SIGMOD Record,
30(2):307–318, 2001.

[51] F. Moraes, J. Yang, R. Zhang, and V. Murdock. The role of attributes in product

quality comparisons. In Proceedings of the 2020 Conference on Human Information
Interaction and Retrieval, pages 253–262, 2020.

[52] B. Nushi, A. Singla, A. Krause, and D. Kossmann. Learning and feature selection

under budget constraints in crowdsourcing. In HCOMP 2016, 2016.
[53] D. Papailiopoulos, I. Mitliagkas, A. Dimakis, and C. Caramanis. Finding dense

subgraphs via low-rank bilinear optimization. In International Conference on
Machine Learning, pages 1890–1898. PMLR, 2014.

[54] J. Pons, J. Serrà, and X. Serra. Training neural audio classifiers with few data. In

ICASSP, pages 16–20, 2019.
[55] S. Ruder. An overview of multi-task learning in deep neural networks. arXiv

preprint arXiv:1706.05098, 2017.
[56] T. K. Sellis. Multiple-query optimization. ACM Transactions on Database Systems

(TODS), 13(1):23–52, 1988.
[57] H. Singh, M. Kumar, and P. Aggarwal. Approximation of heaviest k-subgraph

problem by size reduction of input graph. In ICCCN, pages 599–605, 2019.
[58] M. S. Sorower. A literature survey on algorithms for multi-label learning. Oregon

State University, Corvallis, 18, 2010.
[59] R. Sotirov. On solving the densest k-subgraph problem on large graphs. Opti-

mization Methods and Software, 35(6):1160–1178, 2020.
[60] C. Sun, N. Rampalli, F. Yang, and A. Doan. Chimera: Large-scale classification

using machine learning, rules, and crowdsourcing. PVLDB, 7(13):1529–1540, 2014.
[61] J. Tang, Q. Chen, M. Wang, S. Yan, T.-S. Chua, and R. Jain. Towards optimizing

human labeling for interactive image tagging. TOMM, 9(4):29, 2013.

20

https://rule.alibaba.com/rule/detail/11000682.htm
https://rule.alibaba.com/rule/detail/11000682.htm
https://pages.ebay.com/seller-center/listing-and-marketing/item-specifics.html
https://pages.ebay.com/seller-center/listing-and-marketing/item-specifics.html

[62] R. Taylor. Approximation of the quadratic knapsack problem. Operations Research
Letters, 44(4):495–497, 2016.

[63] T. Tian, N. Chen, and J. Zhu. Learning attributes from the crowdsourced relative

labels. In AAAI, volume 1, page 2, 2017.

[64] D. Vandic, F. Frasincar, and U. Kaymak. A framework for product description

classification in e-commerce. J. Web Eng., 17(1&2):1–27, 2018.
[65] V. V. Vazirani. Approximation algorithms. Springer Science & Business Media,

2013.

[66] Y. Wang, Y. E. Xu, X. Li, X. L. Dong, and J. Gao. Automatic validation of textual

attribute values in e-commerce catalog by learning with limited labeled data.

In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2533–2541, 2020.

[67] G. M. Weiss and F. Provost. Learning when training data are costly: The effect of

class distribution on tree induction. J. Artif. Int. Res., 19(1):315–354, Oct. 2003.
[68] G. M. Weiss and Y. Tian. Maximizing classifier utility when there are data

acquisition and modeling costs. Data Min. Knowl. Discov., 17(2):253–282, 2008.
[69] M.-C. Yuen, I. King, and K.-S. Leung. A survey of crowdsourcing systems. In

SocialCom/PASSAT, pages 766–773, 2011.
[70] T. Zahavy, A. Krishnan, A. Magnani, and S. Mannor. Is a picture worth a thousand

words? A deep multi-modal architecture for product classification in e-commerce.

In AAAI, pages 7873–7881, 2018.
[71] Y. Zhang and Q. Yang. A survey on multi-task learning. arXiv preprint

arXiv:1707.08114, 2017.
[72] Y. Zhang and Q. Yang. An overview of multi-task learning. National Science

Review, 5(1):30–43, 2018.

21

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Existing Results

	3 Hardness Results
	4 Algorithm
	4.1 Algorithm for l=2
	4.2 Algorithm for l > 2

	5 Complementary Objectives
	6 Experimental Study
	6.1 Experimental Setup
	6.2 BCC Evaluation Results
	6.3 GMC3 and ECC Evaluations

	7 Related Work
	8 Conclusion and Future Work
	References

